Academic literature on the topic 'C-C bond catalysis'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'C-C bond catalysis.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "C-C bond catalysis"

1

Mejía, Esteban, and Ahmad A. Almasalma. "Recent Advances on Copper-Catalyzed C–C Bond Formation via C–H Functionalization." Synthesis 52, no. 18 (May 19, 2020): 2613–22. http://dx.doi.org/10.1055/s-0040-1707815.

Full text
Abstract:
Reactions that form C–C bonds are at the heart of many important transformations, both in industry and in academia. From the myriad of catalytic approaches to achieve such transformations, those relying on C–H functionalization are gaining increasing interest due to their inherent sustainable nature. In this short review, we showcase the most recent advances in the field of C–C bond formation via C–H functionalization, but focusing only on those methodologies relying on copper catalysts. This coinage metal has gained increased popularity in recent years, not only because it is cheaper and more abundant than precious metals, but also thanks to its rich and versatile chemistry.1 Introduction2 Cross-Dehydrogenative Coupling under Thermal Conditions2.1 C(sp3)–C(sp3) Bond Formation2.2 C(sp3)–C(sp2) Bond Formation2.3 C(sp2)–C(sp2) Bond Formation2.4 C(sp3)–C(sp) Bond Formation3 Cross-Dehydrogenative Coupling under Photochemical Conditions3.1 C(sp3)–C(sp3) Bond Formation3.2 C(sp3)–C(sp2) and C(sp3)–C(sp) Bond Formation4 Conclusion and Perspective
APA, Harvard, Vancouver, ISO, and other styles
2

Ohtaka, Atsushi. "Recent Progress of Metal Nanoparticle Catalysts for C–C Bond Forming Reactions." Catalysts 11, no. 11 (October 21, 2021): 1266. http://dx.doi.org/10.3390/catal11111266.

Full text
Abstract:
Over the past few decades, the use of transition metal nanoparticles (NPs) in catalysis has attracted much attention and their use in C–C bond forming reactions constitutes one of their most important applications. A huge variety of metal NPs, which have showed high catalytic activity for C–C bond forming reactions, have been developed up to now. Many kinds of stabilizers, such as inorganic materials, magnetically recoverable materials, porous materials, organic–inorganic composites, carbon materials, polymers, and surfactants have been utilized to develop metal NPs catalysts. This review classified and outlined the categories of metal NPs by the type of support.
APA, Harvard, Vancouver, ISO, and other styles
3

Sieber, Joshua D., and Toolika Agrawal. "Recent Developments in C–C Bond Formation Using Catalytic Reductive Coupling Strategies." Synthesis 52, no. 18 (May 25, 2020): 2623–38. http://dx.doi.org/10.1055/s-0040-1707128.

Full text
Abstract:
Metal-catalyzed reductive coupling processes have emerged as a powerful methodology for the introduction of molecular complexity from simple starting materials. These methods allow for an orthogonal approach to that of redox-neutral strategies for the formation of C–C bonds by enabling cross-coupling of starting materials not applicable to redox-neutral chemistry. This short review summarizes the most recent developments in the area of metal-catalyzed reductive coupling utilizing catalyst turnover by a stoichiometric reductant that becomes incorporated in the final product.1 Introduction2 Ni Catalysis3 Cu Catalysis4 Ru, Rh, and Ir Catalysis4.1 Alkenes4.2 1,3-Dienes4.3 Allenes4.4 Alkynes4.5 Enynes5 Fe, Co, and Mn Catalysis6 Conclusion and Outlook
APA, Harvard, Vancouver, ISO, and other styles
4

Nagorny, Pavel, and Zhankui Sun. "New approaches to organocatalysis based on C–H and C–X bonding for electrophilic substrate activation." Beilstein Journal of Organic Chemistry 12 (December 23, 2016): 2834–48. http://dx.doi.org/10.3762/bjoc.12.283.

Full text
Abstract:
Hydrogen bond donor catalysis represents a rapidly growing subfield of organocatalysis. While traditional hydrogen bond donors containing N–H and O–H moieties have been effectively used for electrophile activation, activation based on other types of non-covalent interactions is less common. This mini review highlights recent progress in developing and exploring new organic catalysts for electrophile activation through the formation of C–H hydrogen bonds and C–X halogen bonds.
APA, Harvard, Vancouver, ISO, and other styles
5

Lu, Yen-Chu, and Julian G. West. "C–C Bond Fluorination via Manganese Catalysis." ACS Catalysis 11, no. 20 (October 4, 2021): 12721–28. http://dx.doi.org/10.1021/acscatal.1c03052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lu, Yen-Chu, and Julian G. West. "C–C Bond Fluorination via Manganese Catalysis." ACS Catalysis 11, no. 20 (October 4, 2021): 12721–28. http://dx.doi.org/10.1021/acscatal.1c03052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Yi, Anan Liu, Dongge Ma, Shuhong Li, Chichong Lu, Tao Li, and Chuncheng Chen. "TiO2 Photocatalyzed C–H Bond Transformation for C–C Coupling Reactions." Catalysts 8, no. 9 (August 27, 2018): 355. http://dx.doi.org/10.3390/catal8090355.

Full text
Abstract:
Fulfilling the direct inert C–H bond functionalization of raw materials that are earth-abundant and commercially available for the synthesis of diverse targeted organic compounds is very desirable and its implementation would mean a great reduction of the synthetic steps required for substrate prefunctionalization such as halogenation, borylation, and metalation. Successful C–H bond functionalization mainly resorts to homogeneous transition-metal catalysis, albeit sometimes suffering from poor catalyst reusability, nontrivial separation, and severe biotoxicity. TiO2 photocatalysis displays multifaceted advantages, such as strong oxidizing ability, high chemical stability and photostability, excellent reusability, and low biotoxicity. The chemical reactions started and delivered by TiO2 photocatalysts are well known to be widely used in photocatalytic water-splitting, organic pollutant degradation, and dye-sensitized solar cells. Recently, TiO2 photocatalysis has been demonstrated to possess the unanticipated ability to trigger the transformation of inert C–H bonds for C–C, C–N, C–O, and C–X bond formation under ultraviolet light, sunlight, and even visible-light irradiation at room temperature. A few important organic products, traditionally synthesized in harsh reaction conditions and with specially functionalized group substrates, are continuously reported to be realized by TiO2 photocatalysis with simple starting materials under very mild conditions. This prominent advantage—the capability of utilizing cheap and readily available compounds for highly selective synthesis without prefunctionalized reactants such as organic halides, boronates, silanes, etc.—is attributed to the overwhelmingly powerful photo-induced hole reactivity of TiO2 photocatalysis, which does not require an elevated reaction temperature as in conventional transition-metal catalysis. Such a reaction mechanism, under typically mild conditions, is apparently different from traditional transition-metal catalysis and beyond our insights into the driving forces that transform the C–H bond for C–C bond coupling reactions. This review gives a summary of the recent progress of TiO2 photocatalytic C–H bond activation for C–C coupling reactions and discusses some model examples, especially under visible-light irradiation.
APA, Harvard, Vancouver, ISO, and other styles
8

Singh, Keisham. "Recent Advances in C–H Bond Functionalization with Ruthenium-Based Catalysts." Catalysts 9, no. 2 (February 12, 2019): 173. http://dx.doi.org/10.3390/catal9020173.

Full text
Abstract:
The past decades have witnessed rapid development in organic synthesis via catalysis, particularly the reactions through C–H bond functionalization. Transition metals such as Pd, Rh and Ru constitute a crucial catalyst in these C–H bond functionalization reactions. This process is highly attractive not only because it saves reaction time and reduces waste,but also, more importantly, it allows the reaction to be performed in a highly region specific manner. Indeed, several organic compounds could be readily accessed via C–H bond functionalization with transition metals. In the recent past, tremendous progress has been made on C–H bond functionalization via ruthenium catalysis, including less expensive but more stable ruthenium(II) catalysts. The ruthenium-catalysed C–H bond functionalization, viz. arylation, alkenylation, annulation, oxygenation, and halogenation involving C–C, C–O, C–N, and C–X bond forming reactions, has been described and presented in numerous reviews. This review discusses the recent development of C–H bond functionalization with various ruthenium-based catalysts. The first section of the review presents arylation reactions covering arylation directed by N–Heteroaryl groups, oxidative arylation, dehydrative arylation and arylation involving decarboxylative and sp3-C–H bond functionalization. Subsequently, the ruthenium-catalysed alkenylation, alkylation, allylation including oxidative alkenylation and meta-selective C–H bond alkylation has been presented. Finally, the oxidative annulation of various arenes with alkynes involving C–H/O–H or C–H/N–H bond cleavage reactions has been discussed.
APA, Harvard, Vancouver, ISO, and other styles
9

Marchese, Austin D., Bijan Mirabi, Colton E. Johnson, and Mark Lautens. "Reversible C–C bond formation using palladium catalysis." Nature Chemistry 14, no. 4 (March 17, 2022): 398–406. http://dx.doi.org/10.1038/s41557-022-00898-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ma, Dongge, Anan Liu, Shuhong Li, Chichong Lu, and Chuncheng Chen. "TiO2 photocatalysis for C–C bond formation." Catalysis Science & Technology 8, no. 8 (2018): 2030–45. http://dx.doi.org/10.1039/c7cy01458a.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "C-C bond catalysis"

1

Rousseaux, Sophie. "Palladium-Catalyzed C(sp2)-C(sp3) Bond Formation." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23058.

Full text
Abstract:
Palladium-catalyzed reactions for carbon-carbon bond formation have had a significant impact on the field of organic chemistry in recent decades. Illustrative is the 2010 Nobel Prize, awarded for “palladium-catalyzed cross couplings in organic synthesis”, and the numerous applications of these transformations in industrial settings. This thesis describes recent developments in C(sp2)-C(sp3) bond formation, focusing on alkane arylation reactions and arylative dearomatization transformations. In the first part, our contributions to the development of intramolecular C(sp3)-H arylation reactions from aryl chlorides are described (Chapter 2). The use of catalytic quantities of pivalic acid was found to be crucial to observe the desired reactivity. The reactions are highly chemoselective for arylation at primary aliphatic C-H bonds. Theoretical calculations revealed that C-H bond cleavage is facilitated by the formation of an agostic interaction between the palladium centre and a geminal C-H bond. In the following section, the development of an alkane arylation reaction adjacent to amides and sulfonamides is presented (Chapter 3). The mechanism of C(sp3)-H bond cleavage in alkane arylation reactions is also addressed through an in-depth experimental and theoretical mechanistic study. The isolation and characterization of an intermediate in the catalytic cycle, the evaluation of the roles of both carbonate and pivalate bases in reaction mechanism as well as kinetic studies are reported. Our serendipitous discovery of an arylation reaction at cyclopropane methylene C-H bonds is discussed in Chapter 4. Reaction conditions for the conversion of cyclopropylanilines to quinolines/tetrahydroquinolines via one-pot palladium(0)-catalyzed C(sp3)-H arylation with subsequent oxidation/reduction are described. Initial studies are also presented, which suggest that this transformation is mechanistically unique from other Pd catalyzed cyclopropane ring-opening reactions. Preliminary investigations towards the development of an asymmetric alkane arylation reaction are highlighted in Chapter 5. Both chiral carboxylic acid additives and phosphine ligands have been examined in this context. While high yields and enantiomeric excesses were never observed, encouraging results have been obtained and are supported by recent reports from other research groups. Finally, in part two, the use of Pd(0)-catalysis for the intramolecular arylative dearomatization of phenols is presented (Chapter 7). These reactions generate spirocyclohexadienones bearing all-carbon quaternary centres in good to excellent yields. The nature of the base, although not well understood, appears to be crucial for this transformation. Preliminary results in the development of an enantioselective variant of this transformation demonstrate the influence of catalyst activation on levels of enantiomeric excess.
APA, Harvard, Vancouver, ISO, and other styles
2

Lomas, Sarah. "C-C bond forming catalysis with alkaline earth acetylides." Thesis, University of Bath, 2013. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.604644.

Full text
Abstract:
After spending so many years in the shadow of magnesium chemistry the chemical abilities of the heavier alkaline earth metals, calcium, strontium and barium are beginning to emerge. This thesis is concerned with the development of a catalytic reactivity for the heavier alkaline earth metals. By taking inspiration from lanthanide metal catalysis, this thesis will begin by describing the hydroamination and hydrophosphination of unsaturated molecules catalysed by lanthanide and group 2 metals before extending this work to the group 2 catalysed hydroacetylation of terminal acetylenes (chapter 2), and the insertion of unsaturated bonds of carbodiimides (chapter 4), and organic isocyanates (chapter 5) into the polarised M-C bonds of group 2 acetylides. The third chapter of this thesis will describe the observation of the first acetylide coupling with a group 2 metal complex and extension of this reactivity to a catalytic process.
APA, Harvard, Vancouver, ISO, and other styles
3

Fossey, John Stephen. "Group 10 NCN pincer complexes for C-C bond forming catalysis." Thesis, Queen Mary, University of London, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.409665.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Szymaniak, Adam Anthony. "Nonracemic Organoboronates by Transition Metal-Catalyzed C-C and C-Si Bond Forming Reactions." Thesis, Boston College, 2018. http://hdl.handle.net/2345/bc-ir:108119.

Full text
Abstract:
Thesis advisor: James P. Morken
This dissertation will describe the development of three transition metal-catalyzed syntheses of nonracemic organoboronates. The first chapter explains the development of a palladium-catalyzed enantiotopic-group-selective cross-coupling of geminal bis(boronates) with alkenyl electrophiles. This process enables the synthesis of highly valuable nonracemic disubstituted allylic boronates. Chapter two describes a palladium-induced 1,2-metallate rearrangement of vinylboron “ate” complexes. The newly developed process incorporates an alternative route for the transmetallation step of Suzuki-Miyaura cross-couplings. Lastly, an enantioselective platinum-catalyzed hydrosilylation of alkenyl boronates is disclosed. This reaction enables the synthesis of nonracemic geminal silylboronates for the divergent synthesis of functionalized
Thesis (PhD) — Boston College, 2018
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Chemistry
APA, Harvard, Vancouver, ISO, and other styles
5

Wilkinson, Matthew. "Bulky arylphosphines and arylarsines for catalysis of C-C bond-forming reactions." Thesis, University of Bristol, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.274605.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Truscott, Fiona Rosemary. "Transition metal catalysed C-C bond formation via C-H functionalisation." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:6a1ef296-8d63-470d-96bd-3e01a887c81f.

Full text
Abstract:
The functionalisation of C-H bonds has been widely studied in organic synthesis. This work presents the results of investigation into two areas of current research, copper-catalysed aromatic C-H functionalisation and rhodium-catalysed hydroacylation. Chapter 1 presents the development of palladium- and copper-catalysed aromatic C-H functionalisation with particular attention paid to regiocontrol. Chapter 2 describes the development of copper-catalysed cross-coupling of perfluorinated arenes and alkenyl halides along with efforts to expand this methodology to a more general reaction. In Chapter 3 the development of chelation-controlled rhodium-catalysed hydroacylation is discussed. Chapter 4 outlines the utilisation of amino acid derived N-methylthiomethyl aldehydes in rhodium-catalysed hydroacylation methodology.
APA, Harvard, Vancouver, ISO, and other styles
7

Zárate, Sáez Cayetana. "C-heteroatom bond-formation via ni-catalyzed c-o bond cleavage." Doctoral thesis, Universitat Rovira i Virgili, 2017. http://hdl.handle.net/10803/401555.

Full text
Abstract:
Tot i que el camp de l'acoblament creuat ha desenvolupat increïbles avenços, la gran majoria de processos encara es basen en l'ús d'halurs d'aril. No obstant, aquest tipus d’electròfils presenten una toxicitat intrínseca i, al mateix temps, la seva síntesis resulta tediosa, especialment quan es tracta d'halurs d'aril altament funcionalitzats. A causa d'això, la comunitat sintètica s'ha bolcat en la recerca d'alternatives a l'ús d'halurs d'aril en química d'acoblament creuat. Grans esforços s'han desenvolupat en la última dècada per implementar els derivats del fenol en aquest tipus de transformacions a causa de l'abundància natural i comercial d'aquests compostos i a la seva baixa toxicitat en comparació amb els organohalurs. No obstant, l'alta energia d'activació necessària per trencar els enllaços C-O ha limitat considerablement l'ús de derivats de fenol en reaccions d’acoblament creuat, sobretot si es tracta d'éters de metil. Actualment la gran majoria de mètodes basats en aquesta família d’electròfils s'utilitzen en la formació d'enllaços C-C. Altrament, gairebé no existeixen tècniques per obtenir enllaços Cheteroàtom probablement a causa de la baixa reactivitat dels nucleòfils, on la densitat de càrrega negativa resideix en un heteroàtom. La present tesi doctoral s'ha centrat en el desenvolupament de noves metodologies per a la creació d'enllaços de tipus C-heteroàtom mitjançant l’activació catalítica d'enllaços C-O amb complexes de Ni. S'han descrit nous mètodes de sililació i borilació d'ésters i metil éters d’aril i benzil. Aquests mètodes suposen una via alternativa per a la síntesis de silans i boronats, els quals són intermedis de gran utilitat en síntesis orgànica. A més, el descobriment d'unes condicions totalment inusuals per activar enllaços de tipus C-OMe ha obert noves perspectives sobre la reactivitat d'aquest tipus d'enllaços i, alhora, ha suggerit l'existència de nous mecanismes d'activació.
A pesar de que el campo del acoplamiento cruzado ha desarrollado increíbles avances, la gran mayoría de procesos todavía se basa en el uso de halogenuros de arilo. Sin embargo, este tipo de electrófilos presentan una toxicidad intrínseca y, a su vez, su síntesis resulta tediosa, especialmente cuando se trata de halogenuros de arilo altamente funcionalizados. Debido a ello, la comunidad sintética se ha volcado en la búsqueda de alternativas al uso de halogenuros de arilo en química de acoplamiento cruzado. Un gran esfuerzo se ha desarrollado en la última década para implementar los derivados del fenol en este tipo de transformacions debido a la abundancia natural y comercial de dichos compuestos y a su baja toxicidad en comparación con los organohalogenuros. Sin embargo, la alta energía de activación necesaría para romper los enlaces C-O ha limitado considerablemenete el uso de derivados del fenol en reacciones de acomplamineto cruzado, sobre todo si se trata de éteres de metilo. Actualmente la gran mayoría de métodos basados en esta familia de electrófilos se utilizan en la formación de enlaces C-C. De lo contrario, apenas existen técnicas para obtener enlaces C-heteroátomo probablemente debido a la baja reactividad de los nucleófilos donde la densidad de carga negativa reside en un heteroátomo. La presente tesis docotoral se ha centrado en el desarrollo de nuevas metodologías para la creación de enlaces de tipo C-heteroatomo mediante la activción catalítica de enlaces C-O con complejos de Ni. Se han descrito novedosos métodos de sililación y borilación de ésteres y metil éteres de arilo y bencilo. Dichos métodos suponen una via alternativa para la síntesis de silanos y boronatos, los cuales son intermedios de gran utilidad en síntesis orgánica. Además, el descubrimiento de unas condiciones totalmente inusuales para activar enlaces de tipo C-OMe ha abierto nuevas perspectivas sobre la reactividad de este tipo de enlaces y, a la vez, ha sugerido la existencia de nuevos mecanismos de activación.
While the field of cross-coupling has reached remarkable levels of sophistication, the vast majority of processes are still being conducted with organic halide counterparts. Drawbacks associated to their toxicity and the limited accessibility of densely functionalized aryl halides have prompted chemists to develop powerful, yet practical, alternatives. Among these, the utilization of phenol derivatives as coupling partners via C-O bond cleavage would be particularly rewarding due to their readily availability and benign nature. However, the high activation energy required for effecting C–O bond cleavage has become a daunting challenge when devising catalytic techniques using phenol derivatives, specially always-elusive aryl methyl ethers. At present, the vast majority of cross-coupling reactions using phenol derivatives remains confined to C–C bond formation, whereas the formation of C-heteroatom bonds has been poorly studied, likely due to the less reactivity of heteroatom-based nucleophiles. This doctoral thesis has focused on the development of new methodologies for forging C-heteroatom bonds via Ni-catalyzed C-O bond cleavage. It has been described new protocols for the silylation and borylation of aryl and benzyl esters and methyl ethers. These methodologies can be used as useful alternatives towards the synthesis of aryl and benzyl silanes and boronates, incredible important intermediates in organic synthesis. Furthermore, the discovery of unusual, yet surprising, conditions for the cleavage of C-OMe bonds have opened up new vistas towards the reactivity of aryl and benzyl methyls ethers while suggesting new activation pathways.
APA, Harvard, Vancouver, ISO, and other styles
8

Bartoszewicz, Agnieszka. "Transition metal-catalysed hydrogen transfer processes for C-C and C-N bond formation : Synthetic studies and mechanistic investigations." Doctoral thesis, Stockholms universitet, Institutionen för organisk kemi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-81596.

Full text
Abstract:
This thesis focusses on synthetic studies and mechanistic investigations into reactions involving hydrogen-transfer processes. In the first part, the development of an efficient method for the synthesis of β-hydroxy ketones (aldols) and β-amino ketones (Mannich products) from allylic alcohols and aldehydes is described. These reactions use  Ru(η5-C5Ph5)(CO)2Cl as the catalyst. The reaction parameters were optimised in order to suppress the formation of undesired by-products. Neutral and mild reaction conditions enabled the synthesis of a variety of aldol products in up to 99% yield, with a good syn/anti ratio. The influence of the stereoelectronic properties of the catalyst on the reaction outcome was also studied. Based on the results obtained, a plausible reaction mechanism has been proposed, involving as the key steps the 1,4-addition of hydride to α,β-unsaturated ketones and the formation of ruthenium (Z)-enolates. In the second part of this thesis, a ruthenium-catalysed tandem isomerisation/C-H activation reaction is presented. A number of ruthenium complexes, phosphine ligands, and additives were evaluated in order to establish the optimal reaction conditions. It was found that the use of a stable ruthenium catalyst, Ru(PPh3)3Cl2, together with PtBu3 and HCO2Na resulted in an efficient tandem transformation. Using this procedure, a variety of ortho-alkylated ketones were obtained in excellent yields. Moreover, homoallylic alcohols could also be used as starting materials for the reaction, which further expands the substrate scope. Mechanistic investigations into the isomerisation part of the process were carried out. The last project described in the thesis deals with the design and preparation of novel bifunctional iridium complexes containing an N-(2-hydroxy-isobutyl)-N-Heterocyclic carbene ligand. These complexes were used as catalysts to alkylate amines using alcohols as latent electrophiles. The catalytic system developed here was found to be one of the most active systems reported to date, allowing the reaction to be performed at temperatures as low as 50 °C for the first time. A broad substrate scope was examined. Combined experimental and theoretical studies into the reaction mechanism are consistent with a metal-ligand bifunctional activity of the new catalyst.
APA, Harvard, Vancouver, ISO, and other styles
9

Mazzarella, Daniele. "C-C and C-B Bond Forming Strategies Driven by the Photoexcitation of Organocatalytic Intermediates." Doctoral thesis, Universitat Rovira i Virgili, 2020. http://hdl.handle.net/10803/669808.

Full text
Abstract:
El principal objectiu científic dels meus estudis de doctorat va ser demostrar que la reactivitat en estat excitat dels intermedis organocatalítics són capaços de proporcionar noves oportunitats per desenvolupar noves reaccions catalítiques mitjançant radicals per a la formació d'enllaços C-C i C-B. La fotoexcitació d'intermedis organocatalítics van proporcionar radicals mitjançant transferència d'un sol electró o homòlisis. En el capítol II, analitzo el desenvolupament d'una funcionalització asimètrica organocatalítica fotoquímica de C-H del toluè i derivats. El nostre sistema aprofita les propietats oxidatives millorades dels ions d’imini quirals excitats amb llum visible i el caràcter bàsic dels seus contraanions per activar, a través d'una transferència d'electrons acoblada a protons multilloc, derivats de toluè. El radical resultant és atrapat més tard per l'intermedi organocatalític quiral amb alt estereocontrol. A la segona part dels meus estudis de doctorat, em vaig concentrar en la generació catalítica de compostos fotó làbils basats en tiocarbonil per promoure la formació d'enllaços C-B i C-C. Com es detalla en el capítol III, utilitzem un organocatalitzador nucleofílic d'anió ditiocarbonil per activar electròfils d’alquil a través d'una via SN2. El producte intermedi resultant que absorbeix fotons, després de l'absorció de llum visible, genera radicals a través de l'escissió homolític de l'enllaç C-S feble. El radical generat és llavors interceptat per bis(catecolat)diboro per proporcionar productes d'èster alquilborònic. El capítol IV destaca com aquest enfocament fotolític es va expandir a l'activació dels clorurs d'acil i carbamoil a través d'una via de substitució d'acil nucleofílica. Els radicals acil i carbamoil generats fotoquímicament s'han utilitzat en reaccions de tipus Giese amb olefines pobres en electrons per formar nous enllaços C-C. Una investigació mecanística detallada, basada en anàlisis espectroscòpics i electroquímics juntament amb la caracterització d'intermedis clau, va identificar una varietat d'equilibris fora del cicle que cooperen per controlar les concentracions generals dels radicals, contribuint a l'eficiència del procés.
El principal objetivo científico de mis estudios de doctorado fue demostrar que la reactividad en estado excitado de los intermedios organocatalíticos son capaces de proporcionar nuevas oportunidades para desarrollar nuevas reacciones catalíticas mediante radicales para la formación de enlaces C-C y C-B. La fotoexcitación de intermedios organocatalíticos proporcionaron radicales mediante transferencia de un solo electrón u homólisis. En el Capítulo II, analizo el desarrollo de una funcionalización asimétrica organocatalítica fotoquímica de C-H del tolueno y derivados. Nuestro sistema aprovecha las propiedades oxidativas mejoradas de los iones de iminio quirales excitados con luz visible y el carácter básico de sus contraaniones para activar, a través de una transferencia de electrones acoplada a protones multisitio, derivados de tolueno. El radical resultante es atrapado más tarde por el intermedio organocatalítico quiral con alto estereocontrol. En la segunda parte de mis estudios de doctorado, me concentré en la generación catalítica de compuestos fotolábiles basados en tiocarbonilo para promover la formación de enlaces C-B y C-C. Como se detalla en el Capítulo III, empleamos un organocatalizador nucleofílico de anión ditiocarbonilo para activar electrófilos de alquilo a través de una vía SN2. El producto intermedio resultante que absorbe fotones, tras la absorción de luz visible, genera radicales a través de la escisión homolítica del enlace C-S débil. El radical generado es entonces interceptado por bis(catecolato)diboro para proporcionar productos de éster alquilborónico. El Capítulo IV destaca cómo este enfoque fotolítico se expandió a la activación de los cloruros de acilo y carbamoilo a través de una vía de sustitución de acilo nucleofílica. Los radicales acilo y carbamoilo generados fotoquímicamente se han utilizado en reacciones de tipo Giese con olefinas pobres en electrones para formar nuevos enlaces C-C. Una investigación mecanística detallada, basada en análisis espectroscópicos y electroquímicos junto con la caracterización de intermedios clave, identificó una variedad de equilibrios fuera del ciclo que cooperan para controlar las concentraciones generales de los radicales, contribuyendo a la eficiencia del proceso.
The main scientific objective of my doctoral studies was to demonstrate that the excited-state reactivity of organocatalytic intermediates could provide new opportunities to develop novel catalytic radical C-C and C-B forming reactions. The photoexcitation of organocatalytic intermediates afforded radicals through either single-electron transfer or homolysis. In Chapter II, I discuss the development of an asymmetric organocatalytic photochemical C-H functionalization of toluene and derivatives. Our system harnesses the enhanced oxidative properties of visible-light excited chiral iminium ions and the basic character of their counteranions to activate, through a multisite proton coupled electron transfer, toluene derivatives. The ensuing radical is later trapped by the chiral organocatalytic intermediate with high stereocontrol. In the second part of my doctoral studies, I focused on the catalytic generation of photolabile thiocarbonyl-based compounds to promote the formation of C-B and C-C bonds. As detailed in Chapter III, we employed a nucleophilic dithiocarbonyl anion organocatalyst to activate alkyl electrophiles through an SN2 pathway. The ensuing photon-absorbing intermediate, upon visible light absorption, generates radicals through homolytic cleavage of the weak C-S bond. The generated radical is then intercepted by bis(catecholato)diboron to afford alkyl boronic ester products. Chapter IV highlights how this photolytic approach was expanded to the activation of acyl and carbamoyl chlorides through a nucleophilic acyl substitution pathway. The photochemically generated acyl and carbamoyl radicals have been used in Giese-type reactions with electron-poor olefins to form new C-C bonds. A detailed mechanistic investigation, based on spectroscopic and electrochemical analyses along with the characterization of key intermediates, identified a variety of off-the-cycle equilibriums that cooperate to control the overall concentrations of the radicals, contributing to the efficiency of the process.
APA, Harvard, Vancouver, ISO, and other styles
10

Zhang, Qi. "Transition-metal-catalyzed C-F bond formation." Diss., University of Iowa, 2016. https://ir.uiowa.edu/etd/3228.

Full text
Abstract:
Fluorine atom plays a very important role in pharmaceuticals, agricultural chemicals, and medical imaging and it has become one of the most popular area in organic chemistry. For example, in modern medicinal chemistry introducing fluorine atom could potentially improve absorption, metabolism and potency of drug candidates. As a result, methods that allow the selective and efficient formation of the carbon-fluorine bond are highly desirable. An evolving approach is the utilization of transition-metals to catalyze the nucleophilic substitution of fluoride ion. This thesis described several novel and efficient methods to generate allylic and benzylic C-F bonds using rhodium/iridium catalyst.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "C-C bond catalysis"

1

Mahrwald, Rainer. Enantioselective Organocatalyzed Reactions II: Asymmetric C-C Bond Formation Processes. Dordrecht: Springer Science+Business Media B.V., 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dixneuf, Pierre H., and Henri Doucet, eds. C-H Bond Activation and Catalytic Functionalization II. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29319-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dixneuf, Pierre H., and Henri Doucet, eds. C-H Bond Activation and Catalytic Functionalization I. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-24630-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Krische, Michael J. Metal Catalyzed Reductive C-C Bond Formation: A Departure from Preformed Organometallic Reagents. Springer London, Limited, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mahrwald, Rainer. Enantioselective Organocatalyzed Reactions II: Asymmetric C-C Bond Formation Processes. Springer, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mahrwald, Rainer. Enantioselective Organocatalyzed Reactions II: Asymmetric C-C Bond Formation Processes. Springer, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

J, Krische Michael, and Breit B, eds. Metal catalyzed reductive C-C bond formation: A departure from preformed organometallic reagents. Berlin: Springer, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Andersson, Pher G. Innovative Catalysis in Organic Synthesis: Oxidation, Hydrogenation, and C-X Bond Forming Reactions. Wiley & Sons, Incorporated, John, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Andersson, Pher G. Innovative Catalysis in Organic Synthesis: Oxidation, Hydrogenation, and C-X Bond Forming Reactions. Wiley & Sons, Limited, John, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Andersson, Pher G. Innovative Catalysis in Organic Synthesis: Oxidation, Hydrogenation, and C-X Bond Forming Reactions. Wiley & Sons, Incorporated, John, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "C-C bond catalysis"

1

Vicente, Rubén. "Zinc-Catalyzed CC Bond Formation." In Zinc Catalysis, 119–48. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527675944.ch6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Li, Hu, and Zhang-Jie Shi. "Catalysis in C-C Activation." In Homogeneous Catalysis for Unreactive Bond Activation, 575–619. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118788981.ch7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Bin, and Pierre H. Dixneuf. "Ruthenium(II)-Catalysed sp2 C–H Bond Functionalization by C–C Bond Formation." In Ruthenium in Catalysis, 119–93. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/3418_2014_85.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

López, Luis A., and Jesús González. "Zinc-Catalyzed CN and CO Bond Formation Reactions." In Zinc Catalysis, 149–78. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527675944.ch7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sako, Makoto, Shinobu Takizawa, and Hiroaki Sasai. "Chapter 18. Vanadium-catalyzed Enantioselective C–C Bond-forming Reactions." In Catalysis Series, 446–63. Cambridge: Royal Society of Chemistry, 2020. http://dx.doi.org/10.1039/9781839160882-00446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Koga, Nobuaki, and Keiji Morokuma. "Alkene Migratory Insertions and C-C Bond Formations." In Theoretical Aspects of Homogeneous Catalysis, 65–91. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0475-3_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Zhong-Xia, and Wang-Jun Guo. "Catalysis In C-Cl Activation." In Homogeneous Catalysis for Unreactive Bond Activation, 1–201. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118788981.ch1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Deuss, Peter J., Megan V. Doble, Amanda G. Jarvis, and Paul C. J. Kamer. "Hybrid Catalysts for Other CC and CX Bond Formation Reactions." In Artificial Metalloenzymes and MetalloDNAzymes in Catalysis, 285–319. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527804085.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jun, Chul-Ho, and Jung-Woo Park. "Metal–Organic Cooperative Catalysis in C–C Bond Activation." In Topics in Current Chemistry, 59–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/128_2013_493.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Petersen, Michael, Maria Teresa Zannetti, and Wolf-Dieter Fessner. "Tandem asymmetric C-C bond formations by enzyme catalysis." In Topics in Current Chemistry, 87–117. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/bfb0119221.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "C-C bond catalysis"

1

LAULLOO, SABINA, SALMA Moosun, SHABNEEZ Bhewa, and MINU BHOWON. "Palladium Schiff Base Complexes: Potential catalysts for C-C bond reactions." In The 20th International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 2016. http://dx.doi.org/10.3390/ecsoc-20-a022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kumar, Anand, and Anchu Ashok. "Catalytic Decomposition of Ethanol over Bimetallic Nico Catalysts for Carbon Nanotube Synthesis." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0039.

Full text
Abstract:
In this work we investigate the use of NiCo bimetal/oxide as catalyst for hydrogen production from ethanol, with a focus on the deactivation pattern and the nature of the observed carbon deposition. It is well known that sintering and coke deposition during decomposition reaction significantly reduces the activity of the catalysts at higher temperature, by blocking the active sites of the catalysts. During ethanol decomposition reaction, the cleavage of C-C bond produces adsorbed *CH4 and *CO species that further decompose to form carbonaceous compounds. FTIR in-situ analysis was conducted between 50 to 400°C for all the catalysts to understand the reaction mechanism and product selectivity. Cobalt was found to be selective for aldehyde and acetate, whereas bimetallic Ni-Co was selective for the formation of CO at 400°C along with aldehyde. Complete conversion of ethanol was observed at 350°C and 420°C for NiCo and Cobalt respectively indicating an improvement in the rate of conversion when Ni was added to cobalt. The crystallinity, morphology and particle analysis of the used catalyst after reaction were studied using XRD, SEM and TEM respectively. The XRD shows the complete phase change of porous NiCoO2 to NiCo alloy and SEM indicates the presence of fibrous structure on the surface with 91.7 % of carbon while keeping 1:1 ratio of Ni and Co after the reaction. The detailed analysis of carbon structure using HRTEM-STEM shows the simultaneous growth of carbon nano fibers (CNFs) and multiwalled carbon nanotubes (MWCNTs) that were favored on larger and smaller crystallites respectively. Analysis of carbon formation on individual Co catalyst and bimetallic NiCo catalyst shows a clear difference in the initiation pattern of carbon deposition. Metallic Co nanoparticles were found to be more mobile where Co disperses along the catalysts surface, whereas NiCo nanoparticles were relatively less mobile, and maintained their structure.
APA, Harvard, Vancouver, ISO, and other styles
3

Lobato, J., P. Can˜izares, M. A. Rodrigo, J. J. Linares, and B. Sa´nchez-Rivera. "Testing Different Catalysts for a Vapor-Fed PBI-Based Direct Ethanol Fuel Cell." In ASME 2009 7th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2009. http://dx.doi.org/10.1115/fuelcell2009-85055.

Full text
Abstract:
With the aim of improving the ethanol oxidation in fuel cells, researchers have developed numerous catalysts to break up the C-C bond. Most of the tests have been carried out at low temperature, using Nafion membrane as electrolyte. The cell performance of the Direct Ethanol Fuel Cells (DEFCs) at low temperature is still far from its industrial application. To improve the DEFC power density, high temperature operation (150–200 °C) has been suggested to promote the complete oxidation of ethanol. Thus, three different catalysts (Pt-Ru (1:1), Pt-Sn (1:1) and Pt-Sn-Ru (1:1:0.3), all of them supported on both non-activated and activated carbon were tested in H3PO4 doped PBI-based fuel cell, using vapour fed ethanol, operating in the range of 150–200 °C, and high ethanol concentration 6.7 M. The catalyst were synthesized using NaBH4 as reducing agent and were characterized by XRD, ICP-AES and TPR analyses. The best performance was reached at the highest temperature and with the catalyst based on Pt-Ru. The best results for the Ru-based catalyst can be explained by the higher level of alloying reached for the Ru than for Sn, which modifies the crystalline structure of Pt and enhances the activity oxidation of ethanol and of intermediates that are generated during the oxidation of ethanol.
APA, Harvard, Vancouver, ISO, and other styles
4

Jay, Raphael M., Ambar Banerjee, Torsten Leitner, Robert Stefanuik, Ru-Pan Wang, Jessica Harich, Emma Beale, et al. "From Femtosecond Excited-State and Dissociation Dynamics to Nanosecond Reaction Kinetics: Following C-H Bond Activation with X-rays." In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/up.2022.tu1a.2.

Full text
Abstract:
Using ultrafast X-ray absorption spectroscopy, we observe how a rhodium carbonyl catalyst is formed on femtosecond timescales and reveal the decisive orbital interactions which facilitate the efficient cleavage of an alkane C-H bond from solution.
APA, Harvard, Vancouver, ISO, and other styles
5

Kim, Jongsik, Marshall S. Abbott, David B. Go, and Jason C. Hicks. "Exploring the Kinetic Contribution of Catalyst-Plasma Interactions to Activate C-H Bonds." In 2017 IEEE International Conference on Plasma Science (ICOPS). IEEE, 2017. http://dx.doi.org/10.1109/plasma.2017.8496178.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhan, Guodong David, Bodong Li, Timothy Eric Moellendick, Duanwei He, and Jianhui Xu. "New Catalyst-Free Polycrystalline Diamond with Industry-Record Wear Resistance." In SPE Middle East Oil & Gas Show and Conference. SPE, 2021. http://dx.doi.org/10.2118/204855-ms.

Full text
Abstract:
Abstract PDC drill bits are the primary drilling tools for oil and gas in most of formations. In a PDC drill bit, PDC cutters are key cutting components to engage with these formations. However, there is often a big challenge for today's PDC drill bits when drilling very hard and abrasive formation. The main weakness in the PDC cutter is due to the unavoidable use of metallic catalyst which is used to bond the diamond grains in the PDC cutters. The thermal expansion of the metallic catalysts resulting from high frictional heat at the cutter/rock interface during drilling operation is higher than that of diamond grains, causing the thermal stress between the metallic catalyst and diamond grain which can break the PDC cutter. Therefore, development of catalyst-free PDC cutters would be a game-changing technology for drill bit by delivering significant increase in performance, durability, and drilling economics. In this study, an innovative ultra-high pressure and ultra-high temperature technology was developed with ultra-high pressures up to 35 GPa, much higher than current PDC cutter technology. We report a new type of catalyst-free PDC cutting material, synthesized under one of conditions using ultra-high pressure of 16 GPa. The new material breaks all single-crystal-diamond indenters in Vickers hardness testing which sets a new world record as the hardest diamond material as of today. Also, the material shows the highest thermal stability in the family of diamonds in air at 1,200°C, which is about 600 °C higher than current PDC cutters. As a consequence of these superior properties, this new material exhibited industry-recorded wear resistance, which is four times of that of current PDC cutters. All of these achievements demonstrated a breakthrough in PDC cutter technology development and presented a feasibility for the goal of "One-Run-To-TD" game-changing drilling technology.
APA, Harvard, Vancouver, ISO, and other styles
7

Tynyshtykbayev, Kurbangali, Chistos Spitas, Konstantinos Kostas, and Zinetula Insepov. "GRAPHENE LOW-TEMPERATURE SYNTHESIS ON POROUS SILICON." In International Forum “Microelectronics – 2020”. Joung Scientists Scholarship “Microelectronics – 2020”. XIII International conference «Silicon – 2020». XII young scientists scholarship for silicon nanostructures and devices physics, material science, process and analysis. LLC MAKS Press, 2020. http://dx.doi.org/10.29003/m1551.silicon-2020/40-44.

Full text
Abstract:
The possibility of low-temperature synthesis of graphene on the surface of porous silicon (PS) is associated with the excess surface energies of nc-PS nanocrystallites ; the boundary interface nanocrystallties nc-PS / c-Si monocrystal matrix; the dangling bonds of silicon atoms of nanocrystallites skeleton nc-PS. This opens up new prospects for the development of methods for the low-temperature synthesis of graphene without metal catalysts for the decomposition of carbon precursors, including using the ALD method.
APA, Harvard, Vancouver, ISO, and other styles
8

Henschen, A., and E. Müller. "ON THE FACTOR XIIIa-INDUCED CROSSLINKING OF HUMAN FIBRIN α-CHAINS." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644649.

Full text
Abstract:
Factor XIIIa catalysis the formation of isopeptide bonds Between γ-carbamoyl groups of peptide-bound glutamines and ε-amino groups of lysines or lysine analogues. During fibrin crosslinking two such bonds are rapidly formed between the C-termini of two γ-chains in adjacent molecules and then several bonds are more slowly formed between several α-chains. The crosslinking sites in the γ-chain were identified already 15 years ago, those in the α-chain are still only tentatively or partially identified,, However, by determining the incorporation of lysine analogues in the α-chain it could be shown that the glutamines in positions 328, 366 and possibly also 237 may participate in crosslinking reactions. Analyses of cyanogen bromide fragments isolated from crosslinked fibrin indicated the segments 271-776 and 518-587 to contain the primary crosslinking sites.In the present study factor XHI-containing fibrinogen was incubated over night with thrombin in presence of calcium ions and cysteine or, as a control, in presence of EDTA. The fibrin material was cleaved with cyanogen bromide, mercaptolysed, pyri-dylethylated and then subjected to Sephacryl S-300 chromatography. The early protein fractions were tested by reversed-phase high-performance liquid chromatography (HPLC) using fibrinogen fragments as reference. In the control sample Aa-chain fragment 271-776 eluted first but in the crosslinked sample it was missing and instead a heterogeneous mixture of higher-molecular weight components was observed. N-Terminal sequence analysis showed the mixture to contain not only the expected fragments 241-476 and 518-584,but in fact all glutamine- or lysine-containing Aα-chain fragments between positions 208 and 611. In the corresponding 6 fragments a total of 6 glutamines and 21 lysines as potential crosslinking sites are present. Two fragments contain only one each of these residues which therefore must be true crosslinking sites. Remaining sites and the actual linkages were identified after reversed-phase HPLC of the tryptic peptide mixture by N-terminal sequence and total amino acid analyses.The linkage pattern will provide information about the localisation and conformation of the C-terminal part of the α-chain and its contribution to the fibrin polymer structure.
APA, Harvard, Vancouver, ISO, and other styles
9

Eichenauer, Sabrina, Bernd Weber, and Ernst A. Stadlbauer. "Thermochemical Processing of Animal Fat and Meat and Bone Meal to Hydrocarbon Based Fuels." In ASME 2015 9th International Conference on Energy Sustainability collocated with the ASME 2015 Power Conference, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/es2015-49197.

Full text
Abstract:
The results of the study at hand may have implications for treatment of grease, lipid fractions, free fatty acids (FFA) and salts of FFA extracted from wastes of food industry, bio-refineries or sewage sludge as well as contaminated lipid containing forage. The goal of the study is, to prevent such contaminated wastes from entering the food chain. The following ways of treatment are proposed. Thermal conversion of waste fats from rendering plants or lipids in the presence of aluminosilicates of the zeolite family produce hydrocarbons with net calorific values in the range of 40–42 MJ/kg. NMR studies show aliphatic hydrocarbons as main product at T = 400°C. The spectrum of products is shifted to alkyl benzenes at T = 550°C. In case of sodium carbonate conversion is achieved in the presence of 5% water at T = 430 ± 20°C yielding mainly a liquid bio-crude with a low acid index, a mixture of non-condensable gases and minor amounts of coke. Rectification of bio-crude from animal fat produces 65.8% of hydrocarbon based bio-diesel and 13.3% of gasoline type hydrocarbons. Distillation curve for bio-diesel is in accordance with DIN EN 490. However, the gasoline fraction lacks low boiling hydrocarbons indicating the necessity for technical improvements of condensers. Sodium carbonate is found to be effective as well as being relatively inexpensive compared to zeolite catalysts. Finally, successful conversion of meat and bone meal to biochar is proved by solid-state 13C-NMR.
APA, Harvard, Vancouver, ISO, and other styles
10

Bolotov, Vasiliy Alexandrovich, Serguei Fedorovich Tikhov, Konstantin Radikovich Valeev, Vladimir Timurovich Shamirzaev, and Valentin Nikolaevich Parmon. "SELECTIVE FORMATION OF LINEAR ALPHA-OLEFINS VIA MICROWAVE CATALYTIC CRACKING OF LIQUID STRAIGHT-CHAIN ALKANES." In Ampere 2019. Valencia: Universitat Politècnica de València, 2019. http://dx.doi.org/10.4995/ampere2019.2019.9894.

Full text
Abstract:
Linear even-carbon-number alpha-olefins (LAO) with four or more carbon atoms are important compounds of high demand in chemical industry as precursors of a wide range of value-added chemicals [1]. LAO are used as co-monomers for polyethylene production, for the production of alcohols (mainly in detergents and plasticizers) and for synthesis of polyalphaolefins (used in synthetic lubricants). Alpha-olefins (C4, C6, C8 and C10) are mainly used to produce poly(vinyl chloride) plasticizers, high-density and linear low-density polyethylene to impart the stress-crack resistance. C10–C14 alpha-olefins can be used to synthesize linear alkylbenzene sulfonates (synthetic detergents). A conventional route to produce alpha-olefins is oligomerization of ethylene. The process provides production of high quality alpha-olefins but is very costly. If not oligomerization, LAO can be produced by thermal cracking of waxy paraffins but the product is not pure and contains numerous internal olefins, dienes and paraffin impurities. The process is conducted in the vapor phase at relatively low cracking temperatures and needs rapid quenching to prevent side reactions such as isomerization or cyclization. In our previous work [2], we showed that the selectivity to alpha-olefins can be increased considerably via catalytic cracking of n-alkanes under selective MW heating of catalysts. In the present work, the general regularities of MW cracking of n-alkanes are presented. Porous ceramic matrix Al2O3/Al composites (ceramometals) and various carbon materials (CM) having high dielectric losses were studied as supports of the catalysts. MW cracking was conducted with n-C16H34 and n-C28H58. The influence particle size and surface morphology of ceramometals and CM on the structural and group composition of the products was studied. It was established that LAO (C2-C23) and n-alkanes (C2-C26) were the main cracking products under selective MW heating of the used supports. The quantitative analysis of the products demonstrated that the liquid-phase process is more selective to alpha-olefins at the MW catalytic cracking than at the convectional thermal cracking. Silica modification of the surface of CM was shown to suppress spark discharge (usually observed at MW heating of CM); hence, the thermal cleavage of C-C bonds on the CM surface but not in the plasma discharge contributes the most to the formation of radicals. It was shown that the selectivity to liquid alpha-olefin could be more than 85 % under MW heating of cermets in region of the E - field node and decrease considerably in the region of H - field node.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography