To see the other types of publications on this topic, follow the link: C P I (M).

Journal articles on the topic 'C P I (M)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'C P I (M).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Paul, Ed. "C[sub M]P or [sub C]M[sub P]: The Balance in Chemical Mechanical Polishing." Electrochemical and Solid-State Letters 10, no. 7 (2007): H213. http://dx.doi.org/10.1149/1.2737539.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gim, Mi-Gyeong, Han-Woo Shin, Tae-Hui Kim, and Gwang-Hee Kim. "A basic design of P-C-M Support System in Agricultural Facilities." Journal of the Korea Institute of Building Construction 9, no. 6 (December 20, 2009): 99–104. http://dx.doi.org/10.5345/jkic.2009.9.6.099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hindman, Neil, and Hanno Lefmann. "Partition regularity of (M, P, C)-systems." Journal of Combinatorial Theory, Series A 64, no. 1 (September 1993): 1–9. http://dx.doi.org/10.1016/0097-3165(93)90084-l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wenni, Mariza. "BILANGAN KROMATIK LOKASI DARI GRAF P m P n ; K m P n ; DAN K , m K n." Jurnal Matematika UNAND 2, no. 1 (March 10, 2013): 14. http://dx.doi.org/10.25077/jmu.2.1.14-22.2013.

Full text
Abstract:
Let G and H be two connected graphs. Let c be a vertex k-coloring of aconnected graph G and let = fCg be a partition of V (G) into the resultingcolor classes. For each v 2 V (G), the color code of v is dened to be k-vector: c1; C2; :::; Ck(v) =(d(v; C1); d(v; C2); :::; d(v; Ck)), where d(v; Ci) = minfd(v; x) j x 2 Cg, 1 i k. Ifdistinct vertices have distinct color codes with respect to , then c is called a locatingcoloring of G. The locating chromatic number of G is the smallest natural number ksuch that there are locating coloring with k colors in G. The Cartesian product of graphG and H is a graph with vertex set V (G) V (H), where two vertices (a; b) and (a)are adjacent whenever a = a0and bb02 E(H), or aa0i2 E(G) and b = b, denotedby GH. In this paper, we will study about the locating chromatic numbers of thecartesian product of two paths, the cartesian product of paths and complete graphs, andthe cartesian product of two complete graphs.
APA, Harvard, Vancouver, ISO, and other styles
5

Han, Ying-Feng, and Guo-Xin Jin. "Cyclometalated [Cp*M(C^X)] (M = Ir, Rh; X = N, C, O, P) complexes." Chem. Soc. Rev. 43, no. 8 (2014): 2799–823. http://dx.doi.org/10.1039/c3cs60343a.

Full text
Abstract:
Isolated and well-defined cyclometalated iridium/rhodium complexes that contain a Cp*M–C (M = Ir, Rh) bond stabilised by the intramolecular coordination of neutral donor atoms (N, C, O or P), together with their applications, were summarized.
APA, Harvard, Vancouver, ISO, and other styles
6

Mayer, Daniel C. "Construction and classification of \(p\)-ring class fields modulo \(p\)-admissible conductors." Open Journal of Mathematical Sciences 5, no. 1 (April 14, 2021): 162–71. http://dx.doi.org/10.30538/oms2021.0153.

Full text
Abstract:
Each \(p\)-ring class field \(K_f\) modulo a \(p\)-admissible conductor \(f\) over a quadratic base field \(K\) with \(p\)-ring class rank \(\varrho_f\) mod \(f\) is classified according to Galois cohomology and differential principal factorization type of all members of its associated heterogeneous multiplet \(\mathbf{M}(K_f)=\lbrack(N_{c,i})_{1\le i\le m(c)}\rbrack_{c\mid f}\) of dihedral fields \(N_{c,i}\) with various conductors \(c\mid f\) having \(p\)-multiplicities \(m(c)\) over \(K\) such that \(\sum_{c\mid f}\,m(c)=\frac{p^{\varrho_f}-1}{p-1}\). The advanced viewpoint of classifying the entire collection \(\mathbf{M}(K_f)\), instead of its individual members separately, admits considerably deeper insight into the class field theoretic structure of ring class fields. The actual construction of the multiplet \(\mathbf{M}(K_f)\) is enabled by exploiting the routines for abelian extensions in the computational algebra system Magma.
APA, Harvard, Vancouver, ISO, and other styles
7

Alcobé, X., E. Estop, Y. Haget, M. A. Cuevas, M. Labrador, T. Calvet, and E. Tauler. "Crystal data for p-chloroiodobenzene and p-bromochlorobenzene/p-chloroiodobenzene mixed crystals at 293 K." Journal of Applied Crystallography 20, no. 1 (February 1, 1987): 48. http://dx.doi.org/10.1107/s0021889887087168.

Full text
Abstract:
The powder data for p-chloroiodobenzene and p-bromochlorobenzene/p-chloroiodobenzene mixed crystals [pBCB] x [pCIB]1 − x at 293 K are reported; their stability at 293 K is given. The cell dimensions have been refined by least squares from accurate powder diffractometer data recorded at T = 293 (1) K (quartz as internal standard). Vertical diffractometer, graphite monochromator, Cu Kα 1−Cu Kα 2 correction so that λ = 1.54056 Å. They are all isomorphous, monoclinic, P21/a with Z = 2. a = 15.818(4), b = 5.912(2), c = 4.214(2) Å, β = 113.61(1)°, V = 361.1 Å3, Dx = 2.193 Mg m−3 for pCIB; JCPDS No. 37–2000. a = 15.210(5), b = 5.860(3), c = 4.091(2) Å, β = 112.64(2)°, V = 336.5 Å3, Dx = 1.936 Mg m−3 for [pBCB]0.90[pCIB]0.10; JCPDS No. 37–1989. a = 15.287(6), b = 5.870(3), c = 4.111(2) Å, β = 112.78(2)°, V = 340.1 Å3, Dx = 1.961 Mg m−3 for [pBCB]0.80[pCIB]0.20; JCPDS No. 37–1990. a = 15.360(5), b = 5.880(2), c = 4.126(1) Å, β = 112.87(2)°, V = 343.3 Å3, Dx = 1.988 Mg m−3 for [pBCB]0.70[pCIB]0.30; JCPDS No. 37–1991. a = 15.424(5), b = 5.889(3), c = 4.137(2) Å, β = 112.99(2)°, V = 346.0 Å3, Dx = 2.018 Mg m−3 for [pBCB]0.60[pCIB]0.40; JCPDS No. 37–1992. a = 15.493(4), b = 5.896(2), c = 4.155(2) Å, β = 113.09(2)°, V= 349.1 Å3, Dx = 2.045 Mg m−3 for [pBCB]0.50[pCIB]0.50; JCPDS No. 37–1993. a = 15.566(5), b = 5.901(3), c = 4.168(2) Å, β = 113.20(2)°, V = 351.9 Å3, Dx = 2.073 Mg m−3 for [pBCB]0.40[pCIB]0.60; JCPDS No. 37–1994. a = 15.623(5), b = 5.904(3), c = 4.178(3) Å, β = 113.26(2), V = 354.0 Å3, Dx = 2.105 Mg m−3 for [pBCB]0.30[pCIB]0.70; JCPDS No. 37–1995. a = 15.691(4), b = 5.913(3), c = 4.195(2)Å, β = 113.43(2)°, V = 357.1 Å3, Dx = 2.130 Mg m−3 for [pBCB]0.20[pCIB]0.80; JCPDS No. 37–1996. a = 15.759(4), b = 5.906(2), c = 4.204(2) Å, β = 113.55(2)°, V = 358.7 Å3, Dx = 2.164 Mg m−3 for [pBCB]0.10[pCIB]0.90; JCPDS No. 37–1999.
APA, Harvard, Vancouver, ISO, and other styles
8

Hindman, Neil, and Hanno Lefmann. "Canonical partition relations for (m, p, c)-systems." Discrete Mathematics 162, no. 1-3 (December 1996): 151–74. http://dx.doi.org/10.1016/0012-365x(95)00283-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Deuber, Walter, and Neil Hindman. "Partitions and sums of (m, p, c)-sets." Journal of Combinatorial Theory, Series A 45, no. 2 (July 1987): 300–302. http://dx.doi.org/10.1016/0097-3165(87)90020-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

White, R. E. "M. Fullan, P. Hill and C. Crevola, Breakthrough." Journal of Educational Change 8, no. 3 (May 3, 2007): 283–85. http://dx.doi.org/10.1007/s10833-007-9034-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Cooper, Patricia M. "M. Fullan, P. Hill and C. Crevola, Breakthrough." Journal of Educational Change 8, no. 3 (May 3, 2007): 275–77. http://dx.doi.org/10.1007/s10833-007-9035-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

VanRooyen, Michael J., Timothy B. Erickson, Cecilia Cruz, Paul Levy, and J. Kenneth Isaacs. "T RAINING M ILITARY M EDICS AS C IVILIAN P REHOSPITAL C ARE P ROVIDERS IN S OUTHERN S UDAN." Prehospital Emergency Care 4, no. 1 (January 2000): 65–69. http://dx.doi.org/10.1080/10903120090941687.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Hubble, Michael W., Kyle R. Paschal, and Thomas A. Sanders. "M EDICATION C ALCULATION S KILLS OF P RACTICING P ARAMEDICS." Prehospital Emergency Care 4, no. 3 (January 2000): 253–60. http://dx.doi.org/10.1080/10903120090941290.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Zhu, Zhanmin. "C-coherent rings, C-semihereditary rings and C-regular rings." Studia Scientiarum Mathematicarum Hungarica 50, no. 4 (December 1, 2013): 491–508. http://dx.doi.org/10.1556/sscmath.50.2013.4.1256.

Full text
Abstract:
Let C be a class of some finitely presented left R-modules. A left R-module M is called C-injective, if ExtR1(C, M) = 0 for each C ∈ C. A right R-module M is called C-flat, if Tor1R(M, C) = 0 for each C ∈ C. A ring R is called C-coherent, if every C ∈ C is 2-presented. A ring R is called C-semihereditary, if whenever 0 → K → P → C → 0 is exact, where C ∈ C and P is finitely generated projective and K is finitely generated, then K is also projective. A ring R is called C-regular, if whenever P/K ∈ C, where P is finitely generated projective and K is finitely generated, then K is a direct summand of P. Using the concepts of C-injectivity and C-flatness of modules, we present some characterizations of C-coherent rings, C-semihereditary rings, and C-regular rings.
APA, Harvard, Vancouver, ISO, and other styles
15

Wei, Zhihong, Kathrin Junge, Matthias Beller, and Haijun Jiao. "Hydrogenation of phenyl-substituted CN, CN,CC, CC and CO functional groups by Cr, Mo and W PNP pincer complexes – a DFT study." Catalysis Science & Technology 7, no. 11 (2017): 2298–307. http://dx.doi.org/10.1039/c7cy00629b.

Full text
Abstract:
The hydrogenation of phenyl-substituted CN, CN, CC, CC and CO functional groups catalyzed by PNP pincer amido M(NO)(CO)(PNP) and amino HM(NO)(CO)(PNHP) complexes [M = Cr, Mo and W; PNP = N(CH2CH2P(isopropyl)2)2] has been computed.
APA, Harvard, Vancouver, ISO, and other styles
16

Han, Ying-Feng, and Guo-Xin Jin. "ChemInform Abstract: Cyclometalated [Cp*M(C^X)] (M: Ir, Rh; X: N, C, O, P) Complexes." ChemInform 45, no. 22 (May 15, 2014): no. http://dx.doi.org/10.1002/chin.201422233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Linden, Anthony, Markus Furegati, and Andreas J. Rippert. "(P,M)-1,2,3,9,10,11-Hexamethoxy-5,7-dihydrodibenz[c,e]oxepine and (P,M)-1,11-dimethyl-5,5,7,7-tetraphenyl-5,7-dihydrodibenz[c,e]oxepine." Acta Crystallographica Section C Crystal Structure Communications 60, no. 4 (March 11, 2004): o223—o225. http://dx.doi.org/10.1107/s010827010400294x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Calvet, T., M. A. Cuevas, E. Tauler, M. Labrador, Y. Haget, and E. Estop. "Crystal data for p-bromochlorobenzene/p-dibromobenzene mixed crystals at 293 K." Journal of Applied Crystallography 19, no. 3 (June 1, 1986): 202. http://dx.doi.org/10.1107/s002188988608963x.

Full text
Abstract:
The powder data for p-bromochlorobenzene/p-dibromobenzene mixed crystals [pBCB] x [pDBB]1 − x at 293 K are reported; their thermal stability at 293 K is given. Vertical diffractometer, graphite monochromator, Cu Kα, λ = 1.54056 Å. They are all isomorphous, monoclinic, P21/a with Z = 2. a = 15.176(6), b = 5.847(3), c = 4.078(2) Å, β = 112.57(3)°, V = 334.2 Å3, Dx = 1.947 Mg m−3 for [pBCB]0.90[pDBB]0.10; JCPDS No. 36-1975. a = 15.222 (7), b = 5.847 (3), c = 4.083(2) Å, β = 112.60(3)°, V = 335.5 Å3, Dx = 1.984 Mg m−3 for [pBCB]0.80[pDBB]0.20; JCPDS No. 36-1974. a = 15.260(5), b = 5.839(2), c = 4.084(2) Å, β = 112.57(1)°, V = 336.1 Å3, Dx = 2.024 Mg m−3 for [pBCB]0.70[pDBB]0.30; JCPDS No. 36-1973. a = 15.298(4), b = 5.845(3), c = 4.091(2) Å, β = 112.60(2), V = 337.7 Å3, Dx = 2.058 Mg m−3 for [pBCB]0.60[pDBB]0.40; JCPDS No. 36-1972. a = 15.340(4), b = 5.844(2), c = 4.092(2) Å, β = 112.60(2)°, V = 338.7 Å3, Dx = 2.096 Mg m−3 for [pBCB]0.50[pDBB]0.50; JCPDS No. 36-1971. a = 15.370(5), b = 5.843(2), c = 4.097(2) Å, β = 112.62(2)°, V = 339.6 Å3, Dx = 2.134 Mg m−3 for [pBCB]0.40[pDBB]0.60; JCPDS No. 36-1970. a = 15.404(6), b = 5.840(2), c = 4.100(2) Å, β = 112.67(2)°, V = 340.4 Å3, Dx = 2.172 Mg m−3 for [pBCB]0.30[pDBB]0.70; JCPDS No. 36-1969. a = 15.437(5), b = 5.842(2), c = 4.103(2) Å, β = 112.66(2)°, V = 341.4 Å3, Dx = 2.209 Mg m−3 for [pBCB]0.20[pDBB]0.80; JCPDS No. 36-1968. a = 15.468(4), b = 5.838(2), c = 4.104(2) Å, β = 112.70(2)°, V = 341.9 Å3, Dx = 2.249 Mg m−3 for [pBCB]0.10[pDBB]0.90; JCPDS No. 36-1967.
APA, Harvard, Vancouver, ISO, and other styles
19

Soper, James H. "The Sedge Family (Cyperaceae), by T. M. C. Taylor [Review]." Canadian field-naturalist 99, no. 2 (1985): 287–88. http://dx.doi.org/10.5962/p.355433.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Schellenberg, Michael P. "Ecological Management of Agricultural Weeds, by M. Liebman, C. L. Mohler, and C. P. Staver [Review]." Canadian field-naturalist 116, no. 4 (2002): 671. http://dx.doi.org/10.5962/p.363541.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Van Hollebeke, Sarah. "Hamman P., Blanc M., Duchêne-Lacroix C., Freytag T.,." Recherches sociologiques et anthropologiques 46, no. 2 (December 1, 2015): 135–37. http://dx.doi.org/10.4000/rsa.1560.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Berlan, J. P. "Réponse à C. Ducos, P.-B. Joly, M. Moreaux." Économie rurale 165, no. 1 (1985): 50–51. http://dx.doi.org/10.3406/ecoru.1985.3132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Padovano, Fabio. "P. Bosi - M. C. Guerra, I tributi nell’economia italiana." Journal of Public Finance and Public Choice 15, no. 2 (October 1, 1997): 190–92. http://dx.doi.org/10.1332/251569298x15668907782923.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Hansen, William. "Metamorphosis in Greek Myths. P. M. C. Forbes Irving." Classical Philology 87, no. 3 (July 1992): 258–60. http://dx.doi.org/10.1086/367316.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Al Hanbali, A., E. M. Alvarez, and M. C. van der Heijden. "Approximations for the waiting-time distribution in an $$M/PH/c$$ M / P H / c priority queue." OR Spectrum 37, no. 2 (February 10, 2015): 529–52. http://dx.doi.org/10.1007/s00291-015-0388-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Kim, Mi-Gyeong, Han-Woo Shin, Tae-Hui Kim, Gwang-Hee Kim, and Bong-Ki Son. "Development of the P-C-M (Procurement-Construction-Maintenance) Support Prototype System in Agricultural Facilities." Journal of the Korea Institute of Building Construction 10, no. 4 (August 20, 2010): 67–74. http://dx.doi.org/10.5345/jkic.2010.10.4.067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Clout, Hugh. "Cloke P., Cook I., Crang P., Goodwin M., Painter M., Philo C. Practising Human Geography London, Sage, 2004, 416 p." Annales de géographie 655, no. 3 (June 1, 2007): 309. http://dx.doi.org/10.3917/ag.655.0309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Lauff, Randolph. "Ecological Morphology, eds. Peter C. Wainwright and Stephen M. Reilly [Review]." Canadian field-naturalist 111, no. 4 (1997): 701. http://dx.doi.org/10.5962/p.358318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Colgan, Patrick W. "Nature's Purpose, eds. C. Allen, M. Bekoff, and G. Lauder [Review]." Canadian field-naturalist 113, no. 3 (1999): 552–53. http://dx.doi.org/10.5962/p.358653.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Lloyd, M. A., and C. P. Brock. "[MPh4][BPh4], M = P, As and Sb." Acta Crystallographica Section B Structural Science 53, no. 5 (October 1, 1997): 773–79. http://dx.doi.org/10.1107/s0108768197005077.

Full text
Abstract:
The structures of [MPh4][BPh4], M = P, As and Sb, crystallize in a superstructure (I\overline 4, Z′ = 1/2) of the P\overline 421 c, Z′ = 1/4, structure known for MPh4, M = C, Si, Ge, Sn and Pb. The arrangement of the ions is the same as for CaWO4 (scheelite; I41/a, Z′ = 1/4), which is typical of many other ionic XYO4 structures. Crystals of [MPh4][BPh4] turn a pinkish amber when exposed to UV light; ESR spectra confirm that free radicals are generated.
APA, Harvard, Vancouver, ISO, and other styles
31

Labrador, M., E. Tauler, Y. Haget, T. Calvet, M. A. Cuevas, and E. Estop. "Crystal data for p-bromochlorobenzene and p-dichlorobenzene/p-bromochlorobenzene mixed crystals at 293 K." Journal of Applied Crystallography 18, no. 6 (December 1, 1985): 542. http://dx.doi.org/10.1107/s0021889885010883.

Full text
Abstract:
The powder data for p-bromochlorobenzene(pBCB) and p-dichlorobenzene/p-bromochlorobenzene mixed crystals [pDCB] x [pBCB]1 − x at 293 K are reported; their thermal stability at 293 K is given. Vertical diffractomer, graphite monochromator, Cu Kα, λ = 1.5405 Å. They are all isomorphous, monoclinic, P21/a with Z = 2. a = 15.134(4), b = 5.843(2), c = 4.073(1) Å, β = 112.53(1)°, V = 332.7 Å3, Dx = 1.911 Mg m−3 for pBCB. a = 14.890(5), b = 5.848(5), c = 4.046(2) Å, β = 112.53(2)°, V = 325.4 Å3, Dx = 1.636 Mg m−3 for [pDCB]0.70[pBCB]0.30. a = 15.004(6), b = 5.840(3), c = 4.059(2) Å, β = 112.48(2)°, V = 328.6 Å3, Dx = 1.755 Mg m−3 for [pDCB]0.40[pBCB]0.60. a = 15.101(4), b = 5.844(2), c = 4.066(2) Å, β = 112.51(2)°, V = 331.5 Å3, Dx = 1.873 Mg m−3 for [pDCB]0. 10[pBCB]0.90. The JCPDS Nos. are: 36-1995 for pBCB; 36-1994 for [pDCB]0.70[PBCB]0.30; 36-1993 for [pDCB]0.40[pBCB]0.60; 36-1992 for [pDCB]0.10[pBCB]0.90. Data for [pDCB]0.90[pBCB]0.10, [pDCB]0.80 [pBCB]0.20, [pDCB]0.60 [pBCB]0.40, [pDCB]0.50[pBCB]0.50, [pDCB]0.30[pBCB]0.70 and [pDCB]0.20[pBCB]0.80 have also been measured and are available from the authors or as part of the Supplementary Publication.
APA, Harvard, Vancouver, ISO, and other styles
32

Forniés,, J., A. Martín, R. Navarro, V. Sicilia, P. Villarroya, and A. G. Orpen. "Nucleophilic behaviour of the neutral complexes [M(C ^ P)(S2CNMe2)] [M = Pd, Pt; C ^ P = CH2C6H4P(C6H4Me-o)2-κ-C,P ] towards Ag(I) and Au(I) compounds. Synthesis (M = Pd, Pt) and molecular structures (M = Pt) of polynuclear complexes containing M–Ag and M–S bonds." Journal of the Chemical Society, Dalton Transactions, no. 22 (1998): 3721–26. http://dx.doi.org/10.1039/a805099f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Πέτκου, Έ. Χ. "C. P. Cavafy’s subjective time." Kathedra, no. 15(2) (July 21, 2023): 147–64. http://dx.doi.org/10.52607/26587157_2023_15_147.

Full text
Abstract:
Ο Κ. Π. Καβάφης γίνεται θησαυριστής στιγμών ενός χρόνου χαμένου, επιδιώκοντας στην ποίησή του τη σύζευξη των χρονικών διαστάσεων. Στην παρούσα μελέτη εξετάζεται πώς πραγματοποιείται η διαστολή της καβαφικής χρονικότητας τόσο στα ιστορικά ποιήματά του με την αξιοποίηση της «αντικειμενικής συστοιχίας» και με τη χρήση της ειρωνείας ή της αλληγορίας όσο και στα ερωτικά ποιήματα του με την ενεργοποίηση της ατομικής μνήμης. Μελετάται ακόμη η καβαφική διαλεκτική μεταξύ γήρατος και νεότητας και διερευνάται η ενσωμάτωση στην ποιητική του μελλοντικών ενατενίσεων και σκόπιμα επιλεγμένων ή επαναλαμβανόμενων χρονικών σημάνσεων και δομών, που εξυπηρετούν ευφυείς σκηνοθετικές επιλογές ή τη δραματικότητα της γραφής του. Προάγοντας την αντίληψη του χρόνου ως ατομικού βιώματος, ο υποκειμενικός χρόνος του Καβάφη εύλογα μπορεί να συσχετιστεί με την έννοια της χρονικότητας των Ε. Husserl, H. Bergson και M. Heidegger, του Αγίου Αυγουστίνου και του T. S. Eliot. Cavafy becomes treasurer of the moments of a lost time, seeking in his poetry the coupling of temporal dimensions. This study examines how Cavafy’s expansion of temporality is realized both in his historical poems through the use of the “objective array”, the use of irony or allegory, and in his love poems through the activation of individual memory. In addition, Cavafy’s dialectic between old age and youth is studied, and the incorporation in his poetics of future reflections and deliberately chosen or repeated temporal markings and structures, which serve ingenious staging choices or his dramatical writing, is explored. Cavafy’s poetry projects a conception of time as an individual experience and consequently his subjective time can be reasonably related to the notion of temporality of E. Husserl, H. Bergson and M. Heidegger, St. Augustine and T. S. Eliot.
APA, Harvard, Vancouver, ISO, and other styles
34

Mistry, Vaibhavi H., Niravkumar D. Patel, T. Lilly Shanker Rao, and Toluchuri Shanker Rao. "The Fragility of Glassy Corn Starches." Journal of Biomimetics, Biomaterials and Biomedical Engineering 63 (November 3, 2023): 141–46. http://dx.doi.org/10.4028/p-c4ncik.

Full text
Abstract:
The fragility m of starches derived from corn and waxy corn, dried at various temperatures are computed with different water contents and heating rates (1,3,5,7,10, and 15 K/min) using Differential Scanning Calorimetry (DSC) data. Three theoretical approaches namely, Augis & Bennett, Lasocka and Vogel-Fulcher-Tammanni (VFT) are utilized to fit the DSC gelatinization transition temperature, TgT data to calculate the fragility m. The fragility m at a 7 K/min heating rate, with water contents from 30 to 90% at drying temperature 20 °C for corn starch is in the range 41 to 68, whereas at drying temperature of 100 °C for the same corn starch remains constant around 42. The waxy corn starch having water contents 50 to 90% and at drying temperatures 70 °C and 90 °C, the fragility m is unstable. On the whole, fragility m is in between 39 and 63 and according to the Angell’s criterion (16<m<100) the corn starches are intermediately strong glasses.
APA, Harvard, Vancouver, ISO, and other styles
35

Cano, M., P. Ovejero, and J. V. Heras. "Heterobimetallic group 6-rhodium complexes III. [M(CO)3(NN)(dppm-P)] (MMo, W; NN  phen or bpy) as P-donor in MRh complexes." Journal of Organometallic Chemistry 486, no. 1-2 (January 1995): 63–67. http://dx.doi.org/10.1016/0022-328x(94)05020-c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Schellenberg, Michael P. "Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination, by C. C. Baskin and J. M. Baskin [Review]." Canadian field-naturalist 113, no. 4 (1999): 702–3. http://dx.doi.org/10.5962/p.358686.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Grobe, Joseph, Duc Le Van, and Jürgen Nientiedt. "Reaktive E = C (p—p) π -Systeme, XI. Hydrometallierungsreaktionen des Perfluor-2-phosphapropens F3CP = CF2/ Reactive E = C (p —p) π -Systems, XI. Hydrometallation Reactions of Perfluoro-2-phosphapropene F3CP = CF2." Zeitschrift für Naturforschung B 42, no. 8 (August 1, 1987): 984–92. http://dx.doi.org/10.1515/znb-1987-0810.

Full text
Abstract:
AbstractThe reactions of F3CP = CF2 (1) with Me3GeH, Me3SnH, and (C5R5)(CO)3MH (M = Cr. Mo, W; R = H , Me) proceed via addition to the PC double bond yielding tertiary phosphanes of the type Me3M′P(CF3)CF2H[M′ = Ge (2), Sn (3)] or (C5R5)(CO)3MP(CF3)CF2H [R = H; M - Cr (6), Mo (7). W (8); R = Me; M = Mo (9), W (10)]. 2 and 3 are labile compounds, which decompose by elimination of Me3M′F , a reaction which in the case of 3 has been used to prepare the new phosphaalkene F3CP = C(H)F (5) and its [2+4]-cycloaddition product 4 with 2.3-dimethyl-1.3- butadiene. The H substituent (instead of F) in 5 and its derivatives has a surprising influence not only on the stability of the compounds but also on their spectroscopic data, as shown by com parison with 1 and derivatives of the type Me3M ′P(CF3)2 and (C5H5)(CO)3MP(CF3)2. respectively. New compounds are characterized by NMR, MS. GC/MS and IR measurements.
APA, Harvard, Vancouver, ISO, and other styles
38

Li, Yufang, and Zhe Dong. "P-Tensor Product for Group C*-Algebras." Mathematics 8, no. 4 (April 18, 2020): 627. http://dx.doi.org/10.3390/math8040627.

Full text
Abstract:
In this paper, we introduce new tensor products ⊗ p ( 1 ≤ p ≤ + ∞ ) on C ℓ p * ( Γ ) ⊗ C ℓ p * ( Γ ) and ⊗ c 0 on C c 0 * ( Γ ) ⊗ C c 0 * ( Γ ) for any discrete group Γ . We obtain that for 1 ≤ p < + ∞ C ℓ p * ( Γ ) ⊗ m a x C ℓ p * ( Γ ) = C ℓ p * ( Γ ) ⊗ p C ℓ p * ( Γ ) if and only if Γ is amenable; C c 0 * ( Γ ) ⊗ m a x C c 0 * ( Γ ) = C c 0 * ( Γ ) ⊗ c 0 C c 0 * ( Γ ) if and only if Γ has Haagerup property. In particular, for the free group with two generators F 2 we show that C ℓ p * ( F 2 ) ⊗ p C ℓ p * ( F 2 ) ≇ C ℓ q * ( F 2 ) ⊗ q C ℓ q * ( F 2 ) for 2 ≤ q < p ≤ + ∞ .
APA, Harvard, Vancouver, ISO, and other styles
39

AIYAMA, Reiko. "Compact Space-Like $m$-Submanifolds in a Pseudo-Riemannian Sphere $S_p^{m+p}(c)$." Tokyo Journal of Mathematics 18, no. 1 (June 1995): 81–90. http://dx.doi.org/10.3836/tjm/1270043610.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Gruber, C., P. O. Bedolla-Velazquez, J. Redinger, P. Mohn, and M. Marsman. "p-electron magnetism in doped BaTiO 3−x M x (M=C, N, B)." EPL (Europhysics Letters) 97, no. 6 (March 1, 2012): 67008. http://dx.doi.org/10.1209/0295-5075/97/67008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Yamaguchi, A., Y. Tanaka, K. Yanagimoto, J. Sakaguchi, and N. Kato. "Development of P/M Mn-Al-C alloy permanent magnet." Bulletin of the Japan Institute of Metals 28, no. 5 (1989): 422–24. http://dx.doi.org/10.2320/materia1962.28.422.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Launois, Stéphane. "GENERATORS FOR $\mathcal{H}$-INVARIANT PRIME IDEALS IN $O_{q}(\mathcal{M}_{m,p}(\mathbb{C}))$." Proceedings of the Edinburgh Mathematical Society 47, no. 1 (February 2004): 163–90. http://dx.doi.org/10.1017/s0013091502000718.

Full text
Abstract:
AbstractIt is known that, for generic $q$, the $\mathcal{H}$-invariant prime ideals in $O_{q}(\mathcal{M}_{m,p}(\mathbb{C}))$ are generated by quantum minors (see S. Launois, Les idéaux premiers invariants de $O_{q}(\mathcal{M}_{m,p}(\mathbb{C}))$, J. Alg., in press). In this paper, $m$ and $p$ being given, we construct an algorithm which computes a generating set of quantum minors for each $\mathcal{H}$-invariant prime ideal in $O_{q}(\mathcal{M}_{m,p}(\mathbb{C}))$. We also describe, in the general case, an explicit generating set of quantum minors for some particular $\mathcal{H}$-invariant prime ideals in $O_{q}(\mathcal{M}_{m,p}(\mathbb{C}))$. In particular, if $(Y_{i,\alpha})_{(i,\alpha)\in[[1,m]]\times[[1,p]]}$ denotes the matrix of the canonical generators of $O_{q}(\mathcal{M}_{m,p}(\mathbb{C}))$, we prove that, if $u\geq3$, the ideal in $O_{q}(\mathcal{M}_{m,p}(\mathbb{C}))$ generated by $Y_{1,p}$ and the $u\times u$ quantum minors is prime. This result allows Lenagan and Rigal to show that the quantum determinantal factor rings of $O_{q}(\mathcal{M}_{m,p}(\mathbb{C}))$ are maximal orders (see T. H. Lenagan and L. Rigal, Proc. Edinb. Math. Soc.46 (2003), 513–529).AMS 2000 Mathematics subject classification: Primary 16P40. Secondary 16W35; 20G42
APA, Harvard, Vancouver, ISO, and other styles
43

Lee, Dae-Woong. "Primitive and decomposable elements in homology of ΩΣℂP ." Open Mathematics 19, no. 1 (January 1, 2021): 1279–89. http://dx.doi.org/10.1515/math-2021-0110.

Full text
Abstract:
Abstract For each positive integer n n , we let φ n : Σ C P ∞ → Σ C P ∞ {\varphi }_{n}:\Sigma {\mathbb{C}}{P}^{\infty }\to \Sigma {\mathbb{C}}{P}^{\infty } be the self-maps of the suspension of the infinite complex projective space, or the localization of this space at a set of primes which may be an empty set. Furthermore, let [ φ m , φ n ] : Σ C P ∞ → Σ C P ∞ \left[{\varphi }_{m},{\varphi }_{n}]:\Sigma {\mathbb{C}}{P}^{\infty }\to \Sigma {\mathbb{C}}{P}^{\infty } be a commutator of self-maps φ m {\varphi }_{m} and φ n {\varphi }_{n} for any positive integers m m and n n . In the current study, we show that the image of the homomorphism [ φ ˆ m , φ ˆ n ] ∗ {\left[{\hat{\varphi }}_{m},{\hat{\varphi }}_{n}]}_{\ast } in homology induced by the adjoint [ φ ˆ m , φ ˆ n ] : C P ∞ → Ω Σ C P ∞ \left[{\hat{\varphi }}_{m},{\hat{\varphi }}_{n}]:{\mathbb{C}}{P}^{\infty }\to \Omega \Sigma {\mathbb{C}}{P}^{\infty } of the commutator [ φ m , φ n ] \left[{\varphi }_{m},{\varphi }_{n}] is both primitive and decomposable. As a further support of the above statement, we provide an example.
APA, Harvard, Vancouver, ISO, and other styles
44

Shi, Lei, Z. J. Wang, L. P. Zhang, Wei Liu, and Song Fu. "A $$P_N P_M{-} CPR $$ P N P M - C P R Framework for Hyperbolic Conservation Laws." Journal of Scientific Computing 61, no. 2 (February 19, 2014): 281–307. http://dx.doi.org/10.1007/s10915-014-9829-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Otero, Yomaira, David Coll, Alejandro Arce, Deisy Peña, Franmerly Fuentes, Muriel Hissler, Regis Réau, Rubén Machado, Teresa Gonzalez, and Edward Ávila. "Reactivity of dirhenium and triruthenium carbonyls toward a biphosphole ligand: M–M, P–P and C–H bonds cleavage." Journal of Organometallic Chemistry 834 (April 2017): 40–46. http://dx.doi.org/10.1016/j.jorganchem.2017.02.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Hill, Anthony F. "Hetero-olefin metathesis: interaction of M-C, S-O and P-C multiple bonds." Journal of Molecular Catalysis 65, no. 1-2 (March 1991): 85–93. http://dx.doi.org/10.1016/0304-5102(91)85085-g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Thompson, Ian D. "Otters: Ecology and Conservation, by C. F. Mason and S. M. MacDonald [Review]." Canadian field-naturalist 101, no. 4 (1997): 644. http://dx.doi.org/10.5962/p.356024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Бикчентаев, Айрат Мидхатович, and Airat Midkhatovich Bikchentaev. "След и разности идемпотентов в $C^*$-алгебрах." Matematicheskie Zametki 105, no. 5 (2019): 647–55. http://dx.doi.org/10.4213/mzm11710.

Full text
Abstract:
Пусть $\varphi$ - след на унитальной $C^*$-алгебре $\mathcal{A}$, $\mathfrak{M}_{\varphi}$ - идеал определения следа $\varphi$ и идемпотенты $P,Q \in \mathcal{A}$ с $QP=P$. Если $Q \in \mathfrak{M}_{\varphi}$, то $P \in \mathfrak{M}_{\varphi}$ и $0 \leqslant \varphi(P) \leqslant \varphi(Q)$. Если $Q-P \in \mathfrak{M}_{\varphi}$, то $\varphi(Q-P)\in \mathbb{R}^+$. Пусть трипотенты $A,B\in \mathcal{A}$. Если $AB=B$ и $A\in \mathfrak{M}_{\varphi}$, то $B \in \mathfrak{M}_{\varphi}$ и $0 \leqslant \varphi (B^2)\leqslant \varphi (A^2)<+\infty$. Пусть $\mathcal{A}$ - алгебра фон Неймана. Тогда $$ \varphi(|PQ-QP|)\leqslant \min\{\varphi(P),\varphi(Q),\varphi(|P-Q|)\} $$ для всех проекторов $P,Q \in \mathcal{A}$. Для положительного нормального функционала $\varphi$ на алгебре фон Неймана $\mathcal{A}$ следующие условия эквивалентны: (i) $\varphi $ является следом; (ii) $\varphi(Q-P) \in \mathbb{R}^+$ для всех идемпотентов $P,Q \in \mathcal{A}$ с $QP=P$; (iii) $ \varphi(|PQ-QP|) \leqslant \min\{\varphi(P),\varphi(Q)\}$ для всех проекторов $P,Q \in \mathcal{A}$; (iv) $\varphi(PQ+QP) \leqslant \varphi(PQP+QPQ)$ для всех проекторов $P,Q \in \mathcal{A}$. Библиография: 24 названия.
APA, Harvard, Vancouver, ISO, and other styles
49

Mizelle, H. Leland, Steven G. Rothrock, Salvatore Silvestri, and Joseph Pagane. "P REVENTABLE M ORBIDITY AND M ORTALITY FROM P REHOSPITAL P ARALYTIC A SSISTED I NTUBATION : C AN W E E XPECT O UTCOMES C OMPARABLE TO H OSPITAL-BASED P RACTICE ?" Prehospital Emergency Care 6, no. 4 (January 2002): 472–75. http://dx.doi.org/10.1080/10903120290938184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Farahani, Mohammad Reza. "Π(G,x) Polynomial and Π(G) Index of Armchair Polyhex Nanotubes TUAC<sub>6</sub>[m,n]." International Letters of Chemistry, Physics and Astronomy 36 (July 15, 2014): 201–6. http://dx.doi.org/10.56431/p-120lw3.

Full text
Abstract:
Let G be a simple connected graph with the vertex set V = V(G) and the edge set E = E(G), without loops and multiple edges. For counting qoc strips in G, Omega polynomial was introduced by Diudea and was defined as Ω(G,x) = ∑cm(G,c)xc where m(G,c) be number of qoc strips of length c in the graph G. Following Omega polynomial, the Sadhana polynomial was defined by Ashrafi et al as Sd(G,x) = ∑cm(G,c)x[E(G)]-c in this paper we compute the Pi polynomial Π(G,x) = ∑cm(G,c)x[E(G)]-c and Pi Index Π(G ) = ∑cc·m(G,c)([E(G)]-c) of an infinite class of “Armchair polyhex nanotubes TUAC6[m,n]”.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography