Academic literature on the topic 'C-H Activation and Domino Cyclization'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'C-H Activation and Domino Cyclization.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "C-H Activation and Domino Cyclization"

1

Park, Sunhwa, Kye Jung Shin, and Jae Hong Seo. "Total Synthesis of Cyclopiamide A Using Palladium-Catalyzed Domino Cyclization." Molecules 25, no. 21 (October 23, 2020): 4903. http://dx.doi.org/10.3390/molecules25214903.

Full text
Abstract:
Total synthesis of cyclopiamide A was accomplished using a palladium-catalyzed domino cyclization. Three rings in the tetracyclic skeleton of cyclopiamide A were constructed in a one-step domino reaction incorporating double carbopalladation and C-H activation.
APA, Harvard, Vancouver, ISO, and other styles
2

Tran, Duc N., and Nicolai Cramer. "Highly Selective Rhodium Catalyzed Domino C–H Activation/Cyclizations." CHIMIA International Journal for Chemistry 65, no. 4 (April 27, 2011): 271–73. http://dx.doi.org/10.2533/chimia.2011.271.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Szalóki Vargáné, Dóra, László Tóth, Balázs Buglyó, Attila Kiss-Szikszai, Attila Mándi, Péter Mátyus, Sándor Antus, et al. "[1,5]-Hydride Shift-Cyclization versus C(sp2)-H Functionalization in the Knoevenagel-Cyclization Domino Reactions of 1,4- and 1,5-Benzoxazepines." Molecules 25, no. 6 (March 11, 2020): 1265. http://dx.doi.org/10.3390/molecules25061265.

Full text
Abstract:
Domino cyclization reactions of N-aryl-1,4- and 1,5-benzoxazepine derivatives involving [1,5]-hydride shift or C(sp2)-H functionalization were investigated. Neuroprotective and acetylcholinesterase activities of the products were studied. Domino Knoevenagel-[1,5]-hydride shift-cyclization reaction of N-aryl-1,4-benzoxazepine derivatives with 1,3-dicarbonyl reagents having active methylene group afforded the 1,2,8,9-tetrahydro-7bH-quinolino [1,2-d][1,4]benzoxazepine scaffold with different substitution pattern. The C(sp3)-H activation step of the tertiary amine moiety occurred with complete regioselectivity and the 6-endo cyclization took place in a complete diastereoselective manner. In two cases, the enantiomers of the chiral condensed new 1,4-benzoxazepine systems were separated by chiral HPLC, HPLC-ECD spectra were recorded, and absolute configurations were determined by time-dependent density functional theory- electronic circular dichroism (TDDFT-ECD) calculations. In contrast, the analogue reaction of the regioisomeric N-aryl-1,5-benzoxazepine derivative did not follow the above mechanism but instead the Knoevenagel intermediate reacted in an SEAr reaction [C(sp2)-H functionalization] resulting in a condensed acridane derivative. The AChE inhibitory assays of the new derivatives revealed that the acridane derivative had a 6.98 μM IC50 value.
APA, Harvard, Vancouver, ISO, and other styles
4

Jeon, Woo Hyung, Jeong-Yu Son, Ji Eun Kim, and Phil Ho Lee. "Synthesis of 1,2-Benzothiazines by a Rhodium-Catalyzed Domino C–H Activation/Cyclization/Elimination Process from S-Aryl Sulfoximines and Pyridotriazoles." Organic Letters 18, no. 14 (July 7, 2016): 3498–501. http://dx.doi.org/10.1021/acs.orglett.6b01750.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ramesh, Karu, and Gedu Satyanarayana. "A Domino Palladium-Catalyzed Cyclization: One-Pot Synthesis of 4b-Alkyl-10-phenyl-4b,5-dihydroindeno[2,1-a]indenes via Carbopalladation Followed by C–H Activation." Journal of Organic Chemistry 82, no. 8 (April 10, 2017): 4254–64. http://dx.doi.org/10.1021/acs.joc.7b00254.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wan, Jie-Ping, Yi Li, and Yunyun Liu. "Annulation based on 8-aminoquinoline assisted C–H activation: an emerging tool in N-heterocycle construction." Organic Chemistry Frontiers 3, no. 6 (2016): 768–72. http://dx.doi.org/10.1039/c6qo00077k.

Full text
Abstract:
As an important emerging area of 8-aminoquinoline assisted C–H activation, the construction of heterocycles via direct C–H activation and domino reactions involving domino C–H activation/annulation has been highlighted.
APA, Harvard, Vancouver, ISO, and other styles
7

Cheng, Jiang, Xiaopeng Wu, Song Sun, and Jin-Tao Yu. "Recent Applications of α-Carbonyl Sulfoxonium Ylides in Rhodium- and Iridium-Catalyzed C–H Functionalizations." Synlett 30, no. 01 (September 5, 2018): 21–29. http://dx.doi.org/10.1055/s-0037-1610263.

Full text
Abstract:
Sulfoxonium ylides are a special type of sulfur ylides that serve as new C1 or C2 synthons recently developed for use in C–H functionalization to access acylmethylated or cyclized compounds through the formation of metal carbene species. Many excellent works have reported the syntheses of various useful skeletons from these versatile synthons. These developments have not previously been completely investigated or reviewed. In this review, we summarize recent advances in the use of α-carbonyl sulfoxonium ylides in C–H functionalizations, including ortho-C–H acylmethylation reactions and ortho-C–H activation/cyclization reactions. Table of Contents 1 Introduction2 Ortho-C–H Acylmethylation Reactions3 Ortho-C–H Activation/Cyclization Reactions3.1 Ortho-C–H Activation/Cyclization of Anilines and Enamines3.2 Ortho-C–H Activation/Cyclization of Azobenzenes3.3 Ortho-C–H Activation/Cyclization of N-Methoxybenzamide3.4 Ortho-C–H Activation/Cyclization of Imines3.5 Ortho-C–H Activation/Cyclization of N-Azoloimines3.6 Ortho-C–H Activation/Cyclization of Benzoylacetonitriles3.7 Ortho-C–H Activation/Cyclization of Benzoyl Sulfoxonium Ylides4 Conclusion
APA, Harvard, Vancouver, ISO, and other styles
8

Lotz, Florian, Klaus Kahle, Mehrnoush Kangani, Soundararasu Senthilkumar, and Lutz F. Tietze. "Domino C-H Activation Reactions through Proximity Effects." European Journal of Organic Chemistry 2018, no. 40 (October 9, 2018): 5562–69. http://dx.doi.org/10.1002/ejoc.201801289.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cramer, N., and D. Tran. "Rhodium-Catalyzed Domino C-H Activation-Intramolecular Allylation of Imines." Synfacts 2011, no. 01 (December 21, 2010): 0065. http://dx.doi.org/10.1055/s-0030-1259167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ahmad, Muhammad Siddique, Po-Han Lin, Qing Zhang, Bing Zeng, Qifeng Wang, and Kamel Meguellati. "Visible Light Induced C-H/N-H and C-X Bonds Reactions." Reactions 4, no. 1 (March 2, 2023): 189–230. http://dx.doi.org/10.3390/reactions4010012.

Full text
Abstract:
Herein, we report efficient visible light-induced photoredox reactions of C–H/N–H and C–X Bonds. These methods have provided access to varied portfolio of synthetically important γ-ketoesters, azaspirocyclic cyclohexadienones spirocyclohexadienones, multisubstituted benzimidazole derivatives, substituted N,2-diarylacetamide, 2-arylpyridines and 2-arylquinolines in good yields and under mild conditions. Moreover, we have successfully discussed the construction through visible light-induction by an intermolecular radical addition, dearomative cyclization, aryl migration and desulfonylation. Similarly, we also spotlight the visible light-catalyzed aerobic C–N bond activation from well-known building blocks through cyclization, elimination and aromatization. The potential use of a wide portfolio of simple ketones and available primary amines has made this transformation very attractive.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "C-H Activation and Domino Cyclization"

1

Zhu, Cuiju. "Sustainable Synthesis by 3d Transition Metal Electro-Catalyzed C─H Activation." Doctoral thesis, Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2019. http://hdl.handle.net/21.11130/00-1735-0000-0005-12F3-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Eichhorst, Christoph. "Untersuchungen zur Synthese fluoreszenzaktiver aromatischer Polyzyklen durch Palladium-katalysierte Domino-C‒H-Aktivierungen." Doctoral thesis, Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2014. http://hdl.handle.net/11858/00-1735-0000-0023-993C-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Piou, Tiffany. "Développement de nouvelles réactions domino impliquant une étape de fonctionnalisation C-H pour la synthèse d'hétérocycles." Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112424.

Full text
Abstract:
Le projet scientifique a consisté au développement de nouveaux processus domino ayant pour étape clé la fonctionnalisation d’une liaison C-H. L’introduction de cette étape de fonctionnalisation C-H a permis d’améliorer significativement l’efficacité moyenne de la réaction et a offert de nouvelles perspectives du point de vue synthétique. Ainsi, nous avons exploité des stratégies se basant sur des séquences Heck / fonctionnalisation C-H, des réactions de difonctionnalisation d’alcènes en conditions oxydantes et un processus d'aminopalladation / fonctionnalisation C-H. Ces méthodologies nous ont permis un accès rapide aux motifs spiroquinolinones, spirooxindoles, oxindoles disubstitués en position 3, oxindoles tétracycliques et pyrrolo[1,2-a]indoles
The projet consists in developing new domino processes involving C-H functionalization as the key steps. The introduction of C-H functionalization in the domino reaction leads to the enhancing significantly the efficiency of the reaction and offers new perspectives in a synthetic point of view. In this context, we have exploited different strategies basing on Heck/C-H functionalization process, difunctinalization of alkenes reactions through oxidative addition and a sequencial intramolecular aminopalladation/C-H functionalization. These methodologies allow rapid constructions of spiroquinolines, spirooxindoles, 3,3'-disubstituted oxindoles, tetracyclic oxindoles and pyrrolo[1,2-a]indoles cores
APA, Harvard, Vancouver, ISO, and other styles
4

Cuny, Guylaine. "Synthèse de moyens et grands cycles fusionnés à des dihydroazaphenanthrènes et synthèse de 1,4-benzodiazépine-2,5-diones par N-arylations intramoléculaires catalysées au palladium ou au cuivre : nouvelle synthèse de 5-aminooxazoles trisubstitués." Paris 11, 2004. http://www.theses.fr/2004PA112232.

Full text
Abstract:
Dans la premiere partie de ce manuscrit, nous avons decrit la synthese de dihydroazaphenanthrenes fusionnes a des cyles dont la taille est superieure ou egale a sept chainons via une sequence domino unique n-arylation intramoleculaire/activation de liaison c-h/formation de liaison car-car. Cette sequence catalysee au palladium permet de realiser les seules reactions de n-arylations intramoleculaires permettant d’acceder a des cycles de ces tailles. Au cours de cette etude, nous avons montre que nos composes lineaires de depart, agissait comme des ligands pour le palladium et facilitait fortement la reaction. Nous avons egalement pu determiner l’ordre de formation des liaisons et de cette maniere, un mecanisme a pu etre propose. Cette methodologie a pu etre appliquee avec succes, a la synthese de 5,6-dihydro-8h-5,7a-diaza-cyclohepta[jk]phenanthrene-4,7-dione. Par la suite, nous avons mis au point une nouvelle sequence ugi-n-arylation intramoleculaire permettant de synthetiser efficacement des 1,4-benzodiazepine-2,5-diones. Cette nouvelle voie fait intervenir un catalyseur au cuivre, des precurseurs commerciaux ou facilement accessibles et des conditions reactionnelles relativement douces. Dans la seconde partie de ce manuscrit, nous avons decrit une nouvelle voie d’acces a des 5-aminooxazoles utilisant une reaction de type passerini modifiee a « deux composants ». Cette strategie, nous a permis de realiser, pour la premiere fois, une reaction de type passerini hautement diastereoselective. Enfin, par l’utilisation de la reaction d’hydrolyse des oxazoles, nous avons decrit une nouvelle methode permettant de former des dipeptides contenant un motif norstatine
In the first part of this manuscript we described dihydrozaphenanthrene fused macrocyclic ring synthesis using a unique domino sequence n-arylation/c-h activation/ c-c bond forming process. This sequence is catalyzed by palladium and is the unique way to rapidly acces to macrocyclic ring via n-arylation with good to excellent yield. During this study, we demonstrated that our substrate acted as ligand for the palladium and favorised the cyclisation. We also determined bond formation order and proved that c-n bond formation preceded c-c bond formation. And we have been able to isolate an intermediate palladium complex, which allowed us to propose a possible mechanism for this transformation. This methodology was successfully applied to 5,6-dihydro-8h-5,7a-diaza-cyclohepta[jk]phenanthrene-4,7-dione synthesis. Then, we demonstrated that copper could be a good catalyst to promote intramolecular n-arylation to produce 1,4-benzodiazepine-2,5-dione. In a second part, we described a new way to synthetize 5-aminooxazole using a passerini modified two component reaction between an aldehyde and an isocyanoacetamide. Those reactions could have been diastereoselectively controlled and applied to rapid synthesis of dipeptide containing norstatine motif
APA, Harvard, Vancouver, ISO, and other styles
5

Pradal, Alexandre. "Réactions de cycloisomérisation d'ènynes en présence de complexes d'or, de platine et d'ions halogéniums - Approche combinatoire en présence de complexes de platine. Réactions d'acyloxylation par activation C-H d'aromatiques en présence de complexes d'or." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2012. http://pastel.archives-ouvertes.fr/pastel-00832094.

Full text
Abstract:
Ce manuscrit présente le développement de systèmes électrophiles mettant en jeu des complexes π-acides de Lewis à base d'or ou de platine et des ions halogéniums et leur application dans des processus d'activation de triples liaisons C-C (réactions de cycloisomérisation stéréosélective d'ènynes en présence ou en l'absence d'un nucléophile externe et réactions d'halocarbocyclisation) et de liaisons C-H (réactions d'acyloxylation d'arènes encombrés). L'emploi d'un système catalytique composé d'un complexe bimétallique d'or portant un ligand chiral (R)-4-MeO-3,5-(t-Bu)2C6H2-MeOBIPHEP et d'un sel d'argent a permis d'accéder à des dérivés méthylènecyclopentane en présence de nucléophiles externes et à des bicyclo[4.1.0]heptènes avec d'excellents excès énantiomériques. La méthode développée a pu être appliquée à la synthèse formelle d'une molécule pharmaceutique possédant des propriétés antidépressives : GSK1360707F. Le développement d'une méthodologie combinatoire a permis de rechercher rapidement des systèmes ligand bidente/ligand monodente/Pt permettant de réaliser ces transformations de manière stéréosélective. Cette méthode a également été utilisée pour rechercher des associations de ligands pour la synthèse de bicyclo[3.1.0]hexanones par cycloisomérisation d'ènynes-1,5. Le remplacement d'un complexe cationique par un ion halogénium a été étudié pour des réactions d'halocarbocyclisation et a permis de synthétiser des iodocyclopentènes fonctionnalisés par iodocyclisation en présence de N-iodosuccinimide. Cette méthode a pu être appliquée à l'approche synthétique d'un analogue contraint de la Combrétastatine A4. L'activation de liaisons C-H sp² grâce au complexe (Ph3P)AuCl en présence d'un oxydant de la famille des hypervalents de l'iode a permis de réaliser des réactions d'acétoxylation et d'acyloxylation de noyaux aromatiques encombrés avec des rendements modestes à bons.
APA, Harvard, Vancouver, ISO, and other styles
6

Filipczyk, Grzegorz Paweł. "Ferrocenyl-Alkynes and Butadiynes: Reaction Behavior towards Cobalt and Iron Carbonyl Compounds." Doctoral thesis, Universitätsbibliothek Chemnitz, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-231913.

Full text
Abstract:
Die vorliegende Dissertation beschreibt die Synthese und Charakterisierung von neuartigen perferrocenylierten, cyclischen Komplexen unter Anwendung der Cobalt-vermittelten Cyclomerisierung in Kombination mit einer C-H-Bindungsaktivierung als auch die Bildung von ferrocenylierten Phosphinoalkinid-Komplexen mit Eisen- und Cobaltcarbonylen. Die elektrochemischen Eigenschaften und die Elektronentransfer-prozesse zwischen den terminalen Ferrocenyleinheiten in den unterschiedlichen cyclischen Verbindungen wurden unter Einbeziehung der Struktur/chemischen Zusammensetzung der Brückenbausteine ermittelt. Elf perferrocenylierte, cyclische Komplexe wurden mittels [2+2] bzw. [2+2+2] Cyclomerisierung von 1,4-Diferrocenylbutadiin FcC≡C–C≡CFc (Fc = Fe(η5-C5H4)(η5-C5H5)) unter Verwendung von Dicarbonylcyclopentadienylcobalt Co(η5-C5H5)(CO)2 erhalten. Diese können in drei Gruppen unterteilt werden: (i) Produkte der Cyclodimerisierung mit zusätzlicher Kettenverlängerung, welche Cyclobutadienyl-einheiten als zentrale Brückenbausteine besitzen (3a,b und 4a,b), (ii) Produkte der Cyclodimerisierung mit gleichzeitiger CO-Insertion (6a,b,c und 7), und (iii) Produkte der Cyclotrimerisierung gefolgt von einem Ringschluss durch eine C-H-Bindungsaktivierung (5a,b,c). Die Optimierung der Reaktionsbedingungen wurde zur Ausbeutemaximierung der jeweiligen Verbindungsfamilien durchgeführt. Ein weiterer Teil dieser Forschungsarbeit bezieht sich auf die verschiedenen Reaktionsmuster von (Ferrocenylethinyl)diphenylphosphan- mit zweikernigen Eisen- bzw. Cobaltcarbonylverbindungen in Form von Dieisennonacarbonyl und Dicobaltoctacarbonyl als Reagenzien. Dabei konnten sechs gemischte Carbonyl- und Ferrocenyl-funktionalisierte Phosphinoacetylid-Komplexe mit Eisen(0) und Cobalt(0) erhalten und charakterisiert werden
The present PhD study focuses on the synthesis and characterization of novel perferrocenylated cyclic complexes utilizing cobalt - mediated cyclomerization in combination with C–H bond activation as well as formation of ferrocenylated phosphino-alkyne compounds with iron and cobalt carbonyls. Electrochemical properties and electron-transfer processes between terminal ferrocenyl units in the diverse cyclic compounds are explored in relation to the chemical composition of the building blocks connecting them. Eleven perferrocenylated cyclic compounds were obtained via [2 + 2] and [2 + 2 + 2] cyclomerization of 1,4-diferrocenylbutadiyne FcC≡C–C≡CFc (Fc = Fe(η5-C5H4)(η5-C5H5)) by the reaction with dicarbonylcyclopentadienylcobalt Co(η5-C5H5)(CO)2. They are subdivided into three groups: (i) products of cyclodimerization with additional chain extension, possessing cyclobutadienyl moieties as a central linkage unit (3a,b and 4a,b), (ii) products of cyclodimerization with consecutive CO insertion (6a,b,c and 7), and (iii) products of cyclotrimerization followed by cycle formation via C–H bond activation (5a,b,c). Optimization of the reaction conditions was made in order to maximize the amount of each group of compounds. Furthermore, another part of this research work focuses on diverse reaction patterns of (ferrocenylethynyl)diphenylphosphane with diironnonacarbonyl and dicobaltocta-carbonyl. Six mixed carbonyl and ferrocenyl-functionalized phospinoalkynyl compounds of iron(0) and cobalt(0) were obtained and characterized
APA, Harvard, Vancouver, ISO, and other styles
7

Hanchate, Vinayak. "Sulfoximine and Sulfoxonium Ylide Directed C-H Activation and Domino Cyclization: Construction of Heterocyclic and Carbocyclic Rings." Thesis, 2020. https://etd.iisc.ac.in/handle/2005/5074.

Full text
Abstract:
The thesis presents the construction of heterocyclic and carbocyclic rings using rhodium-catalyzed C-H bond activation followed by a tandem cyclization strategy. This involves the synthesis of heterocyclic compounds such as 1,2-benzothiazine using sulfoximine directed Rh(III)-catalyzed C-H activation and tandem [4+2] annulation with arylalkynyl silanes. A poly-heterocyclic furanone-fused 1,2-benzothiazine is synthesized using 4-hydroxy-2-alkynoate as a coupling partner using sulfoximine as a directing group by domino C-H activation, [4+2] annulation, and lactonization. The thesis also involves the synthesis of carbocycles such as furanone fused 1-naphthols by Rh(III)-catalyzed domino C-H activation, [4+2] annulation, and followed by lactonization using sulfoxonium ylide as a traceless carbenoid based directing group. In this Rh(III)-catalyzed C-H activation, sulfoxonium ylide is used as a directing group for the synthesis of 3-substituted indonone derivatives, which also involves a tandem [4+1] annulation. In this study, sulfoxonium ylide acts as a traceless directing group and internal oxidant. Therefore, external metal oxidants are not required, and the byproduct obtained is DMSO, which can be easily removed. Sulfoxonium ylide was also used as a directing group for the synthesis of 2H-cyclopropa[b]naphthalen-2-one carbocyclic scaffolds using allylates as coupling partners. This reaction proceeded via domino Rh(III)-catalyzed, [4+2] annulation, and cyclopropanation.
CSIR, SERB (EMR/2016/006358)
APA, Harvard, Vancouver, ISO, and other styles
8

Muralirajan, Krishnamoorthy, and 莫瑞克. "Rhodium and Ruthenium-Catalyzed C−H Bond Activation and Cyclization Reactions." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/16156868710346313040.

Full text
Abstract:
博士
國立清華大學
化學系
101
ABSTRACT Transition-metal-catalyzed direct conversions of unreactive, less polar CH bonds into numerous organic functional groups by uniting commercially available π-components, which brought a revolution recently in synthetic methodologies for the production of pharmaceuticals, natural products and for opening new routes to organic reactions. Because it can introduce simple conversions, consumes low catalyst loading, inexpensive, readily available starting materials and environmentally friendly conditions. A large variety of metal catalysts, especially rhodium, palladium and ruthenium catalysts are now useful for the efficient catalytic conversion of CH bonds. The uses of rhodium and ruthenium complexes for CH activation via insertion of unsaturated substrates to generate new CC bonds are considerable interest in organic synthesis. In this regard, this thesis describes seven new reactions that focus on the various directing groups with various alkynes and alkenes by rhodium and ruthenium catalyzed CH activations. The CH functionalization reaction affords various functionalized heterocyclic compounds and yields out new five membered and six membered rings. On the other hand carbocyclization, annulation, and insertion reactions of ketone, aldehyde, azo, hydrazine hydrochloride and pyridine containing arenes with simple alkynes and alkenes afforded biologically active indenols, isocoumarins, cinnolinium salts, indoles and amide derivatives in one-pot manner. For better perceptive, I divided this thesis into six chapters. The first four chapters describe about rhodium(III)-catalyzed CH bond activation of aryl ketones, aryl aldehydes, azobenzenes, and aryl hydrazine hydrochlorides with internal alkynes. The fifth chapter describes about rhodium(III)-catalyzed ortho alkenation and cyclization of azobenzenes with alkenes. The final chapter deals with ruthenium-catalyzed amidation of 2-arylpyrindes with isocyanates by CH activation.  Chapter 1 describes a regioselective synthesis of indenols by rhodium-catalyzed CH activation and carbocyclization of aryl ketones and alkynes. The catalytic system proceeds via CH activation followed by regioselective insertion of alkynes to give biologically useful, substituted indenols in excellent yields.  Chapter 2 deals about a synthesis of highly substituted isocoumarin derivatives from aryl aldehydes and alkynes via C−H activation as a result of rhodium catalyst. This methodology shows in-situ oxidation of aldehydes affords acid and ortho CH activation. This simple method offers an alternative and less expensive way to the synthesis of isocoumarins.  Chapter 3 illustrates the rhodium (III)-catalyzed synthesis of cinnolinium salts starting with azobenzenes and alkynes: application to the synthesis of indoles and cinnolines. The reaction path way appears to be the first example employing rhodium catalyzed CH activation and annulation to the synthesis of cinnolinium salts. In addition, the cinnolinium salt products have been successfully applied to the synthesis of three important classes of bioactive compounds and advanced materials namely indole, indoloindole and cinnoline derivatives.  Chapter 4 elaborates an efficient regioselective synthesis of indoles from aryl hydrazine hydrochlorides and alkynes via CH activation. This reaction proceeds through the hydrazone group directed selective ortho CH bond activation and insertion of NN bond gave indoles in highly regioselective manner.  Chapter 5 reveals a new insertion and aromatization of azobenzenes with alkenes via RhCp*-catalyzed CH activation. The present rhodium catalyzed CH activation reaction is successfully applied to various acrylates and acrylamides to synthesize aminoindole-2-carboxylates and 2-carboxyindoles.  Chapter 6 shows a Ru(II)-catalyzed amidation of 2-arylpyridines with isocyanates via CH activation. This method provides an opportunity for the synthesis of various amidated 2-arylpyridines using less expensive ruthenium catalyst under mild reaction condition.
APA, Harvard, Vancouver, ISO, and other styles
9

Haridharan and 哈里. "Cobalt-Catalyzed Addition and Rhodium-Catalyzed C−H Bond Activation and Cyclization Reactions." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/43922512681769549479.

Full text
Abstract:
博士
國立清華大學
化學系
102
芳基 - 芳基鍵的形成,是現代有機合成領域中最重要的工具之一。這些鍵結結構經常在天然物中發現,如生物鹼,以及在醫藥和農業化學品方面。特別是碳-氫鍵活化反應的方法來合成具有生物活性化合物,存在著高度位置選擇性與立體選擇性。在這方面,本文的描述著眼於芳基硼酸與苯氧乙腈、2-(2-甲酰基苯氧基)乙腈之加成反應,成功地以鈷金屬錯合物催化此類型反應。經由 碘苯、N-三甲基乙酰基苯胺、苯硼酸與酮肟、芳族羧酸的碳-氫鍵官能化反應,得到各種官能化之聯芳基。關於酮肟與苯硼酸在多步碳-氫鍵活化之一鍋化反應,得到具有生物活性的菲啶衍生物。為了清楚地說明,將論文分為四個章節。第一章描述關於苯氧乙腈與2 -(2-甲酰基苯氧基)乙腈和有機硼酸的鈷催化加成反應。接下來的三個章節介紹有關碳-氫鍵活化反應之酰苯胺類、酮肟與芳香族氨基酸、有機硼酸和碘苯的銠金屬錯合物催化環化反應。  第1章介紹鈷金屬錯合物催化芳基硼酸與苯氧乙腈,合成具有生物活性之高產率芳基酮化合物。  第2章介紹有關第一個以銠金屬錯合物催化N-三甲基乙酰基苯胺與碘苯之鄰位芳基化反應。  第3章說明銠金屬錯合物催化一鍋化碳-氫鍵官能化反應,酮肟與芳基硼酸之偶聯反應以合成菲啶衍生物。  第4章介紹銠金屬錯合物催化芳香酸與芳基硼酸之碳-氫鍵偶合反應。
APA, Harvard, Vancouver, ISO, and other styles
10

Prakash, Sekar, and 帕卡許. "Rhodium-Catalyzed Alkenylation and Cobalt-Catalyzed Oxidative Cyclization Reactions via C–H Bond Activation." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/58qm33.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "C-H Activation and Domino Cyclization"

1

Tsui, Gavin Chit, and Mark Lautens. "C-H Activation Reactions in Domino Processes." In Domino Reactions, 67–104. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527671304.ch3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jautze, S., and R. Peters. "Domino Reactions." In Stereoselective Pericyclic Reactions, Cross Coupling, and C—H and C—X Activation, 1. Georg Thieme Verlag KG, 2011. http://dx.doi.org/10.1055/sos-sd-203-00291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Watson, I. D. G., and F. D. Toste. "Intramolecular Cyclization Initiated by C—H Activation." In Stereoselective Pericyclic Reactions, Cross Coupling, and C—H and C—X Activation, 1. Georg Thieme Verlag KG, 2011. http://dx.doi.org/10.1055/sos-sd-203-00175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gouverneur, V., and O. Lozano. "Prins Cyclization To Access Fluorinated Tetrahydropyrans, Tetrahydrothiopyrans, and Piperidines." In Stereoselective Pericyclic Reactions, Cross Coupling, and C—H and C—X Activation, 1. Georg Thieme Verlag KG, 2011. http://dx.doi.org/10.1055/sos-sd-203-00573.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gaspar, B., and D. Trauner. "Synthesis of Five-Membered Rings through Electrocyclization of Pentadienyl Cations: The Nazarov Cyclization." In Stereoselective Pericyclic Reactions, Cross Coupling, and C—H and C—X Activation, 1. Georg Thieme Verlag KG, 2011. http://dx.doi.org/10.1055/sos-sd-203-00235.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Taber, Douglass F. "Functionalization and Homologation of C-H Bonds." In Organic Synthesis. Oxford University Press, 2013. http://dx.doi.org/10.1093/oso/9780199965724.003.0020.

Full text
Abstract:
Justin Du Bois of Stanford University developed (J. Am. Chem. Soc. 2010, 132, 10202) a Ru catalyst for the stereoretentive hydroxylation of 1 to 2. John T. Groves of Princeton University effected (J. Am. Chem. Soc. 2010, 132, 12847) equatorial chlorination of the test substrate 3. Kenneth M. Nicholas of the University of Oklahoma found (J. Org. Chem. 2010, 75, 7644) that I2 catalyzed the amination of 5. Thorsten Bach of the Technische Universität München established (Org. Lett. 2010, 12, 3690) that the amination of 7 proceeded with significant diastereoselectivity. Phil S. Baran of Scripps/La Jolla compiled (Synlett 2010, 1733) an overview of the development of C-H oxidation. Tethering can improve the selectivity of C-H functionalization. X. Peter Zhang of the University of South Florida devised (Angew. Chem. Int. Ed. 2010, 49, 10192) a Co catalyst for the cyclization of 9 to 10. Teck-Peng Loh of Nanyang Technological University established (Angew. Chem. Int. Ed. 2010, 49, 8417) conditions for the oxidation of 11 to 12. Jin-Quan Yu, also of Scripps/La Jolla, effected (J. Am. Chem. Soc. 2010, 132, 17378) carbonylation of methyl C-H of 13 to give 14. Sunggak Kim, now also at Nanyang Technological University, established (Synlett 2010, 1647) conditions for the free-radical homologation of 15 to 17. Gong Chen of Pennsylvania State University extended (Org. Lett. 2010, 12, 3414) his work on remote Pd-mediated activation by cyclizing 18 to 19. Many schemes have been developed in recent years for the oxidation of substrates to reactive electrophiles. Gonghua Song of the East China University of Science and Technology and Chao-Jun Li of McGill University reported (Synlett 2010, 2002) Fe nanoparticles for the oxidative coupling of 20 with 21. Zhi-Zhen Huang of Nanjing University found (Org. Lett. 2010, 12, 5214) that protonated pyrrolidine 25 was important for mediating the site-selective coupling of 24 with 23. Y. Venkateswarlu of the Indian Institute of Chemical Technology, Hyderabad, was even able (Tetrahedron Lett. 2010, 51, 4898) to effect coupling with a cyclic alkene 28. AB3217-A 32, isolated in 1992, was shown to have marked activity against two spotted spider mites. Christopher R. A. Godfrey of Syngenta Crop Protection, Münchwilen, prepared (Synlett 2010, 2721) 32 from commercial anisomycin 30a. The key step in the synthesis was the oxidative cyclization of 30b to 31.
APA, Harvard, Vancouver, ISO, and other styles
7

Taber, Douglass F. "Natural Product Synthesis by C–H Functionalization: (±)-Allokainic Acid (Wee), (–)-Cameroonan-7α-ol (Taber), (+)-Lithospermic Acid (Yu), (–)-Manabacanine (Kroutil), Streptorubin B, and Metacycloprodigiosin (Challis)." In Organic Synthesis. Oxford University Press, 2015. http://dx.doi.org/10.1093/oso/9780190200794.003.0022.

Full text
Abstract:
Andrew G.H. Wee of the University of Regina showed (Org. Lett. 2010, 12, 5386) that with the bulky BTMSM group on N and the electron-withdrawing pivaloyloxy group deactivating the alternative C–H insertion site, the diazo ketone 1 cleanly cyclized to 2, with 21:1 diastereocontrol. Oxidative cleavage of the arene followed by amide reduction and methylenation of the ketone converted 2 into (±)-allokainic acid 3. Intermolecular C–H insertion was the key step in a complementary route to (±)-kainic acid reported (Org. Lett. 2011, 13, 2674) by Takehiko Yoshimitsu of Osaka University. Rh-mediated intramolecular C–H insertion was also the first step in our (J. Org. Chem. 2011, 76, 1874) synthesis of (–)-cameroonan-7α-ol 6. In the course of that synthesis, seven of the C–H bonds of 4 were converted to C–C bonds. Jin-Quan Yu of Scripps/La Jolla oxidatively activated (J. Am. Chem. Soc. 2011, 133, 5767) the ortho H of 8 with catalytic Pd, then engaged that intermediate with 7 in a Heck coupling, to give 9, and thus (+)-lithospermic acid 10. The starting acid 8 was prepared by enantioselective Rh-mediated intramolecular C–H insertion. Wolfgang Kroutil of the University of Graz found (Angew. Chem. Int. Ed. 2011, 50, 1068) that berberine bridging enzyme (BBE) from the California poppy could be used preparatively to cyclize a variety of tetrahydroisoquinolines, including 11 to give (–)-manibacanine 13. Although this is clearly a Mannich-type cyclization, a simple Mannich reaction gave a 40:60 mixture of regioisomers, each of them racemic. The enzyme effected cyclization to a 96:4 ratio of regioisomers, and only one enantiomer of 11 participated. Gregory L. Challis of the University of Warwick harnessed (Nature Chem. 2011, 3, 388) the [2Fe-2S] Rieske cluster enzyme RedG of Streptomyces coelicolor to effect oxidative cyclization of 14 to streptorubin B 15. An ortholog of the enzyme cyclized 14 to metacycloprodigiosin 16. It is interesting to speculate as to whether the cyclizations are initiated by the activation of an H on the alkyl sidechain or by oxidation of the pyrrole.
APA, Harvard, Vancouver, ISO, and other styles
8

Taber, Douglass F. "Stereoselective C–O Ring Construction: The Keck Synthesis of Bryostatin I." In Organic Synthesis. Oxford University Press, 2015. http://dx.doi.org/10.1093/oso/9780190200794.003.0046.

Full text
Abstract:
Vladimir Gevorgyan of the University of Illinois, Chicago homologated (Angew. Chem. Int. Ed. 2011, 50, 2808) the ketone 1 to the epoxide 2 using cyanogen bromide. Manabu Abe of Hiroshima University optimized (J. Am. Chem. Soc. 2011, 133, 2592) the diastereoselectivity of the Paternò-Büchi addition of benzophenone 4 to the secondary allylic alcohol 3 to give 5. Debaraj Mukherjee of the Indian Institute of Integrative Medicine constructed (Org. Lett. 2011, 13, 576) the lactone 7 by adding acetate to 6, with remarkable regioselectivity and diastereoselectivity. Tristan H. Lambert of Columbia University employed (Org. Lett. 2011, 13, 740) cyclopropenium activation to cyclize the diol 8 to 9. Brian L. Pagenkopf of the University of Western Ontario designed (Org. Lett. 2011, 13, 572) a Co catalyst for the diastereoselective oxidative cyclization of 11 to 12. Goverdhan Mehta of the Indian Institute of Science, Bangalore, found (Tetrahedron Lett. 2011, 52, 1749) that the Z-diene 13 cyclized efficiently to give the cyclic ether 14. Fabien Gagosz of the Ecole Polytechnique found (J. Am. Chem. Soc. 2011, 133, 7696) that the protonated complex derived from the allene 15 abstracted a hydride from the distal benzyl group, leading to cyclization to 16. Haruhiko Fuwa of Tohoku University found (Org. Lett. 2011, 13, 1820) that the unsaturated thioester 17 cyclized under gentle acid catalysis. Unsaturated esters (not illustrated) can be cyclized under alkaline conditions (Tetrahedron Lett. 2011, 52, 1372). Malcolm D. McLeod of the Australian National University established (J. Org. Chem. 2011, 76, 1992) a combination of Escherichia coli-derived enzyme and an α-d-glucuronyl fluoride donor for converting an alcohol 19 to the corresponding glucuronide metabolite 20. En route to an improved synthesis of the schweinfurthins, potent antineoplastic agents, David F. Wiemer of the University of Iowa devised (J. Org. Chem. 2011, 76, 909) the cyclization/ benzyloxymethyl transfer cascade that transformed 21 into 22. The synthesis and biological activity of the bryostatins is developing into one of the great success stories of natural products chemistry. A key step in the total synthesis of bryostatin 1 25 designed (J. Am. Chem. Soc. 2011, 133, 744) by Gary E. Keck of the University of Utah was the Rainier cyclization of 23 to 24.
APA, Harvard, Vancouver, ISO, and other styles
9

Taber, Douglass. "Stereoselective C-O Ring Construction: The Oguri-Oikawa Synthesis of Lasalocid A." In Organic Synthesis. Oxford University Press, 2011. http://dx.doi.org/10.1093/oso/9780199764549.003.0047.

Full text
Abstract:
O-Centered radicals have been little used for C-O ring formation. Glenn M. Sammis of the University of British Columbia showed (Organic Lett. 2008, 10, 5083) that O-centered radicals could be generated efficiently, and that they cyclized with high diasterecontrol. Liming Zhang of the University of Nevada, Reno, continuing his studies of Au-activation of alkynes, uncovered (J. Am. Chem. Soc. 2008, 130, 12598) the bimolecular condensation of polarized alkynes such as 3 with aldehydes and ketones, including 4, to give the dihydrofuran with high diastereocontrol. Margarita Brovetto of the Universidad de la República, Montevideo, Uruguay, prepared (J. Org. Chem. 2008, 73, 5776) the precursor to the enantiomercially triol 6 by fermentation of bromobenzene with Pseudomonas putida 39/D. Cyclization of 6 gave 7 with high diastereocontrol. Petri M. Pihko of the University of Jyväskylä, Finland, found (Organic Lett . 2008, 10, 4179) that cyclization of 8, prepared by Sharpless asymmetric epoxidation followed by Sharpless asymmetric dihydroxylation, also proceeded with high diastereocontrol. Vincent Aucagne of the Université d’Orléans observed (Tetrahedron Lett. 2008, 49, 4750) that brief exposure of the sulfone 10 to t -BuOK at low temperature gave clean conversion to the kinetic diastereomer 11. At room temperature, similar conditions delivered the other, more stable diastereomer. Angeles Martín and Ernesto Suárez of the C. S. I. C., La Laguna, took advantage (Tetrahedron Lett. 2008, 49, 5179) of the facile generation of O-centered radicals in converting 12 to 14, having a stereocontrolled quaternary center. The transformation is thought to be proceeding by H-atom abstraction, then diastereocontrolled trapping of the C-radical so formed with the allyl stannane 13. Much of the effort toward alkylated cyclic ether construction has been focused on alkyl group attachment adjacent to the ring oxygen. Torsten Linker of the University of Potsdam developed (J. Am. Chem. Soc. 2008, 130, 16003) a complementary approach, stereocontrolled oxidative radical addition of malonate 16 to glycals such as 15 to give the 3-alkyl substituted 17.
APA, Harvard, Vancouver, ISO, and other styles
10

Taber, Douglass F. "Heteroaromatic Construction: The Li Synthesis of Mycoleptodiscin A." In Organic Synthesis. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190646165.003.0068.

Full text
Abstract:
Kyungsoo Oh of Chung-Ang University cyclized (Org. Lett. 2015, 17, 450) the chloro enone 1 with NBS to the furan 2. Hongwei Zhou of Zhejiang University acylated (Adv. Synth. Catal. 2015, 357, 389) the imine 3, leading to the furan 4. H. Surya Prakash Rao of Pondicherry University found (Synlett 2014, 26, 1059) that under Blaise conditions, exposure of 5 to three equivalents of 6 led to the pyrrole 7. Yoshiaki Nishibayashi of the University of Tokyo and Yoshihiro Miyake, now at Nagoya University, prepared (Chem. Commun. 2014, 50, 8900) the pyrrole 10 by adding the silane 9 to the enone 8. Barry M. Trost of Stanford University developed (Org. Lett. 2015, 17, 1433) the phosphine-mediated cyclization of 11 to an intermediate that on brief exposure to a Pd catalyst was converted to the pyridine 12. Nagatoshi Nishiwaki of the Kochi University of Technology added (Chem. Lett. 2015, 44, 776) the dinitrolactam 14 to the enone 13 to give the pyridine 15. Metin Balci of the Middle East Technical University assembled (Org. Lett. 2015, 17, 964) the tricyclic pyridine 18 by adding propargyl amine 17 to the aldehyde 16. Chada Raji Reddy of the Indian Institute of Chemical Technology cyclized (Org. Lett. 2015, 17, 896) the azido enyne 19 to the pyridine 20 by simple exposure to I2. Björn C. G. Söderberg of West Virginia University used (J. Org. Chem. 2015, 80, 4783) a Pd catalyst to simultaneously reduce and cyclize 21 to the indole 22. Ranjan Jana of the Indian Institute of Chemical Biology effected (Org. Lett. 2015, 17, 672) sequential ortho C–H activation and cyclization, adding 23 to 24 to give the 2-substituted indole 25. In a complementary approach, Debabrata Maiti of the Indian Institute of Technology Bombay added (Chem. Eur. J. 2015, 21, 8723) 27 to 26 to give the 3-substituted indole 28. In a Type 8 construction, Nobutaka Fujii and Hiroaki Ohno of Kyoto University employed (Chem. Eur. J. 2015, 21, 1463) a gold catalyst to add 30 to 29, leading to 31.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "C-H Activation and Domino Cyclization"

1

Solorio Alvarado, Dr César, and Narendra Mali. "<em>Synthesis Of polyaromatic heterocycles pyrrolo [1,2-a] indoles by Gold(I)-Catalyzed tandem Cyclization/C-H Activation/Cyclization.</em>." In The 24th International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 2020. http://dx.doi.org/10.3390/ecsoc-24-08378.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography