To see the other types of publications on this topic, follow the link: BUS POWER SYSTEM.

Dissertations / Theses on the topic 'BUS POWER SYSTEM'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'BUS POWER SYSTEM.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Weldy, Christopher. "Stability of a 24-bus power system with converter interfaced generation." Thesis, Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53597.

Full text
Abstract:
The objective of this Masters Thesis is to investigate the system stability implications of integration of power electronic converter interfaced generation (CIG) into conventional power systems. Due to differences between conventional generation and (CIG), the power system fault currents, voltage response, and frequency response will likely change with increased penetration of (CIG). This research has employed state of the art software tools to perform simulations on the IEEE 24-Bus Reliability Test System (RTS-24), appropriately modified to include converter interfaced generation. Time-domain dynamic simulations and fault calculations have been performed for the system. A comprehensive set of simulations has been performed on the base case, comprised entirely of conventional generation. Conventional generation was replaced by (CIG) in the model, one generating station at a time until (CIG) penetration reached one-hundred percent. The comprehensive set of simulations has been performed at each level of (CIG) penetration. The results have been compared to the base case, with a focus on voltage response, frequency response, and fault current levels of the power system.
APA, Harvard, Vancouver, ISO, and other styles
2

Dicharry, Jeff. "Power System Fault Detection Using Conductor Dynamics." ScholarWorks@UNO, 2005. http://scholarworks.uno.edu/td/289.

Full text
Abstract:
Power system fault detection is conventionally achieved using current and potential measurements. An alternate and unconventional form of protective relaying is feasible using rigid bus conductor motion as the means of detection. The research presented focuses on the detection of power system faults using visual displacement of conductor spans. Substation rigid bus conductor motion is modeled using dual spring-mass systems for accurate representation of conductor response to electromagnetic forces generated during system faults. Bundled rigid conductors have advantages including detection independent of system load currents and improved ability to detect polyphase and single phase faults. The dynamic motion of the conductors during the fault is optically monitored with a laser detection system. Timeovercurrent characteristics are derived for the application of fault detection. The response time of the conductor detector system is slower than conventional relays due to the natural frequencies of the conductor span limiting the speed of its displacement. This response time makes the fault detection system using conductor displacement an ideal candidate for a backup relay in power system protection schemes.
APA, Harvard, Vancouver, ISO, and other styles
3

Baštán, Ondřej. "Komunikační systém standardu Wireless M-Bus." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-316266.

Full text
Abstract:
The thesis deals with the design of wireless communication system using Wireless M- Bus, which works in the 169 MHz band. This system is designed to collect data from meters that are not equipped with a radio and have pulse outputs. The thesis describes the Wireless M-Bus standard and the current components of the communication system used by ModemTec. It also describes the selection and design of a suitable hardware implementing the receiver and transmitter modules and the firmware design for these modules. The thesis deals with the parameterization of the transmitter module in order to specify the parameters of the transmitted measured quantity.
APA, Harvard, Vancouver, ISO, and other styles
4

Fallier, William F. (William Frederick). "Analysis of system wide distortion in an integrated power system utilizing a high voltage DC bus and silicon carbide power devices." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/39730.

Full text
Abstract:
Thesis (Nav. E.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and, (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.
Includes bibliographical references (p. 81-82).
This research investigates the distortion on the electrical distribution system for a high voltage DC Integrated Power System (IPS). The analysis was concentrated on the power supplied to a propulsion motor driven by an inverter with simulated silicon carbide switches. Theoretically, silicon carbide switches have the advantage of being able to withstand a very large blocking voltage and carry very large forward currents. Silicon carbide switches are also very efficient due to their quick rise and fall times. Since silicon carbide switches can withstand high voltage differentials and switch faster than silicon switches, the switching effects on the electrical distribution system were investigated. The current state of silicon carbide power electronics was also investigated. This research quantifies the current and voltage distortion over various operating conditions. A system model was developed using Matlab, Simulink, and SimPowerSystems. The model consisted of a synchronous generator supplying a rectifier and inverter set driving an induction motor. This induction motor simulates the propulsion motor for a Navy ship. This model had a DC link voltage of 10 kV in order to simulate future Navy IPS systems. The current and voltage distortion were compared to MIL STD 1399 and IEEE STD 519 and 45.
by William F. Fallier.
S.M.
Nav.E.
APA, Harvard, Vancouver, ISO, and other styles
5

Fallier, William F. "Analysis of system wide distortion in an integrated power system utilizing a high voltage DC bus and silicon carbide power devices." Thesis, Monterey, California. Naval Postgraduate School, 2007. http://hdl.handle.net/10945/3006.

Full text
Abstract:
This research investigates the distortion on the electrical distribution system for a high voltage DC Integrated Power System (IPS). The analysis was concentrated on the power supplied to a propulsion motor driven by an inverter with simulated silicon carbide switches. Theoretically, silicon carbide switches have the advantage of being able to withstand a very large blocking voltage and carry very large forward currents. Silicon carbide switches are also very efficient due to their quick rise and fall times. Since silicon carbide switches can withstand high voltage differentials and switch faster than silicon switches, the switching effects on the electrical distribution system were investigated. The current state of silicon carbide power electronics was also investigated. This research quantifies the current and voltage distortion over various operating conditions. A system model was developed using Matlab, Simulink, and SimPowerSystems. The model consisted of a synchronous generator supplying a rectifier and inverter set driving an induction motor. This induction motor simulates the propulsion motor for a Navy ship. This model had a DC link voltage of 10 kV in order to simulate future Navy IPS systems. The current and voltage distortion were compared to MIL STD 1399 and IEEE STD 519 and 45.
Contract Number: N62271-97-G-0026
APA, Harvard, Vancouver, ISO, and other styles
6

Baral, Bishwas. "Directional Comparison Bus Protection Using Superimposed Partial Operating Current Characteristics." ScholarWorks@UNO, 2019. https://scholarworks.uno.edu/td/2584.

Full text
Abstract:
Various directional comparison bus protection methods including widely used superimposed directional element method need to have both voltages and currents from all feeders connected to the zone of protection to find the direction of current for detecting a bus fault or a line fault. The purpose of the thesis is to present a new technique for directional comparison bus protection to discriminate a bus fault from line fault and normal condition. The new technique, which is implementing superimposed directional element method to modify partial operating current characteristics (POC) method to superimposed POC (SPOC) method, does not use voltages from feeders, hence capacitor voltage transformers (CVTs) are no longer needed in the zone of protection. The proposed technique was implemented in 4-bus and IEEE 14-bus test system and was tested using different fault cases including CT saturation and high impedance fault. The proposed technique, SPOC method was compared with POC method with both methods implemented in same test systems and tested with same fault cases. The results show that the proposed technique is successful to detect bus faults with high accuracy and high speed.
APA, Harvard, Vancouver, ISO, and other styles
7

Tong, Shiqiong Miu Karen Nan. "Slack bus modeling for distributed generation and its impacts on distribution system analysis, operation and planning /." Philadelphia, Pa. : Drexel University, 2006. http://hdl.handle.net/1860/1229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sun, Xin. "Protection performance study for secondary systems with IEC61850 process bus architecture." Thesis, University of Bath, 2012. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.563989.

Full text
Abstract:
Following the introduction of the microprocessor into the power system protection field, modern microprocessor based numeric relays have developed very rapidly in the last 20 years, and modern power system protection schemes are virtually all based on microcomputers technology. The International Electro-technical Commission (IEC) recently launched the standard IEC61850, “Communication Networks and System in Substation”, which is having a major impact on the structure of new protection systems and schemes. In itself it describes the concepts for sub-station communications covering protection, control and metering functions. However, although it is going to have a major impact on the power systems communications, it will also influence the design of future protection systems. There will also be a host of other opportunities and advantages that can be realised. These include easier upgrading, refurbishment and replacement of sub-station protection. They also provide for greater use of general purpose Intelligent Electronics Devices (IEDs), self-healing systems, and plug and play type facilities. The Ethernet based communication network for data transfer between process level switchyard equipment and bay level IEDs, the process bus, is defined in IEC61850 Section 9-2. This process bus facilitates the communication of two types of real-time, peer-to-peer communication messages. Generic object-oriented substation event messages, the GOOSE messages and the data sample values, SVs which include the measured currents and voltages. Although this standard describes the message structures and the timing requirements, it does not describe the process bus topology. This work describes different LAN topologies that can be used in the design of process bus for protection systems. It considers the implications of the different structures on the operation of the protection scheme and how these relate to the operational strategy of different operators. It provides an assessment of the data handling capabilities of the system and how the demands of the protection system can be met. Several potential problem areas are identified and analyzed. The probabilistic nature of these systems is discussed and the implications explained. It also provides an insight into the implementation of the alternative topologies and their performance when applied to a transmission line feeder protection and transformer protection. The digital substation and the implementation of IEC61850 are fundamental to the future of protection ‘relays’. There are many pointers to the potential directions that these systems will develop and the skills required for the protection engineers of the future. This project is seeking to overcome some of the ownership challenges presented by modern protection and control (P&C) devices, which have an inherent short life due to their dependence on modern electronics and software.
APA, Harvard, Vancouver, ISO, and other styles
9

Xing, Kun. "Modeling, Analysis, and Design of Distributed Power Electronics System Based on Building Block Concept." Diss., Virginia Tech, 1999. http://hdl.handle.net/10919/28123.

Full text
Abstract:
The basic Power Electronics Building Block (PEBB) configurations are identified and conceptual PEBB modules are constructed and tested. Using the INCA (Inductance Calculator) parasitic extraction and the Saber circuit simulation software, the microscopic relationships between the parasitics of the packaging layout and their circuit electrical effects are cross-examined. The PEBB module with advanced packaging techniques is characterized in comparison with the wire-bond module. The soft-switching techniques are evaluated for PEBB applications. The Zero-Current-Transition (ZCT) is proved better because the parasitics in the power current flow path are absorbed into the resonant soft-switching operation. This makes the PEBBs insensitive to system integration. Based on the building block concept, the discrete and large signal average models are developed for simulation, design, and analysis of large-scale PEBB-based systems. New average models are developed for half-bridge PEBB module and Space Vector Modulation (SVM). These models keep the exact information of the discontinuous SVM and the common mode component of the three-phase system. They can be used to construct the computer models of a power electronics system the same as the modularized hardware and perform time domain simulations with very fast speed. Further more, even though the system is modeled based on modularized concept on the ABC coordinates, it can be used to perform small signal analysis on the DQ coordinates as well. Based on the developed models, the system-level interactions in integrated systems are investigated. Three interaction scenarios are presented: (1) the zero-sequence circulation current in paralleled three-phase rectifiers caused by the interleaved discontinuous SVM, (2) the load and source interactions caused by unbalanced load and small signal impedance overlap, and (3) the combined common mode noise caused by both front-end PWM rectifiers and load inverters. The interaction phenomena and mitigation methods are demonstrated through hardware testbed system. The concept of dc bus conditioning is proposed. The bus conditioner is a bi-directional dc/dc converter programmed as a current controlled current source, which shunts the large signal ac current, which otherwise goes to the dc bus, into an isolated energy storage component. In addition to alleviate the source and load interactions, it increases the load impedance/decreases the bus impedance and provides more stability margins to the distribution system. The dc bus conditioner concept and its functions are demonstrated through system simulation and preliminary hardware experiment.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
10

Hsu, Edward Hsuan-Wei. "ELECTRIFICATION OF THE SWEDISH VEHICLE FLEET: CHARGING DEMAND AND THE POWER SYSTEM." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-448286.

Full text
Abstract:
With the transport sector switching to electric energy to reduce greenhouse gas emission, the supply and demand in the energy system are impacted by this transition. Meanwhile, there are not a lot of studies focus on the electrification of the vehicle fleet in Sweden. To fill up the knowledge gap, the paper aims to identify the total required electrical energy and power for the electrification of the vehicle fleet in Sweden. This includes switching passenger vehicles, light and heavy trucks, and buses to battery electric vehicles. An Electric Vehicle Power Demand Model is designed to answer the research question. It is a simplified model that can calculate energy consumption and power demand from an electric vehicle fleet. To simulate the charging schedule, four scenarios are created with differences in charge speed and the use of smart or unregulated charging. Based on the model, the electric vehicle fleet consumes 20.4 TWh of electricity per year, accounting for 14.7% of total demand in Sweden. Combing the vehicle fleet with other energy services, an average hourly peak load of 16.2 GW in summer and 24.3 in winter can be seen, while the available capacity in Sweden is around 27.1. The result indicates that the current Swedish energy system is capable of handling demand from charging the electric vehicle fleet in terms of power capacity for most times. However, undersupply may happen in some extreme condition during the winter due to higher consumption from other energy services. Furthermore, with the increasing share of renewable power in the system, the availability of these power plants can have a direct impact on the supply. This requires smart charging to shift the charging events to prevent peak hours, which can potentially decrease the peak loads up to 2 GW in EV charging demand during peak hours. However, the actual effect of it still requires more study. Lastly, the model created for the research can be used as a research or decision-making tool to estimate the impact of a group of electric vehicles in the future, therefore, contribute to the development of the sustainable energy transition.
APA, Harvard, Vancouver, ISO, and other styles
11

Li, Yizhe. "A FAULT LOCATION ALGORITHM FOR UNBALANCED DISTRIBUTION SYSTEM WITHOUT FAULT TYPE INFORMATION." UKnowledge, 2018. https://uknowledge.uky.edu/ece_etds/112.

Full text
Abstract:
Power system faults normally result in system damage, profit loss and consumer dissatisfaction. Consequently, there is a strong demand on precise and fast fault location estimation for power system to minimize the system restoration time. This paper examines a method to locate short-circuit faults on a distribution system with unbalanced loads without fault type information. Bus impedance matrix technique was harnessed in the fault location estimation algorithm. The system data including line impedances, source impedance and distribution system layout was assumed to be known factors, hence pre-fault bus impedance can be calculated and implemented into the algorithm. Corresponding methods to derive system matrix information were discussed. Case studies were performed to evaluate the accuracy of the fault location algorithm and illustrate the robust performance under measurements errors influences, load variation impacts and load compensation implementations. Traditional fault location methods involve current and voltage measurements mandatorily locating at each ends of faulted section to locate the fault. The method examined finds fault location for distribution system utilizing impedance matrix accompanied with sparse measurements in the power network. This method fully considers the unbalance of distribution system.
APA, Harvard, Vancouver, ISO, and other styles
12

Bladh, Johan. "Hydropower generator and power system interaction." Doctoral thesis, Uppsala universitet, Elektricitetslära, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-182188.

Full text
Abstract:
After decades of routine operation, the hydropower industry faces new challenges. Large-scale integration of other renewable sources of generation in the power system accentuates the role of hydropower as a regulating resource. At the same time, an extensive reinvestment programme has commenced where many old components and apparatus are being refurbished or replaced. Introduction of new technical solutions in existing power plants requires good systems knowledge and careful consideration. Important tools for research, development and analysis are suitable mathematical models, numerical simulation methods and laboratory equipment. This doctoral thesis is devoted to studies of the electromechanical interaction between hydropower units and the power system. The work encompasses development of mathematical models, empirical methods for system identification, as well as numerical and experimental studies of hydropower generator and power system interaction. Two generator modelling approaches are explored: one based on electromagnetic field theory and the finite element method, and one based on equivalent electric circuits. The finite element model is adapted for single-machine infinite-bus simulations by the addition of a network equivalent, a mechanical equation and a voltage regulator. Transient simulations using both finite element and equivalent circuit models indicate that the finite element model typically overestimates the synchronising and damping properties of the machine. Identification of model parameters is performed both numerically and experimentally. A complete set of equivalent circuit parameters is identified through finite element simulation of standard empirical test methods. Another machine model is identified experimentally through frequency response analysis. An extension to the well-known standstill frequency response (SSFR) test is explored, which involves measurement and analysis of damper winding quantities. The test is found to produce models that are suitable for transient power system analysis. Both experimental and numerical studies show that low resistance of the damper winding interpole connections are vital to achieve high attenuation of rotor angle oscillations. Hydropower generator and power system interaction is also studied experimentally during a full-scale startup test of the Nordic power system, where multiple synchronised data acquisition devices are used for measurement of both electrical and mechanical quantities. Observation of a subsynchronous power oscillation leads to an investigation of the torsional stability of hydropower units. In accordance with previous studies, hydropower units are found to be mechanically resilient to subsynchronous power oscillations. However, like any other generating unit, they are dependent on sufficient electrical and mechanical damping. Two experimentally obtained hydraulic damping coefficients for a large Francis turbine runner are presented in the thesis.
APA, Harvard, Vancouver, ISO, and other styles
13

Vijapurapu, Sivarama Karthik. "CONTINGENCY ANALYSIS OF POWER SYSTEMS IN PRESENCE OF GEOMAGNETICALLY INDUCED CURRENTS." UKnowledge, 2013. http://uknowledge.uky.edu/ece_etds/32.

Full text
Abstract:
Geomagnetically induced currents (GIC) are manifestations of space weather phenomena on the electric power grid. Although not a new phenomenon, they assume great importance in wake of the present, ever expanding power grids. This thesis discusses the cause of GICs, methodology of modeling them into the power system and the ramifications of their presence in the bulk power system. GIC is treated at a micro level considering its effects on the power system assets like Transformers and also at a macro level with respect to issues like Voltage instability. In illustration, several simulations are made on a transformer & the standard IEEE 14 bus system to reproduce the effect of a geomagnetic storm on a power grid. Various software tools like PowerWorld Simulator, SimPower Systems have been utilized in performing these simulations. Contingency analysis involving the weakest elements in the system has been performed to evaluate the impact of their loss on the system. Test results are laid out and discussed in detail to convey the consequences of a geomagnetic phenomenon on the power grid in a holistic manner.
APA, Harvard, Vancouver, ISO, and other styles
14

Pieters, Willem Diederick. "Monitoring, protection, and voltage control of parallel power transformers based on IEC 61850-9-2 process bus." Thesis, Cape Peninsula University of Technology, 2019. http://hdl.handle.net/20.500.11838/3067.

Full text
Abstract:
Thesis (MEng (Electrical Engineering)--Cape Peninsula University of Technology, 2019
The purpose of an electrical power system is to supply electrical energy to the customers. Power transformers are required to transform the system voltage from generation to transmission and distribution levels. Protection and control systems must ensure that power system high voltage equipment such as transformers operate and deliver save, reliable and secure electricity supply. The aim of the project research work is to develop and implement a strategy, methods and algorithms for monitoring, protection and voltage control of parallel power transformers based on IEC 61850-9-2 process bus standard. NamPower is a power utility in Namibia. The IEC 61850 protocol for electrical substation automation system is used for the protection and control of 5 power transformers operated in parallel in an existing substation system. The IEC 61850-9-2 process bus standard is however not used in regards of Sampled Values (SV). Protection and control devices are connected to a substation communication network, routers and switches using fibre optic linked Ethernet. Inductive Current Transformers (CTs) and Voltage Transformers (VTs) secondary circuits are hardwired to Intelligent Electronic Devices (IEDs) and fibre optic links are not used for this purpose at process level communication. The research focuses on the implementation of the IEC 61850 standard with Merging Units (MUs) and sampled values to improve the existing implemented protection and control system at NamPower. This includes substation communication networks and MUs used for transformer protection, voltage regulator control and cooling fan control. At the present the CTs located at the transformer bushings and switchgear and the VTs located at the switchgear are hardwired to the inputs on protection and control IEDs. The research focuses on issues with the copper wires for voltage and currents signals and how these issues can be eliminated by using the MUs and the SV protocol. The MUs which are considered in this Thesis is to improve the voltage regulator control and the control of the cooling fan motors. The voltage regulator control IED is situated at the tap change motor drive of the On-Load Tap Changer (OLTC). The IED of each transformer is required to regulate the voltage level of the secondary side bus bar it is connected to. All the regulating IEDs are required to communicate with each other and collectively to control the bus bar voltage depending on the switching configuration of the parallel transformers. The control circuit for controlling the cooling fan motors is hardwired. Temperature analogue signal input into a programmable automation controller IED can be used for controlling the transformer cooling fans. A strategy, methods and algorithms for transformer protection, voltage regulator control and cooling fan motor control of parallel power transformers need to be developed and implemented based on IEC 61850-9-2 process bus. Power utilities and distributors can benefit from interpretation of the IEC 61850-9-2 standard and implementing MUs and SV in substations. MUs can be included in the power transformer protection, automation and control systems. A cost reduction in high voltage equipment, substation installation and commissioning costs and better performance of protection and control system are anticipated.
APA, Harvard, Vancouver, ISO, and other styles
15

Kipps, Mark Rew. "A modular approach to modeling an isolated power system on a finite voltage bus using a differential algebraic equation solving routine." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1994. http://handle.dtic.mil/100.2/ADA281036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Färm, Emil. "Smart charging of an electric bus fleet." Thesis, Uppsala universitet, Elektricitetslära, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-444348.

Full text
Abstract:
Controlling the balance of production and consumption of electricity will become increasingly challenging as the transport sector gradually converts to electric vehicles along with a growing share of wind power in the Swedish electric power system. This puts greater demand on resources that maintain the balance to ensure stable grid operation. The balancing act is called frequency regulation which historically has been performed almost entirely by hydropower. As the power production becomes more intermittent with renewable energy sources, frequency regulation will need to be performed in higher volumes on the demand side by having a more flexible consumption. In this report, the electrification of 17 buses Svealandstrafiken bus depot in Västerås has been studied. The aim has been to assess different charging strategies to efficiently utilize the available time and power but also to investigate if Svealandstrafiken can participate in frequency regulation. A smart charging model was created that demonstrated how smart charging can be implemented to optimize the charging in four different cases. The simulated cases were: charging with load balancing, reduced charging power, frequency regulation, and electrifying more buses. The results show that the power capacity limit will be exceeded if the buses are being charged directly as they arrive at the depot and without scheduling the charging session. By implementing smart charging, Svealandstrafiken can fully charge the 17 buses within the power capacity limit of the depot with 82 minutes to spare. By utilizing this 82-minute margin in the four different charging strategies, it was found that Svealandstrafiken can save 88 200SEK per year by load balancing, save 30 000 SEK per year by reducing the charging power by 10 %, earn 111 900 SEK per year by frequency regulation or electrify five more buses. Reducing the charging power may also increase the lifetime of the batteries but quantifying this needs further studies. Conclusively, there is economic potential for Svealandstrafiken for implementing smart charging.
APA, Harvard, Vancouver, ISO, and other styles
17

Salas, Puente Robert Antonio. "Gestión eficiente de los convertidores de potencia conectados al bus DC de una Microrred híbrida de generación distribuida." Doctoral thesis, Universitat Politècnica de València, 2019. http://hdl.handle.net/10251/118658.

Full text
Abstract:
[ES] Dos aspectos críticos en la operación de una microrred son las estrategias de control y gestión de potencia implementadas, las cuales son esenciales para proporcionar su buen funcionamiento. La aplicación adecuada de dichas estrategias permite compensar los desequilibrios de potencia causados por la discontinuidad de la generación y de la demanda de energía en las microrredes. En este sentido, el objetivo global de estas estrategias de gestión es equilibrar adecuadamente el flujo de potencia en la microrred, mediante la aplicación de diferentes algoritmos que permiten cumplir con los criterios de estabilidad, protección, balance de potencia, transiciones, sincronización con la red y gestión adecuada de la microrred. En el caso de microrredes de pequeña escala de potencia con bajo número de generadores y sistemas de almacenamiento distribuidos, las estrategias de control centralizado ofrecen un alto nivel de flexibilidad para lograr funcionalidades avanzadas en la microrred y una adecuada distribución de la potencia entre los convertidores que la conforman. Esta tesis se ha enmarcado en el contexto de algoritmos de gestión centralizada de potencia de una microrred de generación distribuida en modo conectado a red. Los algoritmos presentados se pueden aplicar a los convertidores de potencia conectados al bus DC de una microrred AC/DC híbrida o en una microrred de DC, donde el despacho de potencia es observado y gestionado por un controlador central. Este último adquiere datos del sistema mediante una infraestructura de comunicaciones y estima la potencia que gestionará cada uno de los convertidores de potencia, sistemas de almacenamiento y cargas en funcionamiento. En este estudio se muestra la validación experimental de las estrategias de gestión aplicadas en la microrred desde el enfoque del comportamiento de los convertidores de potencia, de las baterías y las cargas ante dicha gestión. Se verifica la estabilidad de la microrred sometiendo a los convertidores a diferentes escenarios de funcionamiento. Estos escenarios pueden ser fluctuaciones en la irradiación, la demanda, el estado de carga de las baterías, los límites máximos de exportación/importación de potencia desde/hacia la microrred hacia/desde la red principal y de la tarifa eléctrica. Adicionalmente, se propone un sistema de almacenamiento de energía en baterías encargado de mantener el equilibrio de potencia en el bus de DC de la microrred que permite aprovechar las fuentes de generación renovables presentes en la microrred y maximizar el tiempo de servicio de las baterías mediante la aplicación de un algoritmo de carga de las baterías. Este último se ajusta al procedimiento de carga especificado por el fabricante, estableciendo las tasas de carga en función de los escenarios en que la microrred se encuentre. El procedimiento de carga en las baterías es fundamental para garantizar las condiciones adecuadas de operación de las mismas, ya que toman en consideración los parámetros establecidos por el fabricante, como son: tasas de carga/descarga, tensión máxima de carga, temperaturas de operación, etc.
[CAT] Dos dels aspectes crítics en l'operació d'una micro-xarxa són les estratègies de control i gestió de potència implementades, les quals són essencials per proporcionar el seu bon funcionament. L'aplicació adequada de dites estratègies permet compensar els desequilibris de potència causats per la discontinuïtat de la generació i demanda d'energia en les micro-xarxes. En aquest sentit, l'objectiu global de les nomenades estratègies de gestió és equilibrar adequadament el flux de potència en la micro-xarxa mitjançant l'aplicació de diferents algoritmes que permeten complir amb els criteris d'estabilitat, protecció, balanç de potència, transicions, sincronització amb la xarxa i gestió adequada de la micro-xarxa. En el cas de micro-xarxes de potència a petita escala i amb baix nombre de generadors i sistemes d'emmagatzematge distribuïts, les estratègies de control centralitzades ofereixen un alt nivell de flexibilitat per aconseguir funcionalitats avançades en la micro-xarxa i una adequada distribució de la potència entre els convertidors que la conformen. Aquesta tesi s'ha emmarcat al context d'algoritmes de gestió centralitzada de potència d'una micro-xarxa de generació distribuïda en mode de connexió a xarxa. Els algoritmes presentats es poden aplicar als convertidors de potència connectats al bus DC d'una micro-xarxa AC/DC hibrida o en una micro-xarxa de DC, on el despatx de potència és observat i gestionat per un controlador central. Aquest últim adquireix dades del sistema mitjançant una infraestructura de comunicacions i estima la potència que gestionarà cadascun dels convertidors de potència, sistemes d'emmagatzematge i càrregues en funcionament. En aquest estudi es mostren la validació experimental de les estratègies de gestió aplicades en la micro-xarxa des d'un enfocament dels convertidors de potència, de les bateries i les càrregues davant d'aquesta gestió. Es verifica l'estabilitat de la micro-xarxa exposant als convertidors a diferents escenaris de funcionament. Aquest escenaris poden ser fluctuants en la irradiació, la demanda, l'estat de càrrega de les bateries, els límits màxims d'exportació/importació de potència des de/cap a la micro-xarxa cap a/des de la xarxa principal i de la tarifa elèctrica. Addicionalment, es proposa un sistema d'emmagatzematge d'energia en bateries encarregats de mantindre l'equilibri de potència al bus DC de la micro-xarxa i que permet aprofitar les fonts de generació renovables presents en la micro-xarxa i maximitzar el temps de servei de les bateries mitjançant l'aplicació d'un algoritme de càrrega de bateries. Aquest últim s'ajusta al procediment de càrrega especificat pel fabricant, establint les taxes de càrrega en funció dels escenaris en que la micro-xarxa es trobe. El procediment de càrrega a les bateries es fonamental per garantir les condicions adequades d'operació de les mateixes, ja que prenen en consideració els paràmetres establerts pel fabricant, com ara són: taxes de càrrega/descàrrega, tensió màxima de càrrega, temperatures d'operació, etc.
[EN] Two critical aspects in microgrids operation are the control and power management strategies, which are essential for their efficient operation. The adequate application of these strategies allows compensating the power imbalance caused by the discontinuity in the energy generation or changes in the power demand of the microgrid. In this sense, the overall objective of these power management strategies is to keep the power balance between the generation and the demand in the microgrid through the application of different algorithms that fulfill the criteria of stability, protection, smooth transitions and synchronization with the main grid. In the case of small-scale microgrids with a low number of distributed generators and energy storage systems, the centralized control strategies offer a higher level of flexibility to achieve advanced features in the microgrid and for the suitable power sharing between the converters that compose it. This thesis has been focused on centralized power management algorithms of a microgrid working in grid connected mode. These algorithms can be applied to the power converters connected to the DC bus of both hybrid AC/DC and DC microgrids, where the power dispatch is controlled by a central controller which acquires system data through a communication infrastructure and sets the power to be managed by each of the converters under operation. In this thesis, the experimental validation of the power management strategies of the microgrid is presented, from the point of view of the behavior of the power converters, batteries and loads. It is provided with a realistic evaluation under different microgrid operation scenarios. These scenarios were sudden changes of the irradiation, load, state of charge, the maximum power to be exported/imported from/to the microgrid to/from the grid, and the electricity tariff. Additionally, it is proposed a battery energy storage system that keeps the power balance at the DC bus of the microgrid, taking advantage from the renewable energy sources and adjusting the battery energy storage through a suitable charging procedure specified by the manufacturer. The proposed procedure changes the charging parameters of the batteries depending on the microgrid states. Its goal is to extend the service time of batteries and to allow proper energy management in the system.
Salas Puente, RA. (2019). Gestión eficiente de los convertidores de potencia conectados al bus DC de una Microrred híbrida de generación distribuida [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/118658
TESIS
APA, Harvard, Vancouver, ISO, and other styles
18

Jamshidpour, Ehsan. "Contribution à l'étude de la sûreté de fonctionnement et de la continuité de service des bus DC." Thesis, Université de Lorraine, 2014. http://www.theses.fr/2014LORR0051/document.

Full text
Abstract:
Les Systèmes électriques à Puissance Distribuée (SPD) sont utilisés dans de nombreux secteurs industriels. La sûreté de fonctionnement (SDF) et la continuité de service de ces SPDs sont aujourd'hui des préoccupations majeures. Une stratégie de gestion globale de l'énergie adaptée ainsi que leur stabilité sont des exigences fondamentales pour que ces systèmes puissent fonctionner correctement. La présence de charges déséquilibrées ainsi que les interactions entre convertisseurs dans ces systèmes peuvent conduire à l'instabilité du bus DC commun. Un des cas les plus connus en terme de cause d'instabilité est celui d'une charge "à puissance constante" (CPL). Par ailleurs, toute défaillance au niveau de l'interrupteur commandable du convertisseur peut provoquer de graves dysfonctionnements du système. Tout défaut non détecté et non compensé en temps réel peut rapidement mettre en danger l'ensemble du système de puissance. Par conséquent, la mise en oeuvre de méthodes efficaces et rapides de détection et de compensation de défaut est impérative. Afin d'assurer la continuité de service de ces systèmes. Dans ce mémoire, nous étudions la gestion de l'énergie, la stabilité et la continuité de service d'un DC-SPD. Après l'étude de la gestion de l'énergie et la stabilité du système, une méthode de stabilisation active décentralisée est proposée afin d'augmenter le domaine de stabilité du SPD et afin deéviter l'instabilité en présence de charges déséquilibrées. Par ailleurs, des méthodes de détection de défaut au niveau d'un interrupteur commandable, efficaces et très rapides, sont également proposées. Nous présentons également une topologie de convertisseur DC-DC à tolérance de pannes, intégrant un interrupteur redondant ; dans tous les cas de défaut (court-circuit ou circuit-ouvert), cette topologie doit permettre deassurer la continuité de service du système de puissance en mode normal. Les études théoriques ont été validées par la simulation et par des tests expérimentaux
Electric Distributed Power Systems (DPS) are used in many industrial sectors. Continuity of service of these systems as well as their reliability are now of the major concerned. Energy management and stability are fundamental requirements for these systems to operate normally. In these systems, load converters exhibit Constant Power Load (CPL) behavior tend to destabilize the system. The system stability also can be threatened by unbalanced loads connected to the common bus. Furthermore, the failure of the controllable switch of the converter can cause serious malfunctions of the system. Undetected and uncompensated fault in real time can quickly endanger the entire power system. Therefore, the implementation of effective and rapid fault detection methods and compensation is mandatory. In this thesis, we study the energy management, stability and continuity of service of a DC-DPS. After the study of energy management and system stability, an active decentralized stabilization method is proposed to increase the stability domain of the system and to avoid instability in the case of unbalanced loads. Furthermore, efficient and very rapid methods of fault detection for a controllable switch are also proposed. We have presented a fault tolerant topology with redundancy for a DC-DC converter, which must ensure continuity of service of the DPS in any fault conditions (open or short circuit). Theoretical studies have been validated by simulation and experimental tests
APA, Harvard, Vancouver, ISO, and other styles
19

Babazadeh, Davood. "Distributed Control of HVDC Transmission Grids." Doctoral thesis, KTH, Elkraftteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-202753.

Full text
Abstract:
Recent issues such as priority access of renewable resources recommended by European energy directives and increase the electricity trading among countries lead to new requirements on the operation and expansion of transmission grids. Since AC grid expansions are limited by legislative issues and long distance transmission capacity, there is a considerable attention drawn to application of HVDC transmission grids on top of, or in complement to, existing AC power systems. The secure operation of HVDC grids requires a hierarchical control system. In HVDC grids, the primary control action to deal with power or DC voltage deviations is communication-free and local. In addition to primary control, the higher supervisory control actions are needed to guarantee the optimal operation of HVDC grids. However, the implementation of supervisory control functions is linked to the arrangement of system operators; i.e. an individual HVDC operator (central structure) or sharing tasks among AC system operators (distributed structure). This thesis presents distributed control of an HVDC grid. To this end, three possible supervisory functions are investigated; coordination of power injection set-points, DC slack bus selection and network topology identification. In this thesis, all three functions are first studied for the central structure. For the distributed solution, two algorithms based on Alternating Direction Method of Multipliers (ADMM) and Auxiliary Problem Principle (APP) are adopted to solve the coordination of power injection. For distributed selection of DC slack bus, the choice of parameters for quantitative ranking of converters is important. These parameters should be calculated based on local measurements if distributed decision is desired. To this end, the short circuit capacity of connected AC grid and power margin of converters are considered. To estimate the short circuit capacity as one of the required selection parameters, the result shows that the recursive least square algorithm can be very efficiently used. Besides, it is possible to intelligently use a naturally occurring droop response in HVDC grids as a local measurement for this estimation algorithm. Regarding the network topology, a two-stage distributed algorithm is introduced to use the abstract information about the neighbouring substation topology to determine the grid connectivity.

QC 20170306

APA, Harvard, Vancouver, ISO, and other styles
20

Yang, Xiaokun. "A High Performance Advanced Encryption Standard (AES) Encrypted On-Chip Bus Architecture for Internet-of-Things (IoT) System-on-Chips (SoC)." FIU Digital Commons, 2016. http://digitalcommons.fiu.edu/etd/2477.

Full text
Abstract:
With industry expectations of billions of Internet-connected things, commonly referred to as the IoT, we see a growing demand for high-performance on-chip bus architectures with the following attributes: small scale, low energy, high security, and highly configurable structures for integration, verification, and performance estimation. Our research thus mainly focuses on addressing these key problems and finding the balance among all these requirements that often work against each other. First of all, we proposed a low-cost and low-power System-on-Chips (SoCs) architecture (IBUS) that can frame data transfers differently. The IBUS protocol provides two novel transfer modes – the block and state modes, and is also backward compatible with the conventional linear mode. In order to evaluate the bus performance automatically and accurately, we also proposed an evaluation methodology based on the standard circuit design flow. Experimental results show that the IBUS based design uses the least hardware resource and reduces energy consumption to a half of an AMBA Advanced High-Performance Bus (AHB) and Advanced eXensible Interface (AXI). Additionally, the valid bandwidth of the IBUS based design is 2.3 and 1.6 times, respectively, compared with the AHB and AXI based implementations. As IoT advances, privacy and security issues become top tier concerns in addition to the high performance requirement of embedded chips. To leverage limited resources for tiny size chips and overhead cost for complex security mechanisms, we further proposed an advanced IBUS architecture to provide a structural support for the block-based AES algorithm. Our results show that the IBUS based AES-encrypted design costs less in terms of hardware resource and dynamic energy (60.2%), and achieves higher throughput (x1.6) compared with AXI. Effectively dealing with the automation in design and verification for mixed-signal integrated circuits is a critical problem, particularly when the bus architecture is new. Therefore, we further proposed a configurable and synthesizable IBUS design methodology. The flexible structure, together with bus wrappers, direct memory access (DMA), AES engine, memory controller, several mixed-signal verification intellectual properties (VIPs), and bus performance models (BPMs), forms the basic for integrated circuit design, allowing engineers to integrate application-specific modules and other peripherals to create complex SoCs.
APA, Harvard, Vancouver, ISO, and other styles
21

Hlinecký, Tomáš. "Využití moderních inteligentních elektroinstalací pro osvětlení budov." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2009. http://www.nusl.cz/ntk/nusl-217828.

Full text
Abstract:
This diploma thesis concerns with problematic of modern intelligent wiring systems in buildings, meanwhile presents their advantages against old classical wiring systems. Also deals with utilization and properties of modern components for regulation, switching and light controlling. The first part deals with light sources and possible ways how to control the power of individual luminary sources. The second part discuss about utilization of radio-frequency systems in new buildings and also in reconstructions. In the next part is described a possibility of bus system for controlling building illumination scope with focusing to control system Nikobus. The last part is concerned on technical-economical evaluation of intelligent wiring systems by various manufacturers according to specific requirements.
APA, Harvard, Vancouver, ISO, and other styles
22

Сірик, О. М. "Підвищення ефективності функціонування ПС 35/10 кВ "Киселівка" АТ "Чернігівобленерго"." Thesis, Чернігів, 2021. http://ir.stu.cn.ua/123456789/25267.

Full text
Abstract:
Сірик, О. М. Підвищення ефективності функціонування ПС 35/10 кВ "Киселівка" АТ "Чернігівобленерго" : випускна кваліфікаційна робота : 141 "Електроенеретика, електротехніка та електромеханіка" / О. М. Сірик ; керівник роботи Р. О. Буйний ; НУ "Чернігівська політехніка", кафедра електричної інженерії та інформаційно-вимірювальних технологій. – Чернігів, 2021. – 126 с.
Об’єкт дослідження даного проекту – підстанція напругою 35/10 кВ «Киселівка». Предмет дослідження – ефективність роботи обладнання ПС 35/10 кВ «Киселівка» при умові перспективного збільшення електричного навантаження. Мета роботи – покращення основних техніко-економічних показників роботи ПС 35/10 кВ «Киселівка». Виконано заміну існуючого морально та фізично застарілого силового обладнання ПС 35/10 кВ «Киселівка».
The object of research of this project is a 35/10 kV substation «Kiselivka». The subject of the research is the efficiency of the equipment of the 35/10 kV substation «Kiselivka» under the condition of perspective increase of electric load. The purpose of the work is to improve the main technical and economic performance of the 35/10 kV «Kiselivka» substation. The replacement of the existing morally and physically obsolete power equipment of the 35/10 kV substation «Kiselivka» was performed.
APA, Harvard, Vancouver, ISO, and other styles
23

Munukuntla, Sowmya. "Sensitivity Analysis of Synchronous Generators for Real-Time Simulation." ScholarWorks@UNO, 2016. http://scholarworks.uno.edu/td/2172.

Full text
Abstract:
The purpose of this thesis is to validate generator models for dynamic studies of power systems using PSS/E (Power System Simulator for Engineering), EMTP (ElectroMagnetic Transient Program), and Hypersim. To thoroughly evaluate the behavior of a power system in the three specified software packages, it is necessary to have an accurate model for the power system, especially the generator which is of interest. The effect of generator modeling on system response under normal conditions and under faulted conditions is investigated in this work. A methodology based on sensitivity analysis of generator model parameters is proposed aiming to homogenize the behavior of the same power system that is modeled in three software packages. Standard IEEE 14-Bus system is used as a test case for this investigation. Necessary changes in the exciter parameters are made using the proposed methodology so that the system behaves identical across all three software platforms.
APA, Harvard, Vancouver, ISO, and other styles
24

Luan, Wenpeng. "Voltage ranking using artificial neural network method." Thesis, University of Strathclyde, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.366960.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Jalboub, Mohamed K. "Investigation of the application of UPFC controllers for weak bus systems subjected to fault conditions. An investigation of the behaviour of a UPFC controller: the voltage stability and power transfer capability of the network and the effect of the position of unsymmetrical fault conditions." Thesis, University of Bradford, 2012. http://hdl.handle.net/10454/5699.

Full text
Abstract:
In order to identify the weakest bus in a power system so that the Unified Power Flow Controller could be connected, an investigation of static and dynamic voltage stability is presented. Two stability indices, static and dynamic, have been proposed in the thesis. Multi-Input Multi-Output (MIMO) analysis has been used for the dynamic stability analysis. Results based on the Western System Coordinate Council (WSCC) 3-machine, 9-bus test system and IEEE 14 bus Reliability Test System (RTS) shows that these indices detect with the degree of accuracy the weakest bus, the weakest line and the voltage stability margin in the test system before suffering from voltage collapse. Recently, Flexible Alternating Current Transmission systems (FACTs) have become significant due to the need to strengthen existing power systems. The UPFC has been identified in literature as the most comprehensive and complex FACTs equipment that has emerged for the control and optimization of power flow in AC transmission systems. Significant research has been done on the UPFC. However, the extent of UPFC capability, connected to the weakest bus in maintaining the power flows under fault conditions, not only in the line where it is installed, but also in adjacent parallel lines, remains to be studied. In the literature, it has normally been assumed the UPFC is disconnected during a fault period. In this investigation it has been shown that fault conditions can affect the UPFC significantly, even if it occurred on far buses of the power system. This forms the main contribution presented in this thesis. The impact of UPFC in minimizing the disturbances in voltages, currents and power flows under fault conditions are investigated. The WSCC 3-machine, 9-bus test system is used to investigate the effect of an unsymmetrical fault type and position on the operation of UPFC controller in accordance to the G59 protection, stability and regulation. Results show that it is necessary to disconnect the UPFC controller from the power system during unsymmetrical fault conditions.
Libyan Government
APA, Harvard, Vancouver, ISO, and other styles
26

Jalboub, Mohamed. "Investigation of the application of UPFC controllers for weak bus systems subjected to fault conditions : an investigation of the behaviour of a UPFC controller : the voltage stability and power transfer capability of the network and the effect of the position of unsymmetrical fault conditions." Thesis, University of Bradford, 2012. http://hdl.handle.net/10454/5699.

Full text
Abstract:
In order to identify the weakest bus in a power system so that the Unified Power Flow Controller could be connected, an investigation of static and dynamic voltage stability is presented. Two stability indices, static and dynamic, have been proposed in the thesis. Multi-Input Multi-Output (MIMO) analysis has been used for the dynamic stability analysis. Results based on the Western System Coordinate Council (WSCC) 3-machine, 9-bus test system and IEEE 14 bus Reliability Test System (RTS) shows that these indices detect with the degree of accuracy the weakest bus, the weakest line and the voltage stability margin in the test system before suffering from voltage collapse. Recently, Flexible Alternating Current Transmission systems (FACTs) have become significant due to the need to strengthen existing power systems. The UPFC has been identified in literature as the most comprehensive and complex FACTs equipment that has emerged for the control and optimization of power flow in AC transmission systems. Significant research has been done on the UPFC. However, the extent of UPFC capability, connected to the weakest bus in maintaining the power flows under fault conditions, not only in the line where it is installed, but also in adjacent parallel lines, remains to be studied. In the literature, it has normally been assumed the UPFC is disconnected during a fault period. In this investigation it has been shown that fault conditions can affect the UPFC significantly, even if it occurred on far buses of the power system. This forms the main contribution presented in this thesis. The impact of UPFC in minimizing the disturbances in voltages, currents and power flows under fault conditions are investigated. The WSCC 3-machine, 9-bus test system is used to investigate the effect of an unsymmetrical fault type and position on the operation of UPFC controller in accordance to the G59 protection, stability and regulation. Results show that it is necessary to disconnect the UPFC controller from the power system during unsymmetrical fault conditions.
APA, Harvard, Vancouver, ISO, and other styles
27

TONELLI, ROBERTO. "Power laws in software systems." Doctoral thesis, Università degli Studi di Cagliari, 2012. http://hdl.handle.net/11584/266070.

Full text
Abstract:
The main topic of my PhD has been the study of power laws in software systems within the perspective of describing software quality. My PhD research contributes to a recent stream of studies in software engineering, where the investigation of power laws in software systems has become widely popular in recent years, since they appear on an incredible variety of different software quantities and properties, like, for example, software metrics, software faults, refactoring, Java byte-code, module dependencies, software fractal dimension, lines of code, software packages and so on. The common presence of power laws suggests that software systems belong to the much larger category of complex systems, where typically self organization, fractality and emerging phenomena occur. Often my work involved the determination of a complex graph associated to the software system, defining the so called “complex software network”. For such complex software networks I analyzed different network metrics and I studied their relationships with software quality. In this PhD I took advantage of the theory of complex systems in order to study, to explain and sometimes to forecast properties and behavior of software systems. Thus my work involved the empirical study of many different statistical properties of software, in particular metrics, faults and refactorings, the construction and the application of statistical models for explaining such statistical properties, the implementation and the optimization of algorithms able to model their behavior, the introduction of metrics borrowed from Social Network Analysis (SNA) for describing relationships and dependencies among software modules. More specifically, my research activity regarded the followings topics: Bugs, power laws and software quality In [1] [7] [16] [20] [21] [22] module faultness and its implications on software quality are investigated. I studied data mining from CVS repositories of two large OO projects, Eclipse and Netbeans, focusing on “fixing- issue” commits, and compared static traditional approaches, like Knowledge Engineering, to dynamic approaches based on Machine Learning techniques. The work compares for the first time performances of Machine Learning (ML) techniques to automatic classify “fixing-issues” among message commits. Our study calculates precision and recall of different Machine Learning Classifiers for the correct classification of issue- reporting commits. The results show that some ML classifiers can correctly classify up to 99.9% of such commits. In [22] Java software systems are treated as complex graphs, where nodes represent a Java file - called compilation unit (CU) - and an edges represent a relations between them. The distribution of the number of bugs per CU, exhibits a power-law behavior in the tail, as well as the number of CUs influenced by a specific bug. The exam of the evolution of software metrics across different releases allows to understand how relationships among CUs metrics and CUs faultness change with time. In [1] module faultness is further discussed from a statistical perspective, using as case studies five versions of Eclipse, to show how log-normal, Double Pareto and Yule-Simon statistical distributions may fit the empirical bug distribution at least as well as the Weibull distribution proposed by Zhang. In particular, I discuss how some of these alternative distributions provide both a superior fit to empirical data and a theoretical motivation to be used for modeling the bug generation process. Further studies reported in [3] present a model based on the Yule process, able to explain the evolution of some properties of large object- oriented software systems. Four system properties related to code production of four large object-oriented software systems – Eclipse, Netbeans, JDK and Ant are analyzed. The properties analyzed, namely the naming of variables and methods, the call to methods and the inheritance hierarchies, show a power-law distribution. A software simulation allows to verify the goodness of the model, finding a very good correspondence between empirical data of subsequent software versions, and the prediction of the model presented. In [18], [19] and [23] three algorithms for an efficient implementation of the preferential attachment mechanism lying at the core of the Yule process are developed, and their efficiency in generating power- law distribution for different properties of Object Oriented (OO) software systems is discussed. Software metrics and SNA metrics In [2] [8] [13] [17] software metrics related to quality are analyzed and some metrics borrowed from the Social Network Analysis are applied to OO software graphs. In OO systems the modules are the classes, interconnected with each other by relationships like inheritance and dependency. It is possible to represent OO systems as software networks, where the classes are the network nodes and the relationships among classes are the network edges. Social Networks metrics, as for instance, the EGO metrics, allow to identify the role of each single node in the information flow through the network, being related to software modules and their dependencies. In [2] these metrics are compared with other traditional software metrics, like the Chidamber-Kemerer suite, and software graph metrics. The exam of the empirical distributions of all the metrics across the software modules of several releases of two large Java systems systematically shows fat-tails for all the metrics. Moreover, the various metric distributions look very similar and consistent across all system releases and are also very similar in both systems. Analytical distribution functions suitable for describing and studying the observed distributions are also provided. The work in [17] presents an extensive analysis of software metrics for 111 object-oriented systems written in Java. For each system, we considered 18 traditional metrics such as LOC and Chidamber and Kemerer metrics, as well as metrics derived from complex network theory and social network analysis, computed at class level. Most metrics follow a leptokurtotic distribution. Only a couple of metrics have patent normal behavior while some others are very irregular, and even bimodal. The statistics gathered allow to study and discuss the variability of metrics along different systems. In [8] a preliminary and exploratory analysis of the Eclipse subprojects is presented, using a joint application of SNA and traditional software metrics. The entire set of metrics has been summarized performing a Principal Component Analysis (PCA) and obtaining a very reduced number of independent principal components, which allow to represent the classes into a space where they show typical patterns. The preliminary results show how the joint application of traditional and network software metrics may be used to identify subprojects developed with similar functionalities and scopes. In [13] the software graphs of 96 systems of the Java Qualitas Corpus are anlyzed, parsing the source code and identifying the dependencies among classes. Twelve software metrics were analyzed, nine borrowed from Social Net- work Analysis (SNA), and three more traditional software metrics, such as Loc, Fan-in and Fan-out. The results show how the metrics can be partitioned in groups for almost the whole Java Qualitas Corpus, and that such grouping can provide insights on the topology of software networks. For two systems, Eclipse and Netbeans, we computed also the number of bugs, identifying the bugs affecting each class, and finding that some SNA metrics are highly correlated with bugs, while others are strongly anti-correlated. Software fractal dimension In [6] [12] [14] [15] the self similar structure of software networks is used to introduce the fractal dimension as a global software metric associated to software quality, at the system level and at the subproject level. In [6] the source code of various releases of two large OO Open Source (OS) Java software systems, Eclipse and Netbeans is analyzed, investigating the complexity of the whole release and of its subprojects. In all examined cases there exists a scaling region where it is possible to compute a self-similar coefficient, the fractal dimension, using “the box counting method”. Results show that this measure looks fairly related to software quality, acting as a global quality software metric. In particular, we computed the defects of each software system and we found a clear correlation among the number of defects in the system, or in a subproject, and its fractal dimension. This correlation exists across all the subprojects and also along the time evolution of the software systems, as new releases are delivered. In [14] software systems are considered as complex networks which have a self- similar structure under a length-scale transformation. On such complex software networks a self-similar coefficient is computed, also known as fractal dimension, using "the box counting method”. Several releases of the publically available Eclipse software system were analyzed, calculating the fractal dimension for twenty sub-projects, randomly chosen, for every release, as well as for each release as a whole. Our results display an overall consistency among the sub- projects and among all the analyzed releases. The study founds a very good correlation between the fractal dimension and the number of bugs for Eclipse and for twenty sub-projects. This result suggests that the fractal dimension could be considered as a global quality metric for large software systems. Works [12] and [15] propose an algorithm for computing the fractal dimension of a software network, and compare its performances with two other algorithms. Object of study are various large, object-oriented software systems. We built the associated graph for each system, also known as software network, analyzing the binary relationships (dependencies), among classes. We found that the structure of such software networks is self-similar under a length-scale transformation. The fractal dimension of these networks is computed using a Merge algorithm, first devised by the authors, a Greedy Coloring algorithm, based on the equivalence with the graph coloring problem, and a Simulated Annealing algorithm, largely used for efficiently determining minima in multi-dimensional problems. Our study examines both efficiency and accuracy, showing that the Merge algorithm is the most efficient, while the Simulated Annealing is the most accurate. The Greeding Coloring algorithm lays in between the two, having speed very close to the Merge algorithm, and accuracy comparable to the Simulated Annealing algorithm. 1.b Further research activity In [4] [9] [10] [11] the problem of software refactoring is analyzed. The study reported in [4] analyzes the effect of particular refactorings on class coupling for different releases of four Object Oriented (OO) Open Source (OS) Java software systems: Azureus, Jtopen, Jedit and Tomcat, as representative of general Java OS systems. Specifically, the “add parameter” to a method and “remove parameter” from a method refactorings, as defined according to Fowler’s dictionary, may influence class coupling changing fan-in and fan-out of classes they are applied to. The work investigates, both qualitatively and quantitatively, what is the global effect of the application of such refactorings, providing best fitting statistical distributions able to describe the changes in fan-in and fan-out couplings. A detailed analysis of the best fitting parameters and of their changes when refactoring occurs, has been performed, estimating the effect of refactoring on coupling before it is applied. Such estimates may help in determining refactoring costs and benefits . In [9] a study of the effect of fan-in and fan-out metrics is performed from the perspective of two refactorings, “add parameter to” and “remove parameter from” a method, collecting these two refactorings from multiple releases of the Tomcat open source system. Results show significant differences in the profiles of statistical distributions of fan-in and fan-out between refactored and not refactored classes. A strong over-arching theme emerged: developers seemed to focus on the refactoring of classes with relatively high fan-in and fan-out values rather than classes with high values in any one. In [10] is considered for the first time how a single refactoring modified these metric values, what happened when refactorings had been applied to a single class in unison and finally, what influence a set of refactorings had on the shape of FanIn and FanOut distributions. Results indicated that, on average, refactored classes tended to have larger FanIn and FanOut values when compared with non-refactored classes. Where evidence of multiple (different) refactorings applied to the same class was found, the net effect (in terms of FanIn and FanOut coupling values) was negligible. In [11] is shown how highly-coupled classes were more prone to refactoring, particularly through a set of ‘core’ refactorings. However, wide variations were found across systems for our chosen measures of coupling namely, fan-in and fan-out. Specific individual refactorings were also explored to gain an understanding of why these differences may have occurred. An exploration of open questions through the extraction of fifty-two of Fowler’s catalog of refactorings drawn from versions of four open-source systems is accomplished, comparing the coupling characteristics of each set of refactored classes with the corresponding set of non-refactored classes. In [7] I presented some preliminary studies also on the relationships about Micro- patterns, more specifically anti-patterns, and software quality, while in [5] and [21] I analyzed the role of Agile methodologies in software production and the relationships with software quality and the presence of bugs.
APA, Harvard, Vancouver, ISO, and other styles
28

Muneeb, Ur Rehman Muhammad. "Modular, Scalable Battery Systems with Integrated Cell Balancing and DC Bus Power Processing." DigitalCommons@USU, 2018. https://digitalcommons.usu.edu/etd/6999.

Full text
Abstract:
Traditional electric vehicle and stationary battery systems use series-connected battery packs that employ centralized battery management and power processing architecture. Though, these systems meet the basic safety and power requirements with a simple hard- ware structure, the approach results in a battery pack that is energy and power limited by weak cells throughout life and most importantly at end-of-life. The applications of battery systems can benefit significantly from modular, scalable battery systems capable of advanced cell balancing, efficient power processing, and cost gains via reuse beyond first-use application. The design of modular battery systems has unique requirements for the power electronics designer, including architecture, design, modeling and control of power processing converters, and battery balancing methods. This dissertation considers the requirements imposed by electric vehicle and stationary applications and presents design and control of modular battery systems to overcome challenges associated with conventional systems. The modular battery system uses cell or substring-level power converters to combine battery balancing and power processing functionality and opens the door to new opportunities for advanced cell balancing methods. This approach enables balancing control to act on cell-level information, reroute power around weaker cells in a string of cells to optimally deploy the stored energy, and achieve performance gains throughout the life of the battery pack. With this approach, the integrated balancing power converters can achieve system cost and efficiency gains by replacing or eliminating some of the conventional components inside battery systems such as passive balancing circuits and high-voltage, high-power converters. In addition, when coupled with life prognostic based cell balancing control, the modular system can extend the lifetime of a battery pack by up to 40%. The modular architecture design and control concepts developed in this dissertation can be applied to designs of large battery packs and improve battery pack performance, lifetime, size, and cost.
APA, Harvard, Vancouver, ISO, and other styles
29

Frost, Damien. "Battery management systems with active loading and decentralised control." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:27c8947d-967c-476a-b778-a0ad4d0a5f48.

Full text
Abstract:
This thesis presents novel battery pack designs and control methods to be used with battery packs enhanced with power electronics. There are two areas of focus: 1) intelligent battery packs that are constructed out of many hot swappable modules and 2) smart cells that form the foundation of a completely decentralised battery management system (BMS). In both areas, the concept of active loading/charging is introduced. Active loading/charging balances the cells in a battery pack by loading each cell in proportion to its capacity. In this way, the state of charge of all cells in a series string remain synchronized at all times and all of the energy storage potential from every cell is utilized, despite any differences in capacity there may be. Experimental results from the intelligent battery show how the capacity of a pack of variably degraded cells can be increased by 46% from 97 Wh to 142 Wh using active loading/charging. Engineering design challenges of building a practical intelligent battery pack are addressed. Start up and shut down procedures, and their respective circuits, were carefully designed to ensure zero current draw from the battery cells in the off state, yet also provide a simple mechanism for turning on. Intra-pack communication was designed to provide adequate information flow and precise control. Thus, two intra-pack networks were designed: a real time communication network, and a data communication network. The decentralised control algorithms of the smart cell use a small filtering inductor as a multi-purpose sensor. By analysing the voltage across this filtering inductor, the switching actions of a string of smart cells can be optimised. Experimental results show that the optimised switching actions reduce the output voltage ripple by 83% and they synchronize the terminal voltages of the smart cells, and by extension, their states of charge. This forms the basis of a decentralised BMS that does not require any communication between cells or with a centralised controller, but can still achieve cell balancing through active loading/charging.
APA, Harvard, Vancouver, ISO, and other styles
30

Minarelli, Massimiliano. "Power electonics and battery management system of an handheld device." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.

Find full text
Abstract:
In this thesis is reported the work done as an electronic designer at the CE.SI. Sicurezza. There are two main electronic projects in this report: The BMS-board is a battery management system board that gets mounted on the side of a LiFePo4 battery pack. This board is fully designed, realized, and tested. The power board is a power supply board that supports hot-swap capabilities on its three possible inputs. This board is only designed at a high level and not fully completed due to a lack of time.
APA, Harvard, Vancouver, ISO, and other styles
31

Dong, Dong. "Ac-dc Bus-interface Bi-directional Converters in Renewable Energy Systems." Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/28495.

Full text
Abstract:
This dissertation covers several issues related to the ac-dc bus-interface bi-directional converters in renewable energy systems. The dissertation explores a dc-electronic distribution system for residential and commercial applications with a focus on the design of an ac-dc bi-directional converter for such application. This converter is named as the â Energy Control Centerâ due to its unique role in the system. First, the impact of the unbalanced power from the ac grid, especially the single-phase grid, on the dc system operation is analyzed. Then, a simple ac-dc two-stage topology and an advanced digital control system is proposed with a detailed design procedure. The proposed converter system significantly reduces the dc-link capacitor volume and achieves a dynamics-decoupling operation between the interfaced systems. The total volume of the two-stage topology can be reduced by upto three times compared with the typical design of a full-bridge converter. In addition, film capacitors can be used instead of electrolytic capacitors in the system, and thus the whole system reliability is improved. A set of ac passive plus active filter solutions is proposed for the ac-dc bus-interface converter which significantly reduces the total power filter volume but still eliminate the total leakage current and the common-mode conducted EMI noises by more than 90%. The dc-side low-frequency CM voltage ripple generated by the unbalanced ac voltages can be eliminated as well. The proposed solution features a high reliability and fits three types of the prevalent low-voltage ac distribution systems. Grid synchronization, a critical interface control in ac-dc bus-interface converters, is discussed in detail. First, a novel single-phase grid synchronization solution is proposed to achieve the rejection of multiple noises as well as the capability to track the ac voltage amplitude. Then, a comprehensive modeling methodology of the grid synchronization for three-phase system is proposed to explain the output frequency behaviors of grid-interface power converters at the weak grid, at the islanded condition, and at the multi-converter condition. The proposed models provide a strong tool to predict the grid synchronization instabilities raised from industries under many operating conditions, which is critical in future more-distributed-generation power systems. Islanding detection issues in ac-dc bus-interface converters are discussed in detail. More than five frequency-based islanding detection algorithms are proposed. These solutions achieve different performances and are suitable for different applications, which are advantageous over existing solutions. More importantly, the detailed modeling, trade-off analysis, and design procedures are given to help completely understand the principles. In the end, the effectiveness of the proposed solutions in a multiple-converter system are analyzed. The results drawn from the discussion can help engineers to evaluate other existing solutions as well.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
32

Kohler, Iris. "Graph Theoretical Modelling of Electrical Distribution Grids." DigitalCommons@CalPoly, 2021. https://digitalcommons.calpoly.edu/theses/2301.

Full text
Abstract:
This thesis deals with the applications of graph theory towards the electrical distribution networks that transmit electricity from the generators that produce it and the consumers that use it. Specifically, we establish the substation and bus network as graph theoretical models for this major piece of electrical infrastructure. We also generate substation and bus networks for a wide range of existing data from both synthetic and real grids and show several properties of these graphs, such as density, degeneracy, and planarity. We also motivate future research into the definition of a graph family containing bus and substation networks and the classification of that family as having polynomial expansion.
APA, Harvard, Vancouver, ISO, and other styles
33

Ladjavardi, Marjan. "Improving small signal stability of power systems in the presence of harmonics." Thesis, Curtin University, 2008. http://hdl.handle.net/20.500.11937/511.

Full text
Abstract:
This thesis investigates the impact of harmonics as a power quality issue on the dynamic behaviour of the power systems. The effectiveness of the power system stabilizers in distorted conditions is also investigated. This thesis consists of three parts as follows:The first part focuses on the operation of the power system under distorted conditions. The conventional model of a synchronous generator in the dq-frame of reference is modified to include the impact of time and space harmonics. To do this, the synchronous generator is first modelled in the harmonic domain. This model helps in calculating the additional parts of the generator fundamental components due to the harmonics. Then the Park transformation is used for calculating the modified fundamental components of the synchronous generator in dq axes. The modified generator rotor angle due to the presence of harmonics is calculated and the impact of damper windings under the influence of harmonics is investigated. This model is used to study the small-signal stability of a distorted Single Machine Infinite Bus (SMIB) system. The eigenvalue analysis method is employed and the system state space equations are calculated by linearizing the differential equations around the operating point using an analytical method. The simulation results are presented for a distorted SMIB system under the influence of different harmonic levels. The impact of damper windings and also harmonics phase angles are also investigated.In the second part of the thesis, the effectiveness of the power system damping controllers under distorted conditions is studied. This investigation is done based on a distorted SMIB system installed with a Static Synchronous Series Compensator (SSSC). In the first step, the system state space equations are derived. A Power Oscillation Damping (POD) controller with a conventional structure is installed on the SSSC to improve the system dynamic behaviour. A genetic-fuzzy algorithm is proposed for tuning the POD parameters. This method along with the observability matrix is employed to design a POD controller under sinusoidal and distorted conditions. The impact of harmonics on the effectiveness of the POD controller under distorted conditions is investigated.In the last part, the steady state and dynamic operation of an actual distributed generation system under sinusoidal and distorted conditions are studied. A decoupled harmonic power flow program is employed for steady state analysis. The nonlinear loads are modelled as decoupled harmonic current sources and the nonlinear model of synchronous generator in harmonic domain is used to calculate the injected current harmonics. For the system dynamic stability study, the power system toolbox with the modified model of the synchronous generator is used. The system eigenvalues are calculated and the effectiveness of the installed Power System Stabilisers (PSS) is investigated under sinusoidal and distorted conditions. Simulation results show that in order to guarantee the effectiveness of a PSS in distorted conditions, it is necessary to consider the harmonics in tuning its parameters.
APA, Harvard, Vancouver, ISO, and other styles
34

Akeyo, Oluwaseun M. "ANALYSIS AND SIMULATION OF PHOTOVOLTAIC SYSTEMS INCORPORATING BATTERY ENERGY STORAGE." UKnowledge, 2017. http://uknowledge.uky.edu/ece_etds/107.

Full text
Abstract:
Solar energy is an abundant renewable source, which is expected to play an increasing role in the grid's future infrastructure for distributed generation. The research described in the thesis focuses on the analysis of integrating multi-megawatt photovoltaics (PV) systems with battery energy storage into the existing grid and on the theory supporting the electrical operation of components and systems. The PV system is divided into several sections, each having its own DC-DC converter for maximum power point tracking and a two-level grid connected inverter with different control strategies. The functions of the battery are explored by connecting it to the system in order to prevent possible voltage fluctuations and as a buffer storage in order to eliminate the power mismatch between PV array generation and load demand. Computer models of the system are developed and implemented using the PSCADTM/EMTDCTM software.
APA, Harvard, Vancouver, ISO, and other styles
35

Chowdhury, S. M. Sifat Morshed. "Adaptive Cell Balancing for Modular Battery Management Systems." University of Akron / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=akron1589392523754789.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Ersoi, Moustafa. "Development Of Algorithms For Fault Detection In Distribution Systems." Master's thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/781591/index.pdf.

Full text
Abstract:
In this thesis, the possibility of detection of fault location in the cable distribution systems by using traveling waves due to fault and circuit breaker operations is investigated. Waveforms originated from both actions and fault steady state are separately analyzed. During such switching actions, high frequency variations which are absent in the steady state conditions, take place. In order to simulate high frequency changes properly, system elements are modeled accordingly. In other words, frequency dependent models are introduced, and they are used in Electro-Magnetic Transients Program (EMTP). Since the characteristics of waveforms are different for separately analyzed portions, different fault locating algorithms with their limitations are introduced.
APA, Harvard, Vancouver, ISO, and other styles
37

Le, Brun Petrus Paulus Hendricus. "Optimization of antibiotic inhalation therapy in cystic fibrosis : studies on nebulized tobramycin development of a colistin dry powder inhaler system /." 's-Gravenhage : Pasman, 2001. http://www.gbv.de/dms/bs/toc/330575902.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Brun, Paul le. "Optimization of antibiotic inhalation therapy in cystic fibrosis : studies on nebulized tombramycin; development of a colistin dry powder inhaler system /." [S.l. : s.n.], 2001. http://www.gbv.de/dms/bs/toc/330575902.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Klusáček, Jan. "Řízení toků energie v energetickém systému s více akumulačními jednotkami." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2020. http://www.nusl.cz/ntk/nusl-413128.

Full text
Abstract:
Rozptýlená výroba elektrické energie využívající obnovitelné zdroje, jako je sluneční energie, přispívá ke snížení emisí skleníkových plynů. Z hlediska provozu distribuční soustavy je také výhodné, aby energie byla primárně spotřebována v místě výroby. To je částečně možné přizpůsobením spotřeby, ale především využitím akumulačních systémů. V této práci je představen hybridní systém složený z fotovoltaické elektrárny, akumulátoru elektrické energie a akumulátoru tepelné energie. Výběr a parametry všech částí hybridního systému jsou popsány v práci. Akumulátor elektrické energie je navržen a sestaven z LiNiMnCoO2 článků a řídícího systému zajišťujícího bezpečný provoz. Řídicí systém akumulátoru (BMS) zajistí odpojení baterie, pokud je překročen některý z provozních parametrů baterie. Návrh baterie i sestavy je popsán v práci. Akumulátor tepelné energie sestává z výkonového spínače a nádrže na teplou vodu s topnou patronou pro odporový ohřev vody. Na základě rešerše komerčně používaných zařízení pro regulaci příkonu byly definovány jejich nedostatky a na základě nich bylo navrženo optimální řešení. Řešení spočívá v použití komerčního polovodičového spínacího prvku. Pro tento výkonový spínací prvek byla vytvořena zpětnovazební řídící smyčka s regulátorem výkonu, který byl implementován v prostředí softwaru LabVIEW. V práci je také uveden postup návrhu chladiče spínacího prvku a LCL filtru, který je klíčový pro splnění požadavků elektromagnetické kompatibility. V druhé části práce je popsán návrh nadřazeného řídícího algoritmu, jehož úkolem je řídit výkonové toky v hybridním systému tak, aby byly splněny požadavky definované jak uživatelem, tak i okamžitým stavem akumulátorů. Algoritmus byl implementován v prostředí LabVIEW. Funkčnost celého systému byla ověřena měřením v laboratorních podmínkách. Z výsledků plyne, že nadřazený řídící algoritmus funguje správně. Řídící smyčka tepelného akumulátoru je stabilní a reguluje zátěž na požadovanou hodnotu. Přidanou hodnotou je kratší reakční doba na změnu toku výkonu oproti hybridnímu měniči a díky tomu dochází k minimalizaci přetoků elektrické energie do distribuční sítě. Na práci je možné navázat rozšířením stávajícího algoritmu o možnost řízení/ovládání více typů akumulačních jednotek a generátorů nebo implementováním odlišných strategií řízení.
APA, Harvard, Vancouver, ISO, and other styles
40

Barrami, Fatima. "Low-complexity direct-detection optical OFDM systems for high data rate communications." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAT057/document.

Full text
Abstract:
Une approche pour augmenter le débit par longueur d'onde, est d'utiliser la modulation DMT (Discrete Multitone) à haute efficacité spectrale. Le travail présenté dans cette thèse se focalise principalement sur l'optimisation de la consommation en puissance et le coût de la DMT, qui présentent des obstacles majeurs à son industrialisation. Dans ce cadre, nous avons tout d'abord développé des nouvelles techniques permettant d'exclure la symétrie Hermitienne des modulations DMT, réduisant ainsi considérablement la consommation en puissance et le coût du système. Nous avons ensuite proposé un algorithme de compression linéaire asymétrique permettant de réduire la puissance optique de la modulation DMT avec une complexité modérée. Un nouveau modèle comportemental du VCSEL basé sur la caractéristique quasi-statique a été également développé. Nous avons enfin validé expérimentalement les techniques que nous avons proposées. Plusieurs résultats de simulations et de mesures sont ainsi présentés
A possible approach to maximize the data rate per wavelength, is to employ the high spectral efficiency discrete multitone (DMT) modulation. The work presented in this thesis mainly focuses on optimizing the power consumption and cost of DMT, that are the major obstacles to its market development. Within this context, we have first developed novel techniques permitting to discard the use of Hermitian symmetry in DMT modulations, thus significantly reducing the power consumption and the system cost. We have next proposed an asymmetric linear companding algorithm permitting to reduce the optical power of conventional DCO-OFDM modulation with a moderate complexity. A new VCSEL behavioural model based on the use of the VCSEL quasi-static characteristic was also developed to accurately evaluate the VCSEL impact on DMT modulations. Finally, we have built an experimental system to experimentally validate our proposed techniques. Several simulations and measurement results are then provided
APA, Harvard, Vancouver, ISO, and other styles
41

Strecker, William. "Ecologies of knowledge : narrative ecology in contemporary American fiction." Virtual Press, 2000. http://liblink.bsu.edu/uhtbin/catkey/1177991.

Full text
Abstract:
In the 1980s and 1990s, many scientifically cognizant young novelists turned away from the physics-based tropes of entropy and chaos and chose biological concepts of order, complexity, and self-organization as their dominant metaphors. This dissertation focuses on three novels published between 1991 and 1996 that replace the notion of the encyclopedia as a closed system and model new narrative ecologies grounded in the tenets of the emergent science of complex systems. Thus, Richard Powers's The Gold-Bug Variations (1991) explores the marriage of bottom-up self-organizing systems and top-down natural selection through a narrative lens and cautions us against any worldview which does not grasp life as a complex system; Bob Shacochis's Swimming in the Volcano (1993) illustrates how richly complex global behavior emerges from the local interaction of a large number of independent agents; and, David Foster Wallace's Infinite Jest (1996) enacts a collaborative narrative of distributed causality to investigate reciprocal relationships between the individual and the multiple systems in which he is embedded. Unlike many other contemporary authors, the new encyclopedists do not shun the abundance of information in postmodern culture. Instead, as I demonstrate here, the intricate webs of their complex ecologies emerge as narrative circulates through diverse informational networks. Ecologies of Knowledge argues that these texts inaugurate a new naturalism, demanding a reconciliation between humans and the natural world and advocating an increased understanding of life's interdependent patterns and particularities. Grounded in such an awareness of ecological complexity, these large and demanding books are our survival guides for the twenty-first century.
Department of English
APA, Harvard, Vancouver, ISO, and other styles
42

Wu, Ching-Min, and 吳靜旻. "Battery pack power monitoring system based on CAN Bus." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/r433m8.

Full text
Abstract:
碩士
國立彰化師範大學
車輛科技研究所
106
This research presented battery pack power monitoring system based on CAN Bus, which delivered battery data to power monitoring system with CAN BUS. Controller Area Network can simplify the traditional complex lines with simple series interface, and the feature of the interface can easily construct the connection of every node on the bus bar. Controller Area Network has reliable error detection and error handling. It can reduce the quantity of wire and the time spent on maintenance and checking. Controller Area Network can be used in vehicles and battery system in the factory. The research designed the battery pack power monitoring system with microcontroller NuMicroTM NUC140, which takes the role of battery pack power monitoring and the master of control system. Using Visual C# for designing the interface of battery pack power monitoring system to monitor all the status of battery pack on the CAN BUS.
APA, Harvard, Vancouver, ISO, and other styles
43

Chia-LingFan and 范嘉玲. "CAN Bus Based Control for Battery Power Module System." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/52y86b.

Full text
Abstract:
碩士
國立成功大學
電機工程學系
107
The purpose of this thesis is to construct the battery power module (BPM) based on the controller area network bus (CAN bus). The faulty BPM is isolated through the fault isolation control, so that other modules can still operate properly. The battery and the bidirectional DC-DC converter composed the BPM. The bidirectional converter is used to control each module to stabilize the terminal voltage of the BPM. Master transmits the charging and discharging control signal to the BPM via the CAN bus. If the BPM faults, the isolation switch can isolate the faulty module and notify other BPMs through the CAN bus interface to change the voltage and current of the module, so that the system can continue to charge or discharge. In this study, the switching of the bidirectional converter power switch is controlled by adjusting the duty cycle of the pulse signal to control the output voltage, charging voltage and charging current. The CAN bus is used as the communication interface between the monitoring terminal and each BPM. Finally, the battery power module system based on the CAN bus is constructed to verify the feasibility of BPM charging/discharging control and fault isolation control.
APA, Harvard, Vancouver, ISO, and other styles
44

Saha, Barnika, and Suraj Kumar Rath. "Economic Load Dispatch for IEEE 30-Bus System Using PSO." Thesis, 2015. http://ethesis.nitrkl.ac.in/7006/1/Economic__Saha_2015.pdf.

Full text
Abstract:
ELD or economic load dispatch is a crucial aspect in any practical power network. Economic load dispatch is the technique whereby the active power outputs are allocated to generator units in the most cost-effective way in compliance with all constraints of the network. The traditional methods for solving ELD include Lambda-Iterative Technique, Newton-Raphson Method, Gradient method, etc. All these traditional algorithms need the incremental fuel cost curves of the generators to be increasing monotonically or piece-wise linear. But in practice the input-output characteristics of a generator are highly non-linear leading to a challenging non-convex optimisation problem. Methods like artificial intelligence, DP (dynamic programming), GA (genetic algorithms), and PSO (particle swarm optimisation) solve non-convex optimisation problems in an efficient manner and obtain a fast and near global and optimum solution. In this project ELD problem has been solved using Lambda-Iterative technique, GA (Genetic Algorithms) and PSO (Particle Swarm Optimisation) and the results have been compared. All the analyses have been made in MATLAB environment.
APA, Harvard, Vancouver, ISO, and other styles
45

Lin, Chen-Ju, and 林承儒. "Simulation and Experiment of Power Distribution System in Electric Bus." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/cx796j.

Full text
Abstract:
碩士
國立交通大學
機械工程系所
103
The purpose of this thesis is to design a power distribution system for electric buses in mass transportation. The power distribution system provides 512 volts to the air compressor, air conditioning, power steering, main motor and other loads by multi-battery modules in parallel way. The parallel use of multi-battery modules can provide loads with demand of high reliability and high current output. For lithium iron phosphate battery-powered electric vehicles, this study uses four battery modules in parallel. At first, using relays and pre-charge control board transmit voltage to the load. In order to charge battery when breaking, we use power semiconductor (IGBT). At last, according to car driving, we control relays and IGBT whether turned on or turned off. It can achieve battery discharges when driving and battery charges when breaking. This study uses a software Simulink to simulate IGBT switching state with a snubber circuit that indeed reduces surge voltages. Computer simulation is also carried out for power distribution with bidirectional DC-DC converter to yield voltage boost or drop. This study uses 8051 breadboards, according to three car-driving conditions, to control four relays and four IGBTs in experiments.
APA, Harvard, Vancouver, ISO, and other styles
46

林格致. "The data transmission of solar power system by CAN BUS." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/y8ru62.

Full text
Abstract:
碩士
國立彰化師範大學
車輛科技研究所
105
In this study, the vehicle's transmission protocol CAN apply to monitor the solar cell system. By receiving the data (voltage, current) of the solar panel, each piece of solar panel is configured as a node of CAN bus. Solar panel data (voltage, current) converted to digital signals by the embedded development board built-in ADC. The data of voltage, current, etc. transmit to the monitoring host by CAN bus to avoid noise. The monitoring information is displayed on the LCD of the host node, including voltage, current, power, energy accumulation, and other data. The main purpose is to expect the advantages of CAN to play on the solar monitoring system, CAN have a high degree of real-time, multi-node, a wiring is simple, data validation mechanism, to enhance the reliability of the system.
APA, Harvard, Vancouver, ISO, and other styles
47

Bonin, Grant. "Power System Design, Analysis, and Power Electronics Implementation on Generic Nanosatellite Bus (GNB) Spacecraft." Thesis, 2009. http://hdl.handle.net/1807/18940.

Full text
Abstract:
The development of a multi-mission small spacecraft power system is described. This system has been designed for the University of Toronto Space Flight Laboratory Generic Nanosatellite Bus (GNB), an approximately 20cm cubical spacecraft with no deployed solar arrays. The GNB is inherently power-generation limited, and consequently, all available power must be utilized with maximum efficiency. This efficiency is achieved using an unconventional parallel-regulated architecture with Peak Power Tracking (PPT) functionality, and is shown to be the PPT design of highest efficiency for spacecraft of this class. In support of this design, a novel spacecraft power simulation suite has been developed, enabling parametric satellite power analysis with high fidelity. Finally, a unique variation on peak power tracking---referred to as peak current tracking---is described. This method is shown to reduce battery depth-of-discharge by as much as 20% over baseline architectures, and furthermore exhibits beneficial emergent behaviour for battery charge management.
APA, Harvard, Vancouver, ISO, and other styles
48

LIN, Chien-Min, and 林千民. "Direct-current Bus System Transient Response and Analysis of the Thermal Power Plant in Bus Transfer." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/09313885617981366154.

Full text
Abstract:
碩士
逢甲大學
資訊電機工程碩士在職專班
104
This thesis investigates the impact and analysis on the downstream DC power system of the thermal power plant when the medium-voltage auxiliary power system failure, the medium-voltage auxiliary power system performs bus to transfer the power system to the standby power system. It may cause change in the voltage and current of the downstream DC power system when upstream medium-low voltage auxiliary power system performs bus transfer. This change may cause the circuit breaker trips and emergency DC power failure. Further affects operation stability and safety of the plant units. This research intends to use the ATPDraw creates auxiliary power system equivalent circuits and simulations of the an actual thermal power plant. The simulation is performed in the medium-voltage auxiliary power system transfer, the transient response of the voltage and current and analysis in DC power system. It intends in the research to compare with the actual waveform of the measurement of the science in order to verify the precision of the plan auxiliary power system equivalent circuits model created. It investigates the change of the voltage and current and protection coordination of the overcurrent protection for DC power system to ensure the design of the DC power supply system is really in line with the actual operating conditions of the system.
APA, Harvard, Vancouver, ISO, and other styles
49

Ajit, Kumar *. "Design Of Robust Power System Damping Controllers For Interconnected Power Systems." Thesis, 2010. https://etd.iisc.ac.in/handle/2005/1653.

Full text
Abstract:
Small signal oscillation has been always a major concern in the operation of power systems. In a generator, the electromechanical coupling between the rotor and the rest of the system causes it to behave in a manner similar to a spring mass damper system, which exhibits an oscillatory behaviour around the equilibrium state, following any disturbance, such as sudden change in loads, fluctuations in the output of turbine and faults etc. The use of fast acting high gain AVRs and evolution of large interconnected power systems with transfer of bulk power across weak transmission links have further aggravated the problem of these low frequency oscillations. Small oscillations in the range of about 0.1Hz to 3.5Hz can persist for long periods, limiting the power transfer capability of the transmission lines. Power System Stabilizers (PSS’s) were developed as auxiliary controllers on the generators excitation system to produce additional damping by modulating the generator excitation voltage. Designing effective PSS for all operating conditions specially in large interconnected power systems still remains a difficult and challenging task. The conventionally designed Power System Stabilizer (CPSS) is the most cost-effective electromechanical damping controller till date. However, continual changes in the operating condition and network parameters in large systems result in corresponding large changes in system dynamics. This constantly changing nature of power system makes the design of CPSS a difficult task. The design and tuning of PSS for robust operation is a laborious process. The existing PSS design techniques require considerable expertise, the complete system information and extensive eigenvalue calculations which increases the computational burden as the system size increases. This thesis proposes a method for designing robust power system damping controllers that ensures a minimum robustness under model uncertainties. The minimum performance required for the PSS is set a priori and accomplished over a range of operating conditions. A generalized robust controller design methodology has been first implemented on a Single Machine Infinite Bus (SMIB) power system model. The robust controller places the closed loop rotor modes of the system to the desire location while keeping the electrical modes intact. Unlike conventional lead/lag PSS design, the proposed PSS design is based on pole assignment technique which takes into account of various model uncertainties. For the proposed stabilizer design in a multi-machine systems a new decentralized method has been used which requires system data only upto secondary bus of the unit transformer in a generating station. The proposed robust controller design based on modified Nevanlinna-Pick theory has been designed and tested extensively on SMIB and multi-machine systems to establish the efficacy of the controller in damping small signal oscillations. The thesis is organized in four chapters as follows. The first chapter discusses the basic concepts related to the rotor angle stability in power system. The conventional and other methods of countering this instability by power system stabilizers have been described. The relative merits of the various stabilization techniques have been discussed. The scope of present work, i.e design of decentralized robust power system controllers has been defined. In second chapter a modified robust power system stabilizer for SMIB system is developed. It has been shown that under specific conditions the modified Nevanlinna-Pick theory can also be applied for designing damping controllers in system with lightly damped rotor modes. Third chapter proposes a decentralized approach based on modified Nevanlinna-Pick theory for designing a power system stabilizer for interconnected power systems. The performance of the controller which is not based on external system information has been investigated on three widely used multi-machine test systems to established its efficacy in damping out low frequency oscillations. The fourth chapter gives a brief summary of the work done and also includes a section on the scope of future work relating to design of power system stabilizers.
APA, Harvard, Vancouver, ISO, and other styles
50

Ajit, Kumar *. "Design Of Robust Power System Damping Controllers For Interconnected Power Systems." Thesis, 2010. http://etd.iisc.ernet.in/handle/2005/1653.

Full text
Abstract:
Small signal oscillation has been always a major concern in the operation of power systems. In a generator, the electromechanical coupling between the rotor and the rest of the system causes it to behave in a manner similar to a spring mass damper system, which exhibits an oscillatory behaviour around the equilibrium state, following any disturbance, such as sudden change in loads, fluctuations in the output of turbine and faults etc. The use of fast acting high gain AVRs and evolution of large interconnected power systems with transfer of bulk power across weak transmission links have further aggravated the problem of these low frequency oscillations. Small oscillations in the range of about 0.1Hz to 3.5Hz can persist for long periods, limiting the power transfer capability of the transmission lines. Power System Stabilizers (PSS’s) were developed as auxiliary controllers on the generators excitation system to produce additional damping by modulating the generator excitation voltage. Designing effective PSS for all operating conditions specially in large interconnected power systems still remains a difficult and challenging task. The conventionally designed Power System Stabilizer (CPSS) is the most cost-effective electromechanical damping controller till date. However, continual changes in the operating condition and network parameters in large systems result in corresponding large changes in system dynamics. This constantly changing nature of power system makes the design of CPSS a difficult task. The design and tuning of PSS for robust operation is a laborious process. The existing PSS design techniques require considerable expertise, the complete system information and extensive eigenvalue calculations which increases the computational burden as the system size increases. This thesis proposes a method for designing robust power system damping controllers that ensures a minimum robustness under model uncertainties. The minimum performance required for the PSS is set a priori and accomplished over a range of operating conditions. A generalized robust controller design methodology has been first implemented on a Single Machine Infinite Bus (SMIB) power system model. The robust controller places the closed loop rotor modes of the system to the desire location while keeping the electrical modes intact. Unlike conventional lead/lag PSS design, the proposed PSS design is based on pole assignment technique which takes into account of various model uncertainties. For the proposed stabilizer design in a multi-machine systems a new decentralized method has been used which requires system data only upto secondary bus of the unit transformer in a generating station. The proposed robust controller design based on modified Nevanlinna-Pick theory has been designed and tested extensively on SMIB and multi-machine systems to establish the efficacy of the controller in damping small signal oscillations. The thesis is organized in four chapters as follows. The first chapter discusses the basic concepts related to the rotor angle stability in power system. The conventional and other methods of countering this instability by power system stabilizers have been described. The relative merits of the various stabilization techniques have been discussed. The scope of present work, i.e design of decentralized robust power system controllers has been defined. In second chapter a modified robust power system stabilizer for SMIB system is developed. It has been shown that under specific conditions the modified Nevanlinna-Pick theory can also be applied for designing damping controllers in system with lightly damped rotor modes. Third chapter proposes a decentralized approach based on modified Nevanlinna-Pick theory for designing a power system stabilizer for interconnected power systems. The performance of the controller which is not based on external system information has been investigated on three widely used multi-machine test systems to established its efficacy in damping out low frequency oscillations. The fourth chapter gives a brief summary of the work done and also includes a section on the scope of future work relating to design of power system stabilizers.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography