Academic literature on the topic 'C-C bonds'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'C-C bonds.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "C-C bonds"
RITTER, STEPHEN K. "EXTREME C–C BONDS." Chemical & Engineering News 87, no. 19 (May 11, 2009): 32–33. http://dx.doi.org/10.1021/cen-v087n019.p032.
Full textHuntley, Deborah R., Georgios Markopoulos, Patrick M. Donovan, Lawrence T. Scott, and Roald Hoffmann. "Squeezing CC Bonds." Angewandte Chemie 117, no. 46 (November 25, 2005): 7721–25. http://dx.doi.org/10.1002/ange.200502721.
Full textHuntley, Deborah R., Georgios Markopoulos, Patrick M. Donovan, Lawrence T. Scott, and Roald Hoffmann. "Squeezing CC Bonds." Angewandte Chemie International Edition 44, no. 46 (November 25, 2005): 7549–53. http://dx.doi.org/10.1002/anie.200502721.
Full textZeng, Xiaoming, and Xuefeng Cong. "Chromium-Catalyzed Cross-Coupling Reactions by Selective Activation of Chemically Inert Aromatic C–O, C–N, and C–H Bonds." Synlett 32, no. 13 (May 11, 2021): 1343–53. http://dx.doi.org/10.1055/a-1507-4153.
Full textEgami, Hiromichi. "Fluorofunctionalizations of C–C Multiple Bonds and C–H Bonds." Chemical and Pharmaceutical Bulletin 68, no. 6 (June 1, 2020): 491–511. http://dx.doi.org/10.1248/cpb.c19-00856.
Full textMeng, Ge, Pengfei Li, Kai Chen, and Linghua Wang. "Recent Advances in Transition-Metal-Free Aryl C–B Bond Formation." Synthesis 49, no. 21 (September 26, 2017): 4719–30. http://dx.doi.org/10.1055/s-0036-1590913.
Full textLuh, Tien-Yau. "Chelation Assisted Conversion of C-S Bonds into C-C Bonds." Phosphorus, Sulfur, and Silicon and the Related Elements 120, no. 1 (January 1, 1997): 259–73. http://dx.doi.org/10.1080/10426509708545523.
Full textHamel, Jean-Denys, and Jean-François Paquin. "Activation of C–F bonds α to C–C multiple bonds." Chemical Communications 54, no. 73 (2018): 10224–39. http://dx.doi.org/10.1039/c8cc05108a.
Full textKaupp, Gerd, and Jürgen Boy. "Overlong CC Single Bonds." Angewandte Chemie International Edition in English 36, no. 12 (February 3, 1997): 48–49. http://dx.doi.org/10.1002/anie.199700481.
Full textWang, Chang-Sheng, Pierre H. Dixneuf, and Jean-François Soulé. "Photoredox Catalysis for Building C–C Bonds from C(sp2)–H Bonds." Chemical Reviews 118, no. 16 (July 16, 2018): 7532–85. http://dx.doi.org/10.1021/acs.chemrev.8b00077.
Full textDissertations / Theses on the topic "C-C bonds"
Correia, Camille. "Oxidative C-C bond formation via metal-catalyzed coupling of two C-H bonds." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114441.
Full textCette thèse décrit la formation de nouvelles liaisons C-C par activation oxydative directe de deux liaisons C-H grâce à l'utilisation de métaux de transition comme catalyseurs. La première partie présentera trois différentes réactions de Cross-Dehydrogenative-Coupling (CDC) oxydantes. Dans un premier temps, sera présentée dans le chapitre 2, la réaction d'alkylation de liens C-H benzylique par 1,3-dicarbonyles et cétones. Ce system a démontré son efficacité sur une large variété de substrats contenant des liaisons C-H enolysable. De plus il a été rendu possible, grâce à l'utilisation d'un co-catalyseur organique, le N-Hydroxyphthalimide (NHPI), d'utiliser l'oxygène moléculaire comme oxydant terminal. Dans un second temps, nous étudierons l'utilisation du 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) comme médiateur pour l'alkynylation de liaisons sp3 C-H. Une nouvelle CDC réaction catalysée par le triflate de cuivre (I) sera présentée dans le chapitre 3, entre un alcyne et une liaison C-H benzylique. Le chapitre 4 présentera le développement de cette réaction à l'alcynation d'éthers benzyliques en présence d'une quantité catalytique de triflate d'argent (I). Ces deux procédures sont seulement applicables pour les alcynes vrais aromatiques. Finalement, le chapitre 6 portera sur la réaction de Minisci catalysée par le palladium. Le peroxyde radical α-hydroxyalkyl généré lors de la réaction est capable de réagir avec les azines. La quantité stœchiométrique d'acide nécessaire lors de la traditionnelle réaction de Minisci, a été remplacée par une quantité catalytique de dichloro palladium.
Rix, Kathryn. "Electrochemical reduction of amides and c=c bonds." Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/39846.
Full textKanuru, Vijaykumar. "Understanding surface mediated C-C and C-N bond forming reactions." Thesis, University of Cambridge, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608956.
Full textBowen, John George. "C-H activation in the formation of C-N and C-O Bonds." Thesis, University of Bristol, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.685335.
Full textLee, Kang-sang. "New Concepts and Catalysts for Enantioselective Synthesis of C-C, C-Si, and C-B Bonds." Thesis, Boston College, 2010. http://hdl.handle.net/2345/1739.
Full textChapter 1. The development of chiral monodentate N-heterocyclic carbenes (NHCs) is presented. Structurally varied twenty-eight new chiral imidazolinim salts, NHC precursors, were synthesized and characterized. Chapter 2. The first example of Cu-catalyzed enantioselective conjugate additions of alkyl- and arylzinc reagents to unactivated cyclic enones is presented. Transformations are promoted in the presence of 2.5-15 mol % of a readily available chiral NHC-based Cu complex, affording the desired products bearing all-carbon quaternary stereogenic centers in 67-98% yield and in up to 97% ee. Catalytic enantioselective reactions can be carried out on a benchtop, with undistilled solvent and commercially available (not further purified) Cu salts. Chapter 3. A new class of enantioselective conjugate addition (ECA) reactions that involve aryl- or alkenylsilylfluoride reagents and are catalyzed by chiral non-C2-symmetric Cu-based NHC complexes are presented. Transformations have been designed based on the principle that a catalytically active chiral NHC-Cu-aryl or NHC-Cu-alkenyl complex can be accessed from reaction of a Cu-halide precursor with in situ-generated aryl- or alkenyl-tetrafluorosilicate. Reactions proceed in the presence of 1.5 equivalents of the aryl- or alkenylsilane reagents and 1.5 equivalents of tris(dimethylamino)sulfonium difluorotrimethylsilicate. Desired products are isolated in 63-97% yield and 73.5:26.5-98.5:1.5 enantiomeric ratio (47%-97% ee). Chapter 4. An efficient Cu-catalyzed protocol for enantioselective addition of a dimethylphenylsilanyl group to a wide range of cyclic and acyclic unsaturated ketones, esters, acrylonitriles and dienones is presented. Reactions are performed in the presence of 1-5 mol % of commercially available and inexpensive CuCl, a readily accessible monodentate imidazolinium salt as well as commercially available (dimethylphenylsilyl)pinacolatoboron. Cu-catalyzed 1,4- and 1,6-conjugate additions afford the enantiomerically enriched silanes in 72%-98% yield and 90:10->99:1 enantiomeric ratio (er) with up to >25:1 of Z:E selectivity. Chapter 5. A Cu-catalyzed method for enantioselective boronate conjugate additions to trisubstituted alkenes of acyclic a,b-unsaturated carboxylic esters, ketones, and thioesters is presented. All transformations are promoted by 5 mol % of a chiral monodentate NHC-Cu complex, derived from a readily available C1-symmetric imidazolinium salt, and in the presence of commercially available bis(pinacolato)diboron. Reactions are efficient (typically, 60% to >98% yield after purification) and deliver the desired boryl carbonyls in up to >98:2 enantiomer ratio (er). In addition, metal-free, nucleophilic activation of a B-B bond has been exploited in the development of a highly efficient method for conjugate additions of commercially available bis(pinacolato)diboron to cyclic or acyclic a,b-unsaturated carbonyls. Reactions are readily catalyzed by 2.5-10 mol % of a simple NHC. A variety of cyclic and acyclic unsaturated ketones and esters can serve as substrates. Transformations deliver boryl carbonyls bearing tertiary as well as quaternary B-substituted carbons in up to >98% yield
Thesis (PhD) — Boston College, 2010
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Chemistry
Owen, Gareth Richard. "Palladium-mediated transformationand activation of unsaturated C-N, C-S and C-O bonds." Thesis, Imperial College London, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.408281.
Full textJiang, Tuo. "Palladium(II)-Catalyzed Oxidative Carbocyclization : Stereoselective Formation of C–C and C–B Bonds." Doctoral thesis, Stockholms universitet, Institutionen för organisk kemi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-108669.
Full textAt the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Manuscript.
Ziadi, Asraa. "Metal-catalyzed functionalization of c-c bonds in four-membered rings." Doctoral thesis, Universitat Rovira i Virgili, 2014. http://hdl.handle.net/10803/320185.
Full textRecientemente la funcionalización catalítica de enlaces C-C ha suscitado un gran interés en la comunidad científica a pesar de los retos que conlleva. Esta tesis doctoral se ha basado en diseñar nuevos procesos catalíticos para la funcionalización de enlaces C-C en anillos de cuatro miembros. Específicamente, se ha demostrado la viabilidad de preparar cetonas con grupos arilo en posición γ usando precatalizadores de Pd para promover la rotura de enlaces C-C en anillos de tert-ciclobutanol utilizando cloruros de arilo y tosilatos como agentes arilantes (Capítulo 2). La transformación se caracteriza por su amplia generalidad y baja carga de catalizador. La selectividad de la reacción puede ser fácilmente controlada por la naturaleza del ligando, en la que fosfinas con grupos ricos en electrones y voluminosos dan los mejores resultados, evitando la β-eliminación de hidrógeno de las especies organometálicas intermedias. Considerando los precedentes del Capítulo 2, se ha extendido esta metodología al acoplamiento con haloacetilenos para preparar cetonas con grupos alquino en posición γ (Capítulo 3). Curiosamente, los substituyentes del grupo alquino juegan un papel fundamental en la reactividad, pudiéndose controlar mediante la utilización de un cierto ligando. En el Capítulo 4, se ha desarrollado una nueva transformación basada en una reacción catalizada por compuestos de Ni para efectuar la síntesis de anillos de ocho eslabones mediante una reacción formal de cicloadición [4+4] de benzociclobutanonas y dienos simples. Curiosamente, dicho método muestra una especial preferencia para formar anillos de ocho eslabones sobre los, a priori, anillos de 6 eslabones que son más estables termodinámicamente. En la presente tesis doctoral se ha estudiado también la viabilidad de llevar a cabo una fijación catalítica de CO2 y la formación de enlaces C-F mediante una rotura de enlaces C-C (Capítulo 5) aunque no se han encontrado las condiciones óptimas para llevar a cabo tales transformaciones.
The means to promote catalytic C-C bond-functionalization has gained a considerable attention in recent years and probably can be considered one of the most challenging and vibrant subjects in organometallic chemistry. This PhD thesis deals with the design of new metal-catalyzed functionalization of C-C bonds in four-membered ring frameworks. Specifically, we have demonstrated the viability of preparing γ-arylated ketones via Pd-catalyzed cleavage of C-C bonds in tert-cyclobutanol using aryl chloride or tosylate counterparts (Chapter 2). The transformation possesses a wide substrate scope and remarkable low catalyst loadings. Selectivity was controlled by the ligand in which electron-rich and sterically-hindered phosphine ligands provided a unique reaction outcome that avoided the proclivity of alkyl metal species towards destructive β−hydride elimination. Prompted by the precedents in Chapter 2, we successfully extended the scope of the metal-catalyzed C-C bond-cleavage of tert-cyclobutanols by using halo acetylene counterparts giving γ-alkynylated ketones (Chapter 3). Interestingly, substituents on the alkyne motif showed a remarkable influence on reactivity. Of particular interest is the application profile of such methodology since γ-alkynylated ketones could promote consecutive metal-catalyzed transformations into valuable synthetic intermediates. In Chapter 4, we extended the interest for C-C bond-cleavage beyond the use of tert-cycñobutanols. Specifically, we developed a Ni-catalyzed C-C bond-cleavage event in benzocyclobutenones for preparing eight-membered rings via formal [4+4]-cycloaddition with dienes (Chapter 4). The method shows a specific preference for eight-membered rings over thermodynamically more stable six-membered rings. This PhD thesis has also studied the development of catalytic CO2 fixation and C-F bond-formation via C-C bond-cleavage (Chapter 5). While we have not found reaction conditions to effect the desired transformations, our research group is actively involved in related catalytic endeavors and it is expected that such research will shed light into the targeted CO2 fixation or C-F bond-forming reactions via C-C bond-cleavage.
Sau, Roca Míriam. "From Click Chemistry to catalytic cleavage of unstrained C-C bonds." Doctoral thesis, Universitat Rovira i Virgili, 2016. http://hdl.handle.net/10803/396080.
Full textÉsta tesis doctoral está basada principalmente en la síntesis de moléculas pequeñas potencialmente útiles para investigaciones avanzadas. Se han empleado diferentes metodologías para obtenerlas: 1) Cicloadiciones intramoleculares entre un alkino y una azida libres de cobre para la obtención de derivados de benzodiazepinas. Se han obtenido una gran variedad de triazoles fusionados a heterociclos de siete miembros. Posteriormente se han realizado pruebas de actividad biológica de las moléculas resultantes. 2) a) Escisión de enlaces carbono-carbono no activados de amino alcoholes y utilitzación de éstos como nucleófilos conjuntamente con bromuros de arilo para una reacción de acoplamiento catalizada por paladio para la obtención de derivados de dibenzil aminas. Se ha realizado una gran optimización de las condiciones de reacción; base, disolvente, electrófilo, temperatura, catalizador y ligando. b) Escisión de enlaces carbono-carbono no activados de N-alilo amino alcoholes y la utilización de éste como nucleófilo conjuntamente con bromuros de arilo en una reacción de acoplamiento catalizada por paladio para la obtención de aldehídos arilados en posición beta. Se ha realizado la síntesis de un gran numero de amino alcoholes nuevos y éstos se han sometido a las condiciones optimizadas de reacción. Demostrando que ésta transformación es útil para una gran variedad de sustratos (bromuros de arilo y amino alcoholes). La enamina resultante de la reacción de acoplamiento se ha alquilado con vinil metil cetona con buenos rendimientos pero pobres diastereoselectividades aunque se ha demostrado que la reacción es factible. Para finalizar, se ha desarrollado la versión enantioselectiva de la anterior transformación obteniendo buenos excesos enantioméricos aunque con bajos rendimientos.
This PhD thesis is based basically on synthesis of small molecules potentially useful for further investigations. Different strategies have been used to obtain them; 1) Copper free intramolecular cycloadditions between an azide and an akyne for the obtention of benzodiazepine derivatives. A wide range of triazoles fused to seven membered heterocycles rings have been obtained. Later, biological studies have been carried out. 2)a) Carbon-carbon bond cleavage of amino alcohols has been carried out with the subsequent use of them as a nucleophile together with aryl bromides to develop a cross-coupling reaction for the obtention of dibenzyl amines. A wide optimization of the reaction parameters was carried out; base, ligand, catalyst, electrophile, temperatura, and solent. b) Carbon-carbon bond cleavage of N- allyl amino alcohols has been carried out with the subsequent use of them as a nucleophile together with aryl bromides to develop a cross-coupling reaction for the obtention of beta arylated aldehydes. An important number of new amino alcohols have been synthesized and these have been subjected to the optimized reaction conditions. It has been demonstrated that this transformation is useful for a wide range of substrates (amino alcohols and aryl bromides). The resultant enamine has been alkylated with methyl vinyl ketone with good yields but poor diastereoselectivity. To finish the enantioselective version of beta functionalization of aldehydes has been developed obtaining good enantioselectivity but poor yields
Chudasama, V. "The use of aerobic aldehyde C-H activation for the construction of C-C and C-N bonds." Thesis, University College London (University of London), 2011. http://discovery.ucl.ac.uk/1324525/.
Full textBooks on the topic "C-C bonds"
Li, Chao-Jun, ed. From C-H to C-C Bonds. Cambridge: Royal Society of Chemistry, 2014. http://dx.doi.org/10.1039/9781782620082.
Full textShimajiri, Takuya. The Nature of Ultralong C–C Bonds. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0670-3.
Full textLu, Wenjun, and Lihong Zhou. Oxidation of C─H Bonds. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119092490.
Full textYou, Shu-Li, ed. Asymmetric Functionalization of C-H Bonds. Cambridge: Royal Society of Chemistry, 2015. http://dx.doi.org/10.1039/9781782621966.
Full textGoldberg, Karen I., and Alan S. Goldman, eds. Activation and Functionalization of C—H Bonds. Washington, DC: American Chemical Society, 2004. http://dx.doi.org/10.1021/bk-2004-0885.
Full textC-X bond formation. Heidelberg: Springer, 2010.
Find full textTaillefer, Marc, and Dawei Ma, eds. Amination and Formation of sp2 C-N Bonds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40546-4.
Full text1945-, Fuchs Philip L., ed. Reagents for direct functionalization of C-H bonds. Chichester, England: John Wiley, 2007.
Find full textZucherman, Jerry J. The Formation of bonds to C, Si, Ge, Sn, Pb (part 2). New York, N.Y: VCH Publishers, 1989.
Find full textCatalyst Design for the Ionic Hydrogenation of C=N Bonds. [New York, N.Y.?]: [publisher not identified], 2015.
Find full textBook chapters on the topic "C-C bonds"
Kakiuchi, Fumitoshi. "Catalytic Addition of C – H Bonds to C – C Multiple Bonds." In Topics in Organometallic Chemistry, 1–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/3418_2007_064.
Full textTreichel, P. M. "Reactions Involving C-H and C-C Bonds." In Inorganic Reactions and Methods, 230–32. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145296.ch199.
Full textBougioukou, Despina J., and Jon D. Stewart. "Reduction of CC Double Bonds." In Enzyme Catalysis in Organic Synthesis, 1111–63. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527639861.ch27.
Full textBühler, Bruno, Katja Bühler, and Frank Hollmann. "Oxyfunctionalization of CC Multiple Bonds." In Enzyme Catalysis in Organic Synthesis, 1269–324. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527639861.ch31.
Full textRios, Ramon, Jorge Esteban, and Xavier Companyó. "Cascade Reactions Forming C-C Bonds." In Stereoselective Organocatalysis, 351–80. Hoboken, New Jersey: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118604755.ch10.
Full textShimajiri, Takuya. "Discovery of Flexible Bonds Based on an Extremely Elongated C–C Single Bond." In The Nature of Ultralong C–C Bonds, 41–78. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0670-3_3.
Full textGhosh, Pradip, Marc-Etienne Moret, and Robertus J. M. Klein Gebbink. "Catalytic Oxygenation of CC and CH Bonds." In Non-Noble Metal Catalysis, 355–89. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527699087.ch14.
Full text"4. C–C bonds." In High Pressure Organic Synthesis, 93–128. Berlin, Boston: De Gruyter, 2019. http://dx.doi.org/10.1515/9783110556841-004.
Full text"C–C Bond Formation." In Biocatalysis in Organic Synthesis: The Retrosynthesis Approach, 217–53. The Royal Society of Chemistry, 2018. http://dx.doi.org/10.1039/bk9781782625308-00217.
Full text"C." In Encyclopedia of Municipal Bonds, 28–42. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118531624.ch3.
Full textConference papers on the topic "C-C bonds"
Mbomson, Ifeoma G., Scott McMeekin, Richard De La Rue, and Nigel P. Johnson. "Matching plasmon resonances to the C=C and C-H bonds in estradiol." In SPIE BiOS, edited by Tuan Vo-Dinh and Joseph R. Lakowicz. SPIE, 2015. http://dx.doi.org/10.1117/12.2081409.
Full textParsch, Jörg, and Joachim W. Engels. "C–F···H–C hydrogen bonds in crystals of fluorobenzene ribonucleosides." In XIth Symposium on Chemistry of Nucleic Acid Components. Prague: Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 1999. http://dx.doi.org/10.1135/css199902011.
Full textTHORPE, M. F., BRANDON M. HESPENHEIDE, YI YANG, and LESLIE A. KUHN. "FLEXIBILITY AND CRITICAL HYDROGEN BONDS IN CYTOCHROME C." In Proceedings of the Pacific Symposium. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789814447331_0018.
Full textSiewert, Inke. "Electroreduction of C=O Bonds in CO2, Ketones, and Aldehydes." In MATSUS23 & Sustainable Technology Forum València (STECH23). València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.matsus.2023.032.
Full textŽENÍŠEK, Jaroslav, Pavel SOUČEK, Pavel ONDRAČKA, and Petr VAŠINA. "STUDY OF W-X BONDS IN AMORPHOUS W-B-C." In NANOCON 2021. TANGER Ltd., 2021. http://dx.doi.org/10.37904/nanocon.2021.4380.
Full textsaki, zeinab, Nahla Talebi, Abedin Zabardasti, and Ali Kakanejadifard. "The B–C and C–C bonds as preferred electron source for H-bondand Li-bond interactions in complex pairing of C4B2H6 with HFand LiH molecules." In The 20th International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 2016. http://dx.doi.org/10.3390/ecsoc-20-e018.
Full textRollier, Floriane, Marta Costa Figueiredo, and Emiel Hensen. "The influence of copper particle size on the electrochemical reduction of CO to products with C-C bonds." In Materials for Sustainable Development Conference (MAT-SUS). València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.nfm.2022.074.
Full textZárate, Cayetana, and Rubén Martin. "Ni-Catalyzed Silylation of Inert C-O Bonds under Mild Conditions." In 15th Brazilian Meeting on Organic Synthesis. São Paulo: Editora Edgard Blücher, 2013. http://dx.doi.org/10.5151/chempro-15bmos-bmos2013_2013101312526.
Full textMarco de Lucas, M. C., J. M. Chappé, L. Cunha, C. Moura, J. F. Pierson, L. Imhoff, V. Potin, et al. "Structure and Chemical Bonds in Black Ti(C, N, O) Thin Films." In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482693.
Full textCosta, Roberta L. da, and Simon J. Garden. "Phenanthridine derivatives via palladium catalyzed intramolecular functionalization of C(sp2)-H bonds." In 15th Brazilian Meeting on Organic Synthesis. São Paulo: Editora Edgard Blücher, 2013. http://dx.doi.org/10.5151/chempro-15bmos-bmos2013_2013819134214.
Full textReports on the topic "C-C bonds"
Novoa, J. J., Myung-Hwan Whangbo, and J. M. Williams. Intermolecular interactions involving C-H bonds, 3, Structure and energetics of the interaction between CH{sub 4} and CN{sup {minus}}. Office of Scientific and Technical Information (OSTI), December 1991. http://dx.doi.org/10.2172/10187953.
Full textGland, J. L. Hydrogen induced C-C, C-N, and C-S bond activation on Pt and Ni surfaces. Office of Scientific and Technical Information (OSTI), December 1992. http://dx.doi.org/10.2172/10102894.
Full textGland, J. L. Hydrogen induced C-C, C-N, and C-S bond activation on Pt and Ni surfaces. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/6915688.
Full textGland, J. L. Hydrogen Induced C-C, C-N, & C-S Bond Activation on Pt & Ni Surfaces. Office of Scientific and Technical Information (OSTI), July 2004. http://dx.doi.org/10.2172/830711.
Full textGland, J. L. [Hydrogen induced C-C, C-N, and C-S bond activities on Pi and Ni surfaces]: Summary. Office of Scientific and Technical Information (OSTI), December 1994. http://dx.doi.org/10.2172/10110807.
Full textBiermann, Ursula, and Jürgen O. Metzger. Functionalization of Unsaturated Fatty Compounds Across the C,C Double Bond. AOCS, May 2011. http://dx.doi.org/10.21748/lipidlibrary.39193.
Full textLees, Alistair J. Photochemistry of Intermolecular C-H Bond Activation Reactions. Office of Scientific and Technical Information (OSTI), June 2000. http://dx.doi.org/10.2172/761218.
Full textMcFarland, Eric, Horia Metiu, and Michael Gordon. Fundamental Mechanisms of C-X bond Transformations on Complex Molten Surfaces. Office of Scientific and Technical Information (OSTI), July 2019. http://dx.doi.org/10.2172/1580080.
Full textAsplund, M. C. Time resolved infrared studies of C-H bond activation by organometallics. Office of Scientific and Technical Information (OSTI), June 1998. http://dx.doi.org/10.2172/290889.
Full textKimura, Mineo. Correlation between shape resonance energies and C-C bond length in carbon-containing molecules: Elastic electron scattering and carbon K-shell excitation by photons. Office of Scientific and Technical Information (OSTI), June 1994. http://dx.doi.org/10.2172/10159440.
Full text