To see the other types of publications on this topic, follow the link: C-C bonds.

Journal articles on the topic 'C-C bonds'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'C-C bonds.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

RITTER, STEPHEN K. "EXTREME C–C BONDS." Chemical & Engineering News 87, no. 19 (May 11, 2009): 32–33. http://dx.doi.org/10.1021/cen-v087n019.p032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Huntley, Deborah R., Georgios Markopoulos, Patrick M. Donovan, Lawrence T. Scott, and Roald Hoffmann. "Squeezing CC Bonds." Angewandte Chemie 117, no. 46 (November 25, 2005): 7721–25. http://dx.doi.org/10.1002/ange.200502721.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Huntley, Deborah R., Georgios Markopoulos, Patrick M. Donovan, Lawrence T. Scott, and Roald Hoffmann. "Squeezing CC Bonds." Angewandte Chemie International Edition 44, no. 46 (November 25, 2005): 7549–53. http://dx.doi.org/10.1002/anie.200502721.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zeng, Xiaoming, and Xuefeng Cong. "Chromium-Catalyzed Cross-Coupling Reactions by Selective Activation of Chemically Inert Aromatic C–O, C–N, and C–H Bonds." Synlett 32, no. 13 (May 11, 2021): 1343–53. http://dx.doi.org/10.1055/a-1507-4153.

Full text
Abstract:
AbstractTransition-metal-catalyzed cross-coupling has emerged as one of the most powerful and useful tools for the formation of C–C and C–heteroatom bonds. Given the shortage of resources of precious metals on Earth, the use of Earth-abundant metals as catalysts in developing cost-effective strategies for cross-coupling is a current trend in synthetic chemistry. Compared with the achievements made using first-row nickel, iron, cobalt, and even manganese catalysts, the group 6 metal chromium has rarely been used to promote cross-coupling. This perspective covers recent advances in chromium-catalyzed cross-coupling reactions in transformations of chemically inert C(aryl)–O, C(aryl)–N, and C(aryl)–H bonds, offering selective strategies for molecule construction. The ability of low-valent Cr with a high-spin state to participate in two-electron oxidative addition is highlighted; this is different from the mechanism involving single-electron transfer that is usually assigned to chromium-mediated transformations.1 Introduction2 Chromium-Catalyzed Kumada Coupling of Nonactivated C(aryl)–O and C(aryl)–N Bonds3 Chromium-Catalyzed Reductive Cross-Coupling of Two Nonactivated C(aryl)–Heteroatom Bonds4 Chromium-Catalyzed Functionalization of Nonactivated C(aryl)–H Bonds5 Conclusions and Outlook
APA, Harvard, Vancouver, ISO, and other styles
5

Egami, Hiromichi. "Fluorofunctionalizations of C–C Multiple Bonds and C–H Bonds." Chemical and Pharmaceutical Bulletin 68, no. 6 (June 1, 2020): 491–511. http://dx.doi.org/10.1248/cpb.c19-00856.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Meng, Ge, Pengfei Li, Kai Chen, and Linghua Wang. "Recent Advances in Transition-Metal-Free Aryl C–B Bond Formation." Synthesis 49, no. 21 (September 26, 2017): 4719–30. http://dx.doi.org/10.1055/s-0036-1590913.

Full text
Abstract:
Arylboronic acids and their derivatives are widely used in organic synthesis. Conventional methods for their preparation require either reactive organometallic reagents or transition-metal-mediated processes. In recent years, transition-metal-free reactions for aryl C–B bond formation that obviate preformed organometallic reagents have gained interest and have developed rapidly. These new reactions have shown significant advantages for the preparation of functionalized molecules. In this review, an overview of the recent advances in transition-metal-free aromatic borylation reactions is provided.1 Introduction2 Transition-Metal-Free Transformations of CAr–N Bonds to CAr–B Bonds3 Transition-Metal-Free Transformations of CAr–X Bonds to CAr–B Bonds4 Transition-Metal-Free Transformations of CAr–H Bonds to CAr–B Bonds5 Conclusion
APA, Harvard, Vancouver, ISO, and other styles
7

Luh, Tien-Yau. "Chelation Assisted Conversion of C-S Bonds into C-C Bonds." Phosphorus, Sulfur, and Silicon and the Related Elements 120, no. 1 (January 1, 1997): 259–73. http://dx.doi.org/10.1080/10426509708545523.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hamel, Jean-Denys, and Jean-François Paquin. "Activation of C–F bonds α to C–C multiple bonds." Chemical Communications 54, no. 73 (2018): 10224–39. http://dx.doi.org/10.1039/c8cc05108a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kaupp, Gerd, and Jürgen Boy. "Overlong CC Single Bonds." Angewandte Chemie International Edition in English 36, no. 12 (February 3, 1997): 48–49. http://dx.doi.org/10.1002/anie.199700481.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, Chang-Sheng, Pierre H. Dixneuf, and Jean-François Soulé. "Photoredox Catalysis for Building C–C Bonds from C(sp2)–H Bonds." Chemical Reviews 118, no. 16 (July 16, 2018): 7532–85. http://dx.doi.org/10.1021/acs.chemrev.8b00077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

LUH, T. Y. "ChemInform Abstract: Chelation-Assisted Conversion of C-S Bonds into C-C Bonds." ChemInform 29, no. 4 (June 24, 2010): no. http://dx.doi.org/10.1002/chin.199804268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Jia, C. "Efficient Activation of Aromatic C-H Bonds for Addition to C-C Multiple Bonds." Science 287, no. 5460 (March 17, 2000): 1992–95. http://dx.doi.org/10.1126/science.287.5460.1992.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Del Bene, Janet E., Ibon Alkorta, and José Elguero. "Carbenes as Electron-Pair Donors To CO2 for C···C Tetrel Bonds and C–C Covalent Bonds." Journal of Physical Chemistry A 121, no. 20 (May 16, 2017): 4039–47. http://dx.doi.org/10.1021/acs.jpca.7b03405.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Yeston, Jake. "Slicing through both C-C and C-H bonds." Science 357, no. 6353 (August 24, 2017): 768.17–770. http://dx.doi.org/10.1126/science.357.6353.768-q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Mori, A., M. Takahashi, K. Masui, H. Sekiguchi, N. Kobayashi, M. Funahashi, and N. Tamaoki. "Activating C-H Bonds Over C-Br Bonds to Make Oligothiophenes." Synfacts 2006, no. 11 (November 2006): 1115. http://dx.doi.org/10.1055/s-2006-949468.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Nziko, Vincent de Paul N., and Steve Scheiner. "S···π Chalcogen Bonds between SF2or SF4and C–C Multiple Bonds." Journal of Physical Chemistry A 119, no. 22 (May 22, 2015): 5889–97. http://dx.doi.org/10.1021/acs.jpca.5b03359.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

A. Adrio, Luis, and King Kuok (Mimi) Hii. "Palladium-Catalyzed Heterofunctionalization of C-H, C=C and C≡ C Bonds." Current Organic Chemistry 15, no. 18 (September 1, 2011): 3337–61. http://dx.doi.org/10.2174/138527211797248003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Allen, Gregory W., Robert S. Armstrong, Manuel J. Aroney, Raymond K. Pierens, and Alan J. Williams. "Polarisability anisotropies of C—H, C—C, C—Cl and C—Br bonds." J. Chem. Soc., Faraday Trans. 2 84, no. 11 (1988): 1775–78. http://dx.doi.org/10.1039/f29888401775.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Fukumoto, Yoshiya. "Catalytic Hydroamination of C-C Multiple Bonds." Journal of Synthetic Organic Chemistry, Japan 67, no. 7 (2009): 735–50. http://dx.doi.org/10.5059/yukigoseikyokaishi.67.735.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

RITTER, STEPHEN K. "WIDENING THE ROAD FOR C-C BONDS." Chemical & Engineering News 80, no. 5 (February 4, 2002): 26. http://dx.doi.org/10.1021/cen-v080n005.p026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Martínez-Guajardo, Gerardo, Kelling J. Donald, Bernard K. Wittmaack, Miguel Angel Vazquez, and Gabriel Merino. "Shorter Still: Compressing C−C Single Bonds." Organic Letters 12, no. 18 (September 17, 2010): 4058–61. http://dx.doi.org/10.1021/ol101671m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Martínez-Guajardo, Gerardo, Kelling J. Donald, Bernard K. Wittmaack, Miguel Angel Vazquez, and Gabriel Merino. "Shorter Still: Compressing C−C Single Bonds." Organic Letters 13, no. 1 (January 7, 2011): 172. http://dx.doi.org/10.1021/ol102654b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Suzuki, Takanori, Takashi Takeda, Hidetoshi Kawai, and Kenshu Fujiwara. "Ultralong C-C bonds in hexaphenylethane derivatives." Pure and Applied Chemistry 80, no. 3 (January 1, 2008): 547–53. http://dx.doi.org/10.1351/pac200880030547.

Full text
Abstract:
The longer C-C bond than the standard (1.54 Å) is so weakened that it is cleaved easily, as found in the parent hexaphenylethane (HPE). However, the compounds with an ultralong C-C bond (1.75 Å) can be isolated as stable solids when the bond-dissociated species does not undergo any reactions other than bond reformation. This is the central point in designing the highly strained HPEs, which were obtained by two-electron reduction of the corresponding dications. Steric repulsion of "front strain" is the major factor to expand the central C-C bond of HPEs. During the detailed examination of the ultralong C-C bond, the authors discovered the intriguing phenomenon of "expandability": the C-C bond length can be altered over a wide range by applying only a small amount of energy (1 kcal mol-1) supplied by crystal packing force. This observation indicates that the much longer C-C bond than the shortest nonbonded contact (1.80 Å) will be realized under the rational molecular design concept.
APA, Harvard, Vancouver, ISO, and other styles
24

KAUPP, G., and J. BOY. "ChemInform Abstract: Overlong C-C Single Bonds." ChemInform 28, no. 16 (August 4, 2010): no. http://dx.doi.org/10.1002/chin.199716288.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

del Río, M. Pilar, José A. López, Miguel A. Ciriano, and Cristina Tejel. "Connecting CC Bonds to Tetrairidium Chains." Chemistry - A European Journal 19, no. 15 (February 28, 2013): 4707–11. http://dx.doi.org/10.1002/chem.201203769.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Madasu, Jayashree, Shital Shinde, Rudradip Das, Sagarkumar Patel, and Amit Shard. "Potassium tert-butoxide mediated C–C, C–N, C–O and C–S bond forming reactions." Organic & Biomolecular Chemistry 18, no. 41 (2020): 8346–65. http://dx.doi.org/10.1039/d0ob01382j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Wang, Min, Xiang-Kui Gu, Hai-Yan Su, Jian-Min Lu, Ji-Ping Ma, Miao Yu, Zhe Zhang, and Feng Wang. "Preferential cleavage of C C bonds over C N bonds at interfacial CuO Cu2O sites." Journal of Catalysis 330 (October 2015): 458–64. http://dx.doi.org/10.1016/j.jcat.2015.08.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Wang, Congyang, and Ting Liu. "Manganese-Catalyzed C(sp2)–H Addition to Polar Unsaturated Bonds." Synlett 32, no. 13 (March 27, 2021): 1323–29. http://dx.doi.org/10.1055/a-1468-6136.

Full text
Abstract:
AbstractTransition-metal-catalyzed nucleophilic C–H addition of hydrocarbons to polar unsaturated bonds could intrinsically avoid prefunctionalization of substrates and formation of waste byproducts, thus featuring high step- and atom-economy. As the third most abundant transition metal, manganese-catalyzed C–H addition to polar unsaturated bonds remains challenging, partially due to the difficulty in building a closed catalytic cycle of manganese. In the past few years, we have developed manganese catalysis to enable the sp2-hydrid C–H addition to polar unsaturated bonds (e.g., imines, aldehydes, nitriles), which will be discussed in this personal account.1 Introduction2 Mn-Catalyzed N-Directed C(sp2)–H Addition to Polar Unsaturated Bonds3 Mn-Catalyzed O-Directed C(sp2)–H Addition to Polar Unsaturated Bonds4 Conclusion
APA, Harvard, Vancouver, ISO, and other styles
29

Rowland, Alex T. "C-H and C-D Bonds: An Experimental Approach to the Identity of C-H Bonds by Their Conversion to C-D Bonds." Journal of Chemical Education 80, no. 3 (March 2003): 311. http://dx.doi.org/10.1021/ed080p311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Chumakova, Natalia A., and Anatoly L. Buchachenko. "Spin propagation through the C–C and C–H bonds." Mendeleev Communications 25, no. 4 (July 2015): 264–66. http://dx.doi.org/10.1016/j.mencom.2015.07.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

PETKEWICH, RACHEL. "BREAKING C–F BONDS." Chemical & Engineering News 86, no. 35 (September 2008): 13. http://dx.doi.org/10.1021/cen-v086n035.p013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Chong, Eugene, and Suzanne A. Blum. "Aminoboration: Addition of B–N σ Bonds across C–C π Bonds." Journal of the American Chemical Society 137, no. 32 (August 10, 2015): 10144–47. http://dx.doi.org/10.1021/jacs.5b06678.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Yang, Jia, Jing Xiao, Tieqiao Chen, Shuang-Feng Yin, and Li-Biao Han. "Efficient nickel-catalyzed phosphinylation of C–S bonds forming C–P bonds." Chemical Communications 52, no. 82 (2016): 12233–36. http://dx.doi.org/10.1039/c6cc06048j.

Full text
Abstract:
The first nickel-catalyzed phosphinylation of C–S bonds forming C–P bonds is developed. The reaction can proceed readily with the simple Ni(cod)2 at a loading down to 0.1 mol% at the 10 mmol scale. Various aryl sulfur compounds, i.e. sulfides, sulfoxides and sulfones all couple with P(O)–H compounds to produce the corresponding organophosphorus compounds, which provides an efficient new method for the construction of C–P bonds.
APA, Harvard, Vancouver, ISO, and other styles
34

Chen, Zhen, Meng-Yu Rong, Jing Nie, Xue-Feng Zhu, Bing-Feng Shi, and Jun-An Ma. "Catalytic alkylation of unactivated C(sp3)–H bonds for C(sp3)–C(sp3) bond formation." Chemical Society Reviews 48, no. 18 (2019): 4921–42. http://dx.doi.org/10.1039/c9cs00086k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Mi, Zhiyuan, Jiahao Tang, Zhipeng Guan, Wei Shi, and Hao Chen. "Cleavage of C-C and C-O Bonds to Form C-C Bonds: Direct Cross-Coupling between Acetylenic Alcohols and Benzylic Carbonates." European Journal of Organic Chemistry 2018, no. 32 (August 17, 2018): 4479–82. http://dx.doi.org/10.1002/ejoc.201800861.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Zhang, Honglin, Changduo Pan, Ning Jin, Zhangxi Gu, Hongwen Hu, and Chengjian Zhu. "Metal-free cascade construction of C–C bonds by activation of inert C(sp3)–H bonds." Chemical Communications 51, no. 7 (2015): 1320–22. http://dx.doi.org/10.1039/c4cc08629e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Terao, Jun, Misaki Nakamura, and Nobuaki Kambe. "Non-catalytic conversion of C–F bonds of benzotrifluorides to C–C bonds using organoaluminium reagents." Chemical Communications, no. 40 (2009): 6011. http://dx.doi.org/10.1039/b915620h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Jia, C., D. Piao, J. Oyamada, W. Lu, T. Kitamura, and Y. Fujiwara. "ChemInform Abstract: Efficient Activation of Aromatic C-H Bonds for Addition to C-C Multiple Bonds." ChemInform 31, no. 48 (November 28, 2000): no. http://dx.doi.org/10.1002/chin.200048266.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Zhao, Yating, and Wujiong Xia. "Photochemical C–H bond coupling for (hetero)aryl C(sp2)–C(sp3) bond construction." Organic & Biomolecular Chemistry 17, no. 20 (2019): 4951–63. http://dx.doi.org/10.1039/c9ob00244h.

Full text
Abstract:
This review highlights the recent advances in photochemical (hetero)aryl C(sp2)–C(sp3) bond construction via C–H bond coupling such as (hetero)arylation of C(sp3)–H bonds and alkylation of (hetero)aryl C(sp2)–H bonds.
APA, Harvard, Vancouver, ISO, and other styles
40

Li, Shuai-Shuai, Liu Qin, and Lin Dong. "Rhodium-catalyzed C–C coupling reactions via double C–H activation." Organic & Biomolecular Chemistry 14, no. 20 (2016): 4554–70. http://dx.doi.org/10.1039/c6ob00209a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Borpatra, Paran J., Bhaskar Deka, Mohit L. Deb, and Pranjal K. Baruah. "Recent advances in intramolecular C–O/C–N/C–S bond formation via C–H functionalization." Organic Chemistry Frontiers 6, no. 20 (2019): 3445–89. http://dx.doi.org/10.1039/c9qo00863b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Kennemur, Jennifer L., Rajat Maji, Manuel J. Scharf, and Benjamin List. "Catalytic Asymmetric Hydroalkoxylation of C–C Multiple Bonds." Chemical Reviews 121, no. 24 (December 3, 2021): 14649–81. http://dx.doi.org/10.1021/acs.chemrev.1c00620.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Padilla, Rosa, Verónica Salazar, Margarita Paneque, José G. Alvarado-Rodríguez, Joaquín Tamariz, Héctor Pacheco-Cuvas, and Florencia Vattier. "Mild Oxidation of C−C Bonds of Benzoiridacycles." Organometallics 29, no. 12 (June 28, 2010): 2835–38. http://dx.doi.org/10.1021/om100196h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Smaligo, Andrew J., and Ohyun Kwon. "Dealkenylative Thiylation of C(sp3)–C(sp2) Bonds." Organic Letters 21, no. 21 (October 2019): 8592–97. http://dx.doi.org/10.1021/acs.orglett.9b03186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Chan, Antony P. Y., and Alexey G. Sergeev. "Metal-mediated cleavage of unsaturated C-C bonds." Coordination Chemistry Reviews 413 (June 2020): 213213. http://dx.doi.org/10.1016/j.ccr.2020.213213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Walter, Marc D, and Matthias Tamm. "Breaking News: Tungsten Cleaves Aromatic CC Bonds." Angewandte Chemie International Edition 49, no. 19 (April 14, 2010): 3264–66. http://dx.doi.org/10.1002/anie.201001197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Bernard, Julie, Esta van Heerden, Isabel W. C. E. Arends, Diederik J. Opperman, and Frank Hollmann. "Chemoenzymatic Reduction of Conjugated CC Double Bonds." ChemCatChem 4, no. 2 (December 6, 2011): 196–99. http://dx.doi.org/10.1002/cctc.201100312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Widenhoefer, Ross A., and Xiaoqing Han. "Gold-Catalyzed Hydroamination of C–C Multiple Bonds." European Journal of Organic Chemistry 2006, no. 20 (October 2006): 4555–63. http://dx.doi.org/10.1002/ejoc.200600399.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Tombo, Gerardo M Ramos, and Camille Ganter. "Nucleophilic Addition to CC Bonds, Part X." Helvetica Chimica Acta 85, no. 10 (October 2002): 3575–87. http://dx.doi.org/10.1002/1522-2675(200210)85:10<3575::aid-hlca3575>3.0.co;2-q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Rybtchinski, Boris, and David Milstein. "Metal Insertion into C−C Bonds in Solution." Angewandte Chemie International Edition 38, no. 7 (April 1, 1999): 870–83. http://dx.doi.org/10.1002/(sici)1521-3773(19990401)38:7<870::aid-anie870>3.0.co;2-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography