Dissertations / Theses on the topic 'Burning velocity'

To see the other types of publications on this topic, follow the link: Burning velocity.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Burning velocity.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Saeed, Khizer. "Laminar burning velocity measurements." Thesis, University of Oxford, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270733.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yamashita, H., N. Hayashi, M. Ozeki, and K. Yamamoto. "Burning velocity and OH concentration in premixed combustion." Elsevier, 2009. http://hdl.handle.net/2237/20032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yang, Bo. "Laminar burning velocity of liquefied petroleum gas mixtures." Thesis, Loughborough University, 2006. https://dspace.lboro.ac.uk/2134/35958.

Full text
Abstract:
This thesis reports experimental and theoretical studies of the laminar burning velocity of liquefied petroleum gas (LPG) measured using the constant volume bomb method. The test rig designed at Loughborough University was a rigid and spherical chamber with central ignition. The LPG gas used in this study is a mixture of propane and n-butane with volume percentage of n-butane ranging from 0 to 100. The laminar burning velocities of the LPG/air mixtures have been determined over a range of equivalence ratios (0.7 to 1.4), unburnt gas pressures and temperatures (0.5 to 37 bar and 293 to 530 K respectively). With the measured pressure/time history in the constant volume combustion chamber, a new combustion model, which was developed based on a commonly used two-zone combustion model, was used to determine the laminar burning velocity. To obtain a more accurate value of the laminar burning velocity, the assumptions in the two-zone combustion model were analysed, and two effects were considered in the new combustion model, i.e. the effect of flame thickness and the effect of temperature gradient in the burnt gas zone.
APA, Harvard, Vancouver, ISO, and other styles
4

Taylor, Simon Crispin. "Burning velocity and the influence of flame stretch." Thesis, University of Leeds, 1991. http://etheses.whiterose.ac.uk/2099/.

Full text
Abstract:
A new technique is presented for determining burning velocities and stretch effects in laminar flames, and applied to a range of fuel/air mixtures. The speeds of expanding spherical flames, measured by high-speed schlieren cine-photography, are shown to vary with flame radius. A simple phenomenological model has been developed to analyse the data and obtain the one-dimensional flame speed by extrapolation to infinite radius. The validity of the simple model has been tested by using it to analyse the results of detailed simulations of expanding spherical flames. The true one-dimensional flame speeds in this case are known from planar flame modelling using the same kinetic scheme. The simple model predicted flame speeds within 2% of the true values for hydrogen/air mixtures over most of the stoichiometric range. This demonstrates that the extrapolation procedure is sound and will produce reliable results when applied to experimental data. Since the flame speeds derived from experiments are one-dimensional values, multiplying them by the density ratio gives one-dimensional burning velocities (s,'). Maximum burning velocities of hydrogen, methane, ethane, propane and ethylene mixtures with air were 2.85 ms-', 0.37 ms-', 0.41 ms-', 0.39 ms-' and 0.66 ms-' respectively. These are considerably smaller than most burner-derived values. The discrepancies can be explained by flow divergence and stretch effects perturbing burner measurements. The rate at which the measured flame speed approaches its limiting value depends on flame thickness and flame stretch. By subtracting the flame thickness term, the influence of flame stretch, expressed as the Markstein length, can be derived. Again values are given across the whole stoichiometric range of all fuels listed above, and form the most complete set of Markstein lengths reported to date. The Markstein lengths are negative in lean hydrogen and methane and in rich ethane and propane mixtures: this means that stretch increases the burning rate. They are positive in all other mixtures, showing that stretch decreases the burning rate. The results are in line with predictions based on Lewis number considerations. An alternative method of deriving one-dimensional burning velocities and Markstein lengths has been investigated. Burning velocities were measured at different stretch rates in flames in stagnation-point flow. Particle tracking was used to derive burning velocities referred to the hot side of the flame from the upstream values. The two burning velocities extrapolated to different one-dimensional values, both of which differed slightly from the expanding flame results. The suggested reason is that the upstream velocity gradient is not an accurate measure of the stretch experienced by the flame. Markstein lengths were consistent with those from the expanding flame method but the uncertainties were much larger. The method in its present form is therefore useful qualitatively but not quantitatively.
APA, Harvard, Vancouver, ISO, and other styles
5

Vaccaro, Danilo. "Experimental determination of burning velocity in metal dust explosions." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.

Find full text
Abstract:
The modeling of metal dust explosion phenomenon is important in order to safeguard industries from potential accidents. A key parameter of these models is the burning velocity, which represents the consumption rate of the reactants by the flame front, during the combustion process. This work is focused on the experimental determination of aluminium burning velocity, through an alternative method, called "Direct method". The study of the methods used and the results obtained is preceded by a general analysis on dust explosion phenomenon, flame propagation phenomenon, characteristics of the metals combustion process and standard methods for determining the burning velocity. The “Direct method” requires a flame propagating through a tube recorded by high-speed cameras. Thus, the flame propagation test is carried out inside a vertical prototype made of glass. The study considers two optical technique: the direct visualization of the light emitted by the flame and the Particle Image Velocimetry (PIV) technique. These techniques were used simultaneously and allow the determination of two velocities: the flame propagation velocity and the flow velocity of the unburnt mixture. Since the burning velocity is defined by these two quantities, its direct determination is done by substracting the flow velocity of the fresh mixture from the flame propagation velocity. The results obtained by this direct determination, are approximated by a linear curve and different non-linear curves, which show a fluctuating behaviour of burning velocity. Furthermore, the burning velocity is strongly affected by turbulence. Turbulence intensity can be evaluated from PIV technique data. A comparison between burning velocity and turbulence intensity highlighted that both have a similar trend.
APA, Harvard, Vancouver, ISO, and other styles
6

Kolbe, Massimiliano. "Laminar burning velocity measurements of stabilized aluminum dust flames." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ64068.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ohnishi, Masahiro, Shinji Isii, and Kazuhiro Yamamoto. "Local flame structure and turbulent burning velocity by joint PLIF imaging." Elsevier, 2011. http://hdl.handle.net/2237/20034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Savarianandam, Vivek Ross. "Burning velocity of premixed turbulent flames in the weakly wrinkled regime." Thesis, Queen Mary, University of London, 2005. http://qmro.qmul.ac.uk/xmlui/handle/123456789/1867.

Full text
Abstract:
Turbulent burning velocities have been measured for methane/air and ethylene/air planar flames stabilised in a wide-angled conical diffuser where the flow is decelerated axially. Novel instrumentation, involving a rotating drum device, has been developed to measure the instantaneous flame height, by utilising the UV emission from the excited OH radical in the flame. Six horizontal slits in the drum allow the UV radiation from the flame to fall periodically on the photodiode. Secondary flow in a high-speed wall jet is used to generate a uniform primary flow across the diffuser. The cold flow parameters are measured at different axial and radial positions inside the diffuser using a hot wire anemometer. The effect of imposed acoustic velocity oscillations on the turbulent burning velocity is also investigated. Speakers are placed upstream to force the oscillations. The instantaneous flame lift-off height, with and without external forcing, is measured using the rotating drum. A high-speed camera is also used to capture the flame images, with and without external forcing. For the non-excited condition, the turbulent burning velocity is assumed equal to the mean cold flow velocity at the height corresponding to the average flame lift-off measured using the drum. This measured turbulent burning velocity do not agree with correlations from the literature for u'/Sl <1. In this regime flames are affected by gas expansion and the growth of the Darrieus-Landau instability. For the excited condition, the flame lift-height at each phase angle in a cycle is tracked using the rotating drum. The ensemble averaged flame lift-off height shows sinusoidal movement similar to the imposed acoustic velocity, but lags the acoustic velocity by a certain phase, which depends upon the excitation frequency. The mean turbulent burning velocities are suppressed but the magnitude of the transfer function is non-zero at low Strouhal number and changes sharply at high Strouhal number.
APA, Harvard, Vancouver, ISO, and other styles
9

Lucianelli, Dario. "Numerical and experimental analysys of the laminar burning velocity of hydrocarbons mixtures." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.

Find full text
Abstract:
This thesis work has the aim to investigate on burning velocities of premixed laminar flames. Laminar burning velocity is a fundamental parameter describing how a flat flame propagates into quiescent unburned mixtures ahead of the flame at a specific pressure and temperature. Various gaseous hydrocarbon mixtures have been examined: methane (with amounts of ethylene, propylene and hydrogen), ethylene, propylene and propane (with amounts of hydrogen). In all the cases atmospheric air has been considered as oxidizing agent. All the premixed flames are at the temperature of 298 K and atmospheric pressure; the laminar burning velocity has been reported as a function of the equivalence ratio. Deriving the compositions of the fuel mixtures from the various equivalence ratios, a numerical method has been used first; the software Cantera, through a chosen kinetic model (LLNL) and a compilation program (Python), has given the trends of the velocities for all the mixtures. After this phase, an experimental campaign has been programmed. Using the heat flux method, all the necessary experimental data have been obtained. The experimental data have been elaborated and compared with other experimental data from literature, numerical data and, for some fuel mixtures, data derived from mixing rules. Through this analysis it has been possible to evaluate the detailed kinetic model used before and the validity of the studied mixing rules.
APA, Harvard, Vancouver, ISO, and other styles
10

Clarke, Andrew. "Measurement of laminar burning velocity of air/fuel/diluent mixtures in zero gravity." Thesis, University of Oxford, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259780.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Rockwell, Scott. "Influence of Coal Dust on Premixed Turbulent Methane-Air Flames." Digital WPI, 2012. https://digitalcommons.wpi.edu/etd-dissertations/343.

Full text
Abstract:
"The hazard associated with dust deflagrations has increased over the last decade industries that manufacture, transport, process, or use combustible dusts. Identification of the controlling parameters of dust deflagration mechanisms is crucial to our understanding of the problem. The objective of this study is to develop an experimental platform, called the Hybrid Flame Analyzer (HFA), capable of measuring the laminar and turbulent burning velocity of gas, dust, and hybrid (gas and dust) air premixed flames as a function of properties specific to the reactants such as dust-particle size and concentration. In this work the HFA is used to analyze a particle-gas-air premixed system composed of coal dust particles (75-90 µm and 106-120 µm) in a premixed CH4-air ( = 0.8, 1.0 and 1.2) flame. This work ultimately aims to improve the knowledge on fundamental aspects of dust flames which is essential for the development of mathematical models. This study is the first of its kind where multiple different parameters that govern flame propagation (initial particle radius, particle concentration, gas phase equivalence ratio, turbulent intensity, and integral length scale) are systematically analyzed in a spatially uniform cloud of volatile particles forming a stationary flame. The experiments show that the turbulent burning velocity is more than two-times larger than the laminar counter-part for each and every case studied. It is observed that smaller particles and larger concentrations (> 50 g/m3) tend to enhance the turbulent burning velocity significantly compared to larger particle sizes and lower concentration ranges. The experimental data is used to develop a correlation similar to turbulent gas flames to facilitate modeling of the complex behavior. "
APA, Harvard, Vancouver, ISO, and other styles
12

Hung, Jocelyn. "Effects of propane or ethane additives on laminar burning velocity of methane-air mixtures." Thesis, University of British Columbia, 1986. http://hdl.handle.net/2429/26297.

Full text
Abstract:
Laminar burning velocities of stoichiometric methane-air, ethane-air, propane-air as well as methane with propane and ethane additives have been determined from pressure-time records during combustion in a constant-volume spherical combustion bomb with central ignition. Additives up to 20 volume percent were used. Initial pressure ranged from 1 to 8 atm. Results show that these additives increase the burning velocity of methane-air by an amount depending on the concentration and initial pressure. Ethane appeared to be more effective than propane for the same volume percent. Two analytical methods were used to deduce the laminar burning velocity: Metghalchi and Keck (M and K) model and linear model. The M and K model is a procedure to satisfy the conservation of mass and energy for a mixture consisting of two homogeneous regions, burnt and unburnt, separated by a flame of negligible thickness. The linear model, from the assumption that the fractional pressure rise is linearly proportional to the fractional mass burnt, calculates the burning velocity based on the mass conservation equation. Results from these two methods agree to within 5%. Dissociation reactions, when neglected, were found to give values of burning velocities that are 10% too low. Ionization probes were used to detect flame arrival times at specific radial locations. Experimental and calculated results agree to within 2%.
Applied Science, Faculty of
Mechanical Engineering, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
13

Xie, Yanxuan. "Study of Interaction of Entrained Coal Dust Particles in Lean Methane-Air Premixed Flames." Digital WPI, 2011. https://digitalcommons.wpi.edu/etd-theses/1065.

Full text
Abstract:
"This study investigates the interaction of micron- sized coal particles entrained into lean methane €“ air premixed flames. In a typical axisymmetric burner, coal particles are made to naturally entrain into a stream of the premixed reactants using an orifice plate setup. Pittsburgh seam coal dust, with three particle sizes in the range of 0 to 25 µm, 53 to 63 µm, and 75 to 90 µm is used. The effects of different coal dust concentrations (10 €“ 300 g/m3) at three lean equivalence ratios, ϕ (methane-air) of 0.75, 0.80 and 0.85 on the laminar burning velocity are determined experimentally. The laminar burning velocity of the coal dust-methane-air mixture is determined by taking a shadowgraph of the resulting flame and using the cone-angle method. The results show that the addition of coal dust in methane-air premixed flame reduces the laminar burning velocity at particle size of 53 to 63 µm and 75 to 90 µm. However, burning velocity promotion is observed for 0 to 25 µm particles at ϕ = 0.80. Two competing effects are assumed involved in the process. The first is burning velocity promotion effect that the released volatile increases the gaseous mixture equivalence ratio and thus the burning velocity. The second is the heat sink effect of the coal particles to reduce the flame temperature and accordingly the burning velocity. A mathematical model is developed based on such assumption and it can successfully predict the change of laminar burning velocity at various dust concentration. Furthermore, the implication of this study to coal mine safety is discussed."
APA, Harvard, Vancouver, ISO, and other styles
14

YAMASHITA, Hiroshi, Naoki HAYASHI, Tsutomu ISAYAMA, Kazuhiro YAMAMOTO, 博史 山下, 直樹 林, 勉. 伊佐山, and 和弘 山本. "対向流予混合火炎中のOH濃度と燃焼速度." 日本燃焼学会, 2007. http://hdl.handle.net/2237/19735.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Hinton, Nathan Ian David. "Measuring laminar burning velocities using constant volume combustion vessel techniques." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:5b641b04-8040-4d49-a7e8-aae0b0ffc8b5.

Full text
Abstract:
The laminar burning velocity is an important fundamental property of a fuel-air mixture at given conditions of temperature and pressure. Knowledge of burning velocities is required as an input for combustion models, including engine simulations, and the validation of chemical kinetic mechanisms. It is also important to understand the effect of stretch upon laminar flames, to correct for stretch and determine true (unstretched) laminar burning velocities, but also for modelling combustion where stretch rates are high, such as turbulent combustion models. A constant volume combustion vessel has been used in this work to determine burning velocities using two methods: a) flame speed measurements during the constant pressure period, and b) analysis of the pressure rise data. Consistency between these two techniques has been demonstrated for the first time. Flame front imaging and linear extrapolation of flame speed has been used to determine unstretched flame speeds at constant pressure and burned gas Markstein lengths. Measurement of the pressure rise during constant volume combustion has been used along with a numerical multi-zone combustion model to determine burning velocities for elevated temperatures and pressures as the unburned gas ahead of the spherically expanding flame front is compressed isentropically. This burning velocity data is correlated using a 14 term correlation to account for the effects of equivalence ratio, temperature, pressure and fraction of diluents. This correlation has been modified from an existing 12 term correlation to more accurately represent the dependence of burning velocity upon temperature and pressure. A number of fuels have been tested in the combustion vessel. Biogas (mixtures of CH4 and CO2) has been tested for a range of equivalence ratios (0.7–1.4), with initial temperatures of 298, 380 and 450 K, initial pressures of 1, 2 and 4 bar and CO2 fractions of up to 40% by mole. Hydrous ethanol has been tested at the same conditions (apart from 298 K due to the need to vaporise the ethanol), and for fractions of water up to 40% by volume. Binary, ternary and quaternary blends of toluene, n-heptane, ethanol and iso-octane (THEO) have been tested for stoichiometric mixtures only, at 380 and 450 K, and 1, 2 and 4 bar, to represent surrogate gasoline blended with ethanol. For all fuels, correlation coefficients have been obtained to represent the burning velocities over wide ranging conditions. Common trends are seen, such as the reduction in burning velocity with pressure and increase with temperature. In the case of biogas, increasing CO2 results in a decrease in burning velocity, a shift in peak burning velocity towards stoichiometric, a decrease in burned gas Markstein length and a delayed onset of cellularity. For hydrous ethanol the reduction in burning velocity as H2O content is increased is more noticeably non-linear, and whilst the onset of cellularity is delayed, the effect on Markstein length is minor. Chemical kinetic simulations are performed to replicate the conditions for biogas mixtures using the GRI 3.0 mechanism and the FlameMaster package. For hydrous ethanol, simulations were performed by Carsten Olm at Eötvös Loránd University, using the OpenSMOKE 1D premixed flame solver. In both cases, good agreement with experimental results is seen. Tests have also been performed using a single cylinder optical engine to compare the results of the hydrous ethanol tests with early burn combustion, and a good comparison is seen. Results from tests on THEO fuels are compared with mixing rules developed in the literature to enable burning velocities of blends to be determined from knowledge of that of the pure components alone. A variety of rules are compared, and it is found that in most cases, the best approximation is found by using the rule in which the burning velocity of the blend is represented by weighting by the energy fraction of the individual components.
APA, Harvard, Vancouver, ISO, and other styles
16

YAMAMOTO, Kazuhiro, Naoki HAYASHI, Hiroshi YAMASHITA, Kazuki NONOMURA, 和弘 山本, 直樹 林, 博史 山下, and 一樹 野々村. "非定常対向流予混合火炎の火炎構造に与える流入速度変動の影響に関する数値解析." 一般社団法人 日本機械学会, 2008. http://hdl.handle.net/2237/19801.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Teng, Fei. "The effect of hydrogen concentration on the flame stability and laminar burning velocity of hydrogen-hydrocarbon-carbon dioxide mixtures." Thesis, University of Sheffield, 2014. http://etheses.whiterose.ac.uk/8903/.

Full text
Abstract:
Syngas as a renewable energy source can be produced from Biomass gasification. Generally, syngas consists of H2, CO2, CO and C1-C4 hydrocarbons. The gaseous mixtures are also produced from many other chemical processes, such as coal gasification and methane reforming, as products or by-products. Also there is increasing interesting in the utilisation of Hydrogen-Hydrocarbon gaseous fuels as alternative energy sources instead of conventional fossil fuels. The gaseous mixtures can be used in burners and gas turbines involved in combustion processes. The utilisation of such gaseous mixture is able to reduce CO2 emission and fossil fuels consumption in combustion processes. However, the fluctuation in H2 concentration causes difficulties to predict the laminar burring velocity and flame stability characteristics of the mixtures. These issues lead to the challenges on combustion performance and safe handling. The objectives of this study are to experimentally determine the effect of H2 and CO2 addition on the flame lift-off and blow-out characteristics, and also numerically modelling the laminar burning velocity of the Hydrogen-Hydrocarbon gaseous mixtures to determine the effect of H2 concentration on the laminar burning velocity of the mixtures.
APA, Harvard, Vancouver, ISO, and other styles
18

Whiston, Philip John. "Measurement of mass fraction burnt and turbulent burning velocity in a four cylinder spark ignition engine fuelled with simulated biogas." Thesis, Staffordshire University, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.293557.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Endouard, Charles. "Etude expérimentale de la dynamique des flammes de prémélange isooctane/air en expansion laminaire et turbulente fortement diluées." Thesis, Orléans, 2016. http://www.theses.fr/2016ORLE2043/document.

Full text
Abstract:
Depuis plusieurs années, les constructeurs automobiles suivent la voie du « downsizing » pour le développement des moteurs à allumage commandé. Ce procédé basé sur la réduction des cylindrées moteur combinée à la suralimentation a déjà fait ses preuves quant à son intérêt dans l’augmentation du rendement et la réduction des émissions polluantes des moteurs à essence. Les nouvelles conditions thermodynamiques, de turbulence et de dilution de ces moteurs engendrant de nouvelles possibilités de dilution dans les mélanges air/carburant, elles amènent également de nouvelles problématiques quant aux combustions anormales observées et l’apparition d’importantes variabilités cycliques. Ces travaux de thèse s’insèrent dans l’objectif de compréhension du comportement des flammes de prémélange d’isooctane/air en expansion dans des conditions représentatives d’un moteur « downsizé ». Leur étude a dans un premier temps été réalisée dans des conditions laminaires afin d’extraire les vitesses de flammes et longueurs de Markstein associées aux différents mélanges réactifs, et notamment sous forte dilution. Des corrélations ont alors été développées pour répondre aux besoins des modèles de simulation. Un nouveau dispositif de diagnostic optique a ensuite été employé pour améliorer la visualisation des flammes turbulentes en expansion. Une corrélation de coefficient correctif est ici développée pour remédier à la surestimation de vitesse engendrée par une visualisation Schlieren de ces flammes turbulentes. Une étude approfondie de l’influence des conditions thermodynamiques initiales, de la turbulence, ainsi que des caractéristiques diffusives du mélange air/carburant a par ailleurs été conduite afin d’isoler l’effet de chacun de ces paramètres sur le développement et la propagation de la flamme turbulente. Enfin l’effet d’une évolution simultanée des conditions thermodynamiques initiales similaire à celle d’une compression moteur a été étudié pour mieux appréhender les changements de comportement des flammes turbulentes dans des conditions plus représentatives du moteur à allumage commandé
For several years, “downsizing” is used by car manufacturers to develop new spark ignition engines. This method based on the reduction of engine size combined with an increase of intake pressure (turbocharger) is well known to reduce pollutant emissions and increase efficiency. New thermodynamic, turbulent and dilution conditions could be used with these new engines but they can bring new issues like unusual combustion or cyclic variability. This thesis took place to improve the understanding of premixed expanding isooctane/air flames behavior under downsized engine-like conditions. As a first step, this work is conducted under laminar conditions to extract laminar burning velocities and Markstein lengths of the different mixtures, especially under high dilution. New correlations are then developed to answer the needs of numerical models. A new optical dispositive is then used to improve the visualization of turbulent expanding flames. A corrective coefficient correlation is proposed to avoid the overestimated values of turbulent burning speed generated by Schlieren visualization with such turbulent flames. A deep survey of starting conditions (temperature, pressure, turbulence, dissipative characteristics of air/fuel mixtures) influence is done to investigate the effect of each parameters on the development and the propagation of the turbulent flame. Finally, the effect of a coupled rise of initial temperature and pressure, similar to an engine compression, is studied to better understand the changes of flame behavior under more realistic spark-ignition engine conditions
APA, Harvard, Vancouver, ISO, and other styles
20

Lami, Mattia. "Adapting the Heat Flux Method for Metal Fuels." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.

Find full text
Abstract:
Il seguente progetto di tesi, condotto all’università di Eindhoven (grazie al progetto Erasmus), riguarda un primo approccio all’adattamento dell’Heat flux method, che dà la possibilità di misurare la velocità di propagazione del fronte di fiamma di un combustibile gassoso, ad essere utilizzato con polveri di metallo e non solo, così da avere la possibilità di misurare accuratamente la velocità di propagazione del fronte di fiamma di tali polveri. Le polveri di metallo possono essere combuste con aria in modo tale da produrre calore utilizzabile in svariate applicazioni, senza generazione di CO2 come prodotto della combustione. Le polveri di metallo hanno un’alta densità di energia. Un grande vantaggio delle polveri di metallo è che il risultato della combustione può essere catturato e riciclato così da generare un ciclo di combustione a zero emissioni di CO2. La richiesta del progetto è quella di valutare se fosse possibile utilizzare polveri di metallo e non solo nell’Heat flux method e, se queste sono adatte, definire le future fasi in modo da ottenere una combustione stabile di polveri durante l’applicazione del Heat flux method. Il risultato sarà ottenuto attraverso una combinazione di esperimenti in laboratorio e ricerche in letteratura su polveri usate come combustibile e metodi per disperdere le polveri all’interno del flusso di aria o aria/metano.
APA, Harvard, Vancouver, ISO, and other styles
21

山本, 和弘, and Kazuhiro YAMAMOTO. "格子ボルツマン法による燃焼場の数値計算." 日本機械学会, 2002. http://hdl.handle.net/2237/9349.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

山本, 和弘, Kazuhiro YAMAMOTO, 昌幸 丸山, Masayuki MARUYAMA, 義昭 小沼, and Yoshiaki ONUMA. "希薄燃焼に及ぼす水素添加の効果." 日本機械学会, 1998. http://hdl.handle.net/2237/9318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Tahtouh, Toni. "Les effets combinés de l'hydrogène et de la dilution dans un moteur à allumage commandé." Phd thesis, Université d'Orléans, 2010. http://tel.archives-ouvertes.fr/tel-00604166.

Full text
Abstract:
Une des solutions pour diminuer les émissions polluantes émises par un moteur à combustion interne est de réinjecter une partie des gaz d'échappement (Exhaust Gas Recirculation, EGR) à l'admission. Cependant, dans le cas d'une dilution du mélange air-carburant trop importante, la combustion est plus instable voire ne pas s'entretenir. L'ajout d'une faible quantité d'hydrogène a le potentiel de contrer cet effet négatif de forte dilution. C'est dans ce contexte que ce travail de thèse est basé sur une étude détaillée des effets combinés de l'ajout de l'hydrogène et de la dilution dans un moteur à allumage commandé alimenté par du méthane ou de l'iso-octane. Dans la première partie de ce travail, le potentiel de l'ajout de l'hydrogène combiné à la dilution, en termes d'émissions polluantes et de rendement global du moteur, est montré. Dans la deuxième partie, afin de mieux comprendre l'effet de l'hydrogène et de la dilution dans un moteur à combustion interne et leurs influences sur les propriétés fondamentales de la combustion, la vitesse de combustion laminaire, paramètre fondamentale, a été déterminée expérimentalement pour des mélanges isooctane ou méthane avec de l'air contenant différents pourcentages d'hydrogène et de dilution. Des corrélations ont pu ainsi être formulées permettant d'estimer la vitesse fondamentale de combustion laminaire pour ces mélanges. Dans la dernière partie, l'utilisation de deux diagnostics optiques (la chemiluminescence de la flamme et la tomographie par plan laser du front de flamme couplé à la mesure de vitesse par vélocimétrie par imagerie de particules) a permis de quantifier l'effet de l'hydrogène et de la dilution sur la propagation de flamme turbulente dans un moteur à allumage commandé muni d'accès optiques. Nous avons ainsi montré que le la vitesse de combustion laminaire a un effet prépondérant, comparé au nombre de Lewis, sur la vitesse de combustion turbulente dans un moteur à allumage commandé.
APA, Harvard, Vancouver, ISO, and other styles
24

Dirrenberger, Patricia. "Étude experimentale et theorique des vitesses de flammes laminaires d'hydrocarbures." Thesis, Université de Lorraine, 2014. http://www.theses.fr/2014LORR0035/document.

Full text
Abstract:
La vitesse de flamme adiabatique est un paramètre clé dans l'étude de la combustion d'hydrocarbures. Elle joue en effet un rôle essentiel dans le domaine de la combustion, dans la mesure où elle est utilisée pour valider des modèles numériques, pour construire des brûleurs, ou encore pour prédire d'éventuels retours de flamme ou souffles de la flamme. Le but de cette thèse a été d'étudier les vitesses de flammes laminaires d'un grand nombre d'hydrocarbures présents dans les gaz naturels, les essences et les gazoles. Ce travail comprend une partie expérimentale et une partie de modélisation. La partie expérimentale a permis d'enrichir les bases de données de la littérature pour différentes compositions de mélanges air/hydrocarbures. Les travaux ont été effectués sur un nouveau montage mis au point au LRGP (Laboratoire Réactions et Génie des Procédés) pour la mesure de vitesses de flammes laminaires par la méthode du flux de chaleur à l'aide d'un brûleur adiabatique à flamme plate. Cette méthode est basée sur l'équilibre des pertes thermiques nécessaires pour stabiliser la flamme par le flux de chaleur convectif allant de la surface du brûleur vers le front de flamme. Le brûleur est constitué d'une plaque perforée montée sur une chambre de mélange des gaz et la mesure de la distribution radiale de la température est réalisée grâce à une série de thermocouples. Ce montage a d'abord été utilisé à pression atmosphérique et plusieurs températures pour la mesure de vitesses de flammes de composés gazeux (alcanes, alcènes, méthane enrichi en hydrogène ou oxygène, gaz naturels, mélanges méthane-éthane et méthane-propane) et de composés liquides (alcanes, éthanol, essences commerciale et modèle additionnées ou non d'éthanol, alkylcyclohexanes, alkylbenzènes). Le montage a ensuite été placé dans une enceinte pour pouvoir travailler avec des pressions pouvant théoriquement aller jusqu'à 10 atm. Les vitesses de flammes de deux composés ont été étudiées à température ambiante et à haute pression : un composé gazeux, le méthane, jusqu'à une pression de 6 atm et un composé liquide, le n-pentane, jusqu'à une pression de 4 atm. Une étude de modélisation a complété ce travail par l'utilisation de modèles cinétiques détaillés pour la combustion des composés étudiés. Ces modèles ont été testés par la simulation des résultats expérimentaux précédemment obtenus, dans des conditions de richesse, température et pression variées
The laminar burning velocity is a key parameter in the combustion of hydrocarbons study. It plays an essential role in the combustion science area since it is used for the validation of numerical models, the design of burners or to predict potential flashback or blow off of the flame. The goal of the thesis was the study of laminar burning velocities of many hydrocarbons found in natural gases, gasolines or diesel fuels. This work includes an experimental part and a modeling part. The experimental part allowed the implementation of the literature database for different air/hydrocarbons mixtures. The experiments were performed with a new apparatus developed at LRGP (Laboratoire Réactions et Génie des Procédés) for the measurement of laminar burning velocities by the heat flux method thanks to a flat flame adiabatic burner. This method is based on balancing of the heat loss required for the flame stabilization by the convective heat flux from the burner surface to the flame front. The burner head is a thick perforated plate included in a plenum mixing chamber and the measurement of the radial distribution of the temperature is performed with a thermocouples series. This apparatus was first used at atmospheric pressure and several temperatures to measure laminar burning velocities of gaseous compounds (alkanes, alkenes, hydrogen-enriched or oxygen-enriched methane, natural gases, methane-ethane and methane-propane mixtures) and liquid compounds (alkanes, ethanol, commercial gasoline and model fuel with addition of ethanol or not, alkylcyclohexanes, alkylbenzènes). The apparatus was then placed in a chamber in order to work under pressures theoretically up to 10 atm. Laminar burning velocities of two compounds were studied at room temperature and high pressure : a gaseous compound, methane, for pressures up to 6 atm and a liquid compound, n-pentane, for pressures up to 4 atm. A modelling study completed this work by using detailed kinetic models for the combustion of studied compounds. These models were tested by the simulation of experimental results previously obtained, in various equivalence ratio, temperature and pressure conditions
APA, Harvard, Vancouver, ISO, and other styles
25

Doddo, Stefano. "Implementazione di cinetiche di dettaglio nella simulazione numerica di fiamme premiscelate." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19679/.

Full text
Abstract:
Lo scopo del lavoro di tesi è stato lo sviluppo di un modello cinetico di dettaglio per la combustione del metano e la sua implementazione in codici di calcolo fluidodinamico avanzati (Computational Fluid-Dynamics, CFD), e in particolare nel codica open access OpenFOAM (Open Fied Operation And Manipulation).. I risultati ottenuti sono stati validati mediante il confronto con dati sperimentali della velocità laminare di fiamma, parametro chimico–fisico essenziale per la caratterizzazione di combustibili, ottenuti mediante l'innovativa metodologia definita Heath-Flux Burner (HFB). Per il codice fluidodinamico numerico si è utilizzato il modulo counterFlowFlame method (CFF). I modelli cinetici di partenza sono quelli sviluppati dal Gas Research Institute (GRI-Mech 3.0), una cinetica semplificata ed un modello cinetico sviluppato all’Università di Bologna (Kibo, Kinetic Modelling at University of Bologna.
APA, Harvard, Vancouver, ISO, and other styles
26

Marashi, Seyedeh Sepideh. "Network Modeling Application to Laminar Flame Speed and NOx Prediction in Industrial Gas Turbines." Thesis, Linköpings universitet, Mekanisk värmeteori och strömningslära, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-113708.

Full text
Abstract:
The arising environmental concerns make emission reduction from combustion devices one of the greatest challenges of the century. Modern dry low-NOx emission combustion systems often operate under lean premixed turbulent conditions. In order to design and operate these systems efficiently, it is necessary to have a thorough understanding of combustion process in these devices. In premixed combustion, flame speed determines the conversion rate of fuel. The flame speed under highly turbulent conditions is defined as turbulent flame speed. Turbulent flame speed depends on laminar flame speed, which is a property of the combustible mixture. The goal of this thesis is to estimate laminar flame speed and NOx emissions under certain conditions for specific industrial gas turbines. For this purpose, an in-house one-dimensional code, GENE-AC, is used. At first, a data validation is performed in order to select an optimized chemical reaction mechanism which can be used safely with the fuels of interest in gas turbines. Results show that GRI-Mech 3.0 performs well in most cases. This mechanism is selected for further simulations. Secondly, laminar flame speed is calculated using GRI-Mech 3.0 at SGT-800 conditions. Results show that at gas turbine conditions, increasing ambient temperature and fuel to air ratio enhances flame speed, mainly due to faster reaction rates. Moreover, laminar flame speed is highly affected by fuel composition. In particular, adding hydrogen to a fuel changes chemical processes significantly, because hydrogen is relatively light and highly diffusive. Calculations are conducted over a range of equivalence ratios and hydrogen fractions in methane at atmospheric as well as gas turbine operating conditions. Results reveal some trends for changes in laminar flame speed, depending on hydrogen content in the mixture. The final part of the thesis involves the development of a reactor network model for the SGT-700 combustor in order to predict NOx emissions. The network model is built in GENE-AC based on results from available computational fluid dynamics (CFD) simulations of the combustor. The model is developed for full load conditions with variable pilot fuel ratios. The NOx emissions are predicted using GRI-Mech 3.0 mechanism. A parametric study shows the dependency of NOx emissions on equivalence ratio and residence time. For SGT-700 running on natural gas, NOx emissions are fitted to measurement data by tuning equivalence ratio and residence time. The model is then tested for a range of ambient temperatures and fuel compositions. It is found that, although the model can correctly predict the trends of ambient temperature and fuel effects on NOx emissions, these effects are to some extent over-estimated. Using future engine tests and amending calibration can improve the results.
APA, Harvard, Vancouver, ISO, and other styles
27

Landry, Ludovic. "Etude expérimentale des modes de combustion essence sous forte pression et forte dilution." Phd thesis, Université d'Orléans, 2009. http://tel.archives-ouvertes.fr/tel-00461253.

Full text
Abstract:
Face aux normes actuelles et futures de plus en plus draconiennes en termes d'émissions polluantes, les constructeurs automobiles cherchent en permanence à améliorer le rendement des moteurs à allumage commandé. L'une des voies efficaces et applicables à court terme pour réduire les émissions de dioxyde de carbone (CO2) consiste à réduire la cylindrée des moteurs tout en conservant leur performance grâce à la sur-alimentation : c'est l'approche de l'éco-suralimentation ou " downsizing ". L'une des particularités de ce mode de fonctionnement est le fort niveau de pression et de taux de dilution dans lequel se propage la flamme de prémélange. La simulation de la combustion turbulente de prémélange est devenue un outil incontournable pour la R&D. Toutefois, les hypothèses sur lesquelles reposent les modèles de combustion, tout particulièrement le modèle de flammelettes, peuvent être sujettes à discussion dans le cas d'un fonctionnement de type " downsizing ". Le but de ce travail de thèse est donc d'étudier expérimentalement les régimes de combustion de manière à valider ou non l'utilisation de ces modèles. Les grandeurs caractéristiques de la turbulence ont alors été caractérisées lors de la phase de compres-sion pour différentes pressions d'admission à l'aide de la vélocimétrie par imagerie de particules. La vitesse de combustion de laminaire a, quant à elle, été estimée à partir d'un mécanisme cinétique réduit. L'utilisation de la tomographie laser par diffusion de Mie avec et sans suivi temporel, nous a permis de caractériser la vitesse de combustion turbulente et la structure du front de flamme pour différentes pressions d'admission et différents taux de dilution. Lors de cette étude, nous avons ainsi pu mettre en évidence une cassure dans l'évolution de la PMI et de la vitesse de combustion turbulente à partir d'un taux de dilution de 25% : cette cassure a été reliée à la transition entre le régime de flammelette et le régime des flammes plissées épaissies.
APA, Harvard, Vancouver, ISO, and other styles
28

Ranganathan, Sreenivasan. "Influence of Dusts on Premixed Methane-Air Flames." Digital WPI, 2018. https://digitalcommons.wpi.edu/etd-dissertations/86.

Full text
Abstract:
Influence of dust particles on the characteristics of premixed methane-air flames has been studied in this dissertation. Experiments are performed in a Bunsen burner type experimental set-up called Hybrid Flame Analyzer (HFA), which can be used to measure the burning velocity of gas, dust, and hybrid (gas and dust) premixed flames at constant pressure operating conditions. In the current study, analysis of particle-gas-air system of different types of dust particles (at particle size, dp = 75-90 µm) in premixed methane-air (ϕg = 0.8, 1.0 and 1.2) flames. Coal, sand, and sodium bicarbonate particles are fed along with a premixed methane-air mixture at different concentrations (λp = 0-75 g/m3) in both laminar and turbulent conditions. First, the variation of laminar burning velocity with respect to the concentration of dust particles, and type of dusts are investigated for different equivalence ratios. Second, the laminar premixed flame extinction with inert and chemical suppressant particles are studied. Third, the variation of turbulent burning velocity of these hybrid mixtures are investigated against different turbulent intensities apart from the different concentrations and types of dusts. Fourth, the radiative fraction of heat released from turbulent gas-dust premixed flames are also presented against the operating parameters considered. Combustible dust deflagration hazard is normally quantified using the deflagration index (Kst) measured using a constant volume explosion sphere, which typically is a sealed 20-liter metal sphere where a premixed mixture is ignited at the center and the progression of the resulting deflagration wave is recorded using the pressure measured at the vessel wall. It has been verified from prior studies that the quantification of the turbulence by this method is questionable and there is a need to analyze the controlling parameters of particle-gas-air premixed system accurately through a near constant pressure operated experimental platform. Thus, the main objective of this study is to analyze the influence of dust particles on premixed methane-air flames at near constant pressure conditions. The turbulent burning velocity is calculated by averaging the measured flame heights and the laminar burning velocity is calculated through the premixed cone angle measurements from several high-speed shadowgraph images obtained from the experiments. The turbulent intensity and length scale of turbulence generated by a perforated plate in the burner is quantified from the hot-wire anemometer measurements. Radiative heat flux is also measured for each of the turbulent test conditions. The outcomes from these experiments are: 1. An understanding of the variation of turbulent burning velocity of gas-dust premixed flames as a function of dust type, turbulent intensity, integral length scale, dust concentration and gas phase mixture ratio. 2. An understanding of the flame extinction characteristics and variation of laminar burning velocity of gas-dust premixed flames as a function of dust concentration and gas phase mixture ratio. 3. Quantify the radiative heat flux and radiative fraction of heat released from gas-dust turbulent premixed flames as a function of dust type, turbulent intensity, dust concentration and gas phase mixture ratio. Dust type and concentration play an important role in deciding the trend in the variation of both laminar (SL) and turbulent burning velocity (ST). Coal particles, with the release of volatile (methane), tend to increase burning velocities except for fuel rich conditions and at higher coal concentrations at larger turbulent intensities. At a higher turbulent intensity and larger concentrations, higher ST values are observed with the addition of sand. Sodium bicarbonate addition, with the release of CO2 and H2O, decreased the burning velocity at all the concentrations, turbulent intensities and equivalence ratios. Laminar flame extinction was observed with the addition of sand and sodium bicarbonate particles at conditions exceeding certain critical dust concentrations. These critical concentrations varied with the equivalence ratios of gaseous premixed flames. The turbulence modulation exhibited by particles and particle concentration is evident in these observations. The independent characteristic time scale analysis performed using the experimental data provided further insights to the results. The chemical and convective times in gas phase confirm the broadened preheat thin reaction zone regime in the current test cases, which has an effect of attenuating turbulence and thereby the resulting turbulent burning velocity. The particle time scale analysis (Stokes number) show that the effect of particles and particle concentration is to slightly enhance the turbulence and increase the turbulent burning velocity at lower concentrations. However, the time scale analysis of particle vaporization (vaporization Damköhler number) indicate an increase in the vaporization rate for particles (coal and sodium bicarbonate) resulting in a decrease in their turbulent burning velocities at higher concentrations and turbulent intensities. Sodium bicarbonate has higher evaporation rate than coal at same level of turbulence and the absence of this effect for inert (sand) results in higher turbulent burning velocities at higher concentrations. An increase in the turbulent intensity increases the vaporization rate of particles. The investigation on radiative fraction of heat released by methane-air-dust turbulent premixed flames identified that, the addition of dust particles increases the radiative fraction irrespective of the dust type due to the radial and axial extension of flame. A unified approach to couple this multiple complex phenomenon of turbulence, particle interaction, particle vaporization and combustion in particle laden premixed gaseous flames is the direction for future research.
APA, Harvard, Vancouver, ISO, and other styles
29

Mumby, Christopher. "Predictions of explosions and fires of natural gas/hydrogen mixtures for hazard assessment." Thesis, Loughborough University, 2010. https://dspace.lboro.ac.uk/2134/6354.

Full text
Abstract:
The work presented in this thesis was undertaken as part of the safety work package of the NATURALHY project which was an integrated project funded by the European Commission (EC) within the sixth framework programme. The purpose of the NATURALHY project was to investigate the feasibility of using existing natural gas infrastructure to assist a transition to a hydrogen based economy by transporting hydrogen from its place of production to its place of use as a mixture of natural gas and hydrogen. The hydrogen can then be extracted from the mixture for use in fuel cells or the mixture used directly in conventional combustion devices. The research presented in this thesis focused on predicting the consequences of explosions and fires involving natural gas and hydrogen mixtures, using engineering type mathematical models typical of those used by the gas industry for risk assessment purposes. The first part of the thesis concentrated on modifying existing models that had been developed to predict confined vented and unconfined vapour cloud explosions involving natural gas. Three geometries were studied: a confined vented enclosure, an unconfined cubical region of congestion and an unconfined high aspect ratio region of congestion. The modifications made to the models were aimed at accounting for the different characteristics of a natural gas/hydrogen mixture compared to natural gas. Experimental data for the laminar burning velocity of methane/hydrogen mixtures was obtained within the safety work package. For practical reasons, this experimental work was carried at an elevated temperature. Predictions from kinetic modelling were employed to convert this information for use in models predicting explosions at ambient temperature. For confined vented explosions a model developed by Shell (SCOPE) was used and modified by adding new laminar burning velocity and Markstein number data relevant to the gas compositions studied. For vapour cloud explosions in a cubical region of congestion, two models were used. The first model was developed by Shell (CAM2), and was applied using the new laminar burning velocity and other composition specific properties. The second model was based on a model provided by GL Services and was modified by generalising the flame speed model so that any natural gas/hydrogen mixture could be simulated. For vapour cloud explosions in an unconfined high aspect ratio region of congestion, a model from GL Services was used. Modifications were made to the modelling of flame speed so that it could be applied to different fuel compositions, equivalence ratios and the initial flame speed entering the congested region. Predictions from the modified explosion models were compared with large scale experimental data obtained within the safety work package. Generally, (apart from where continuously accelerating flames were produced), satisfactory agreement was achieved. This demonstrated that the modified models could be used, in many cases, for risk assessment purposes for explosions involving natural gas/hydrogen mixtures. The second part of thesis concentrated on predicting the incident thermal radiation from high pressure jet fires and pipelines fires involving natural gas/hydrogen mixtures. The approach taken was to modify existing models, developed for natural gas. For jet fires three models were used. Fuel specific input parameters were derived and the predictions of flame length and incident radiation compared with large scale experimental data. For pipeline fires a model was developed using a multi-point source approach for the radiation emitted by the fire and a correlation for flame length. Again predictions were compared with large scale experimental data. For both types of fire, satisfactory predictions of the flame length and incident radiation were obtained for natural gas and mixtures of natural gas and hydrogen containing approximately 25% hydrogen.
APA, Harvard, Vancouver, ISO, and other styles
30

Nonaka, Hugo Ohno Barbosa. "Medição da velocidade de queima laminar de biogás e gás de síntese através do método do fluxo de calor e comparação com mecanismos cinéticos." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2015. http://hdl.handle.net/10183/118889.

Full text
Abstract:
A velocidade de queima laminar adiabática é um importante parâmetro da combustão que dita o comportamento de chamas pré-misturadas. Dos métodos disponíveis para a medição desse parâmetro, o método do fluxo de calor destaca-se pela simplicidade e precisão. No presente trabalho, esse método é utilizado para medir a velocidade de queima de biogás (modelado como CH4 com diferentes níveis de diluição com CO2) e de gás de síntese (modelado como uma mistura de CH4, H2, CO, CO2 e N2) em ar a 298 K e 1 atm. Tais gases são de crescente interesse para a sociedade em função de aspectos ambientais, porém, suas velocidades de queima não foram amplamente estudadas ainda. Os resultados obtidos são comparados com as previsões de cinco mecanismos cinéticos (GRI-Mech 3.0, Davis et al., Konnov, San Diego e USC Mech II) a fim de avaliar a sua capacidade preditiva. Os resultados experimentais e numéricos das velocidades de queima de biogás e ar apresentam uma boa concordância e as incertezas encontradas foram condizentes com as relatadas na literatura. Os resultados experimentais desse gás foram parametrizados em uma correlação empírica de fácil utilização em modelos numéricos. As medições da velocidade de queima de gás de síntese e ar, por outro lado, apresentaram valores inferiores às previsões numéricas de todos os mecanismos estudados. Os dados experimentais da literatura, para a mesma mistura, diferem tanto em valores quanto em comportamento dos resultados do presente trabalho. Tal comportamento está provavelmente relacionado a alguma contaminação no CO utilizado, já que quando esse gás está presente observa-se uma chemi-luminescência não relatada na literatura.
The adiabatic laminar burning velocity is an important combustion parameter that dictates premixed flames characteristics. Among the measuring methods available in literature, the heat flux method stands out for its simplicity and accuracy. In the present work, this method is used to measure the adiabatic laminar burning velocity of biogas (modeled as CH4 with different dilution levels with CO2) and syngas (modeled as a CH4, H2, CO, CO2 and N2 mixture) in air at 298 K and 1 atm. Such gases are of growing society interest due to environmental aspects, however, their adiabatic laminar burning velocity have not been widely studied yet. The experimental results are compared to predictions of five kinetic mechanisms (GRI-Mech 3.0, Davis et al., Konnov, San Diego e USC Mech II) to evaluate their predictive capacity. Experimental and numerical results of biogas/air mixtures adiabatic laminar burning velocity show good agreement and the found uncertainties are in agreement with literature. Experimental results of this gas were fitted in an empiric correlation of simple numerical application. Experimental results of the laminar burning velocity of syngas/air, on the other hand, show lower values than the numerical predictions of all studied kinetic mechanisms. Literature available data for the same mixture differ both in values and behavior of the present work results. Such behavior is probably related to some contamination on the CO used since a chemi-luminescence not reported in literature can be noted when this gas is present.
APA, Harvard, Vancouver, ISO, and other styles
31

Lefebvre, Alexandre. "Analyses théorique, numérique et expérimentale de la détermination de la vitesse de combustion laminaire à partir de flammes en expansion sphériques." Thesis, Rouen, INSA, 2016. http://www.theses.fr/2016ISAM0009/document.

Full text
Abstract:
Les enjeux environnementaux et sociétaux de la combustion de combustibles fossiles pour la production d'énergie (électrique, chauffage ou transport), nécessitent le développement de nouveaux modes de combustion, de nouvelles technologies de brûleurs et de combustibles alternatifs (gazéification de la biomasse, biofuels, ...). La vitesse de combustion laminaire est un des paramètres fondamentaux utilisé pour caractériser la combustion pré-mélangée de ces nouveaux mélanges combustibles. Cette vitesse est une donnée de référence pour le processus de validation et d'amélioration des schémas cinétiques ainsi qu'un paramètre d'entrée pour estimer la vitesse de combustion turbulente de la plupart des codes de combustion turbulente. Mais bien qu'étudiée depuis plus de 100 ans, la détermination expérimentale précise de cette vitesse reste encore un défi de par les limitations inhérentes aux configurations expérimentales utilisées, en particulier pour les conditions de pression et de température élevées. Dans ce contexte, les objectifs de ces travaux de thèse concernent l'étude, l'analyse et la caractérisation des techniques de détermination de la vitesse de combustion laminaire à partir des flammes en expansion sphérique, en proposant une réflexion sur la minimisation de l'ensemble des sources d'incertitudes possibles sur la détermination de cette vitesse. Cette approche est réalisée pour la configuration de flamme en expansion sphérique, permettant des températures et pressions élevées et maitrisées.Dans une première partie, le formalisme des définitions des vitesses de flamme laminaire existantes dans cette configuration est rappelé afin de définir les facteurs d'incertitudes liés à la mesure expérimentale de ces vitesses (grandeurs cinématiques locales et cinétique globale). En particulier, les effets liés à l'estimation de l'état thermodynamique des gaz brûlés, du rayonnement et de la diffusion différentielle sont discutés. Dans une seconde partie, plusieurs dispositifs numériques et expérimentaux utilisés au cours de cette thèse et permettant l'étude de flammes sphériques en expansion sont présentés. Une étude utilisant quatre dispositifs expérimentaux différents est proposée afin d'analyser et caractériser les incertitudes inhérentes aux mesures et à leur traitement. Enfin dans une troisième partie, une définition rigoureuse de la vitesse de consommation est proposée et une nouvelle méthodologie pour la mesurer est développée. Une validation numérique complète est présentée. Puis les incertitudes liées aux rayonnement, à la diffusion différentielle et à l’extrapolation des données mesurées sont étudiées en détails. Cette dernière étape introduit un biais qui peut être conséquent, et une nouvelle méthodologie pour exploiter des mesures brutes est proposée par une comparaison directe avecdes simulations DNS reproduisant les expériences
Environmental and social challenges concerning the combustion of fossil fuels for energy production (electricity, building and transport) require the development of new combustion processes, new burner technologies and alternative fuels (gasification of biomass, biofuels, ...). Laminar burning velocity is one of the fundamental parameters used to characterize premixed combustion for these new fuels. This speed is a reference for the validation and improvement of kinetic schemes and an input parameter to estimate the turbulent burning velocity of most turbulent combustion codes. But even if it has been studied over 100 years, the precise experimental measurement of this velocity is still complicated due to inherent limitations in experimental configurations used, especially for high pressure and temperature conditions. In this context, this thesis work focuses on the study, analysis and characterization of the different techniques used to determine the laminar burning velocity from spherically expanding flames and proposes a reflection on the minimization of all possible uncertainty sources. This approach is achieved with confined spherical flames which allow to obtain high temperature and pressure initial conditions. In the first part, the formalism of existing laminar flame speeds in spherical expanding configuration is reminded to define the factors of uncertainty related to the experimental measurement (local kinematic and global kinetic variables). In particular, the effects associated with the estimation of the burned gases thermodynamic state, radiation and differential diffusion are discussed. In the second part, several numerical and experimental devices used in this thesis are presented. A study on four different experimental setups is proposed to analyze and characterize the uncertainties in the measurements and processing. Finally, in the third part, a rigorous definition of the consumption speed is proposed and a new methodology to measure it is developed. A complete validation based on numerical results is presented. Then uncertainties related to radiation, differential diffusion and extrapolation to zero stretch rate of measured data are detailed. This last step introduces a non-negligible bias and a new methodology to exploit raw data by a direct comparison with DNS reproducing the experiments is proposed
APA, Harvard, Vancouver, ISO, and other styles
32

Broustail, Guillaume. "Potentiel de l’utilisation des mélanges hydrocarbures/alcools pour les moteurs à allumage commandé." Thesis, Orléans, 2011. http://www.theses.fr/2011ORLE2077/document.

Full text
Abstract:
Depuis plusieurs années, la diminution des réserves de pétrole incite les différents pays à accroitre leur indépendance énergétique. De plus, diminuer l’impact environnemental de la voiture est devenu l’une des priorités de notre société. En ce sens, les normes Européennes anti-pollution sont devenues plus strictes, tandis que certains polluants sont pointés du doigt pour avoir un impact néfaste sur la santé et l’environnement. Pour répondre à cette double problématique, l’utilisation de biocarburants de type alcools dans les moteurs à allumage commandé est l’une des voies envisagées. Ce virage a déjà été entrepris à petite échelle par l’Union Européenne qui a tout d’abord autorisé l’ajout de 5%, puis de 10% d’éthanol dans l’essence. En plus de l’éthanol déjà commercialisé, le Biobutanol, biocarburant de seconde génération, apparait comme un candidat à fort potentiel pour une utilisation dans les moteurs à allumage commandé. L’objectif de ce travail de thèse est d’étudier le potentiel de l’utilisation de mélanges isooctane/butanol dans les moteurs à allumage commandé, en termes de performances et d’émissions polluantes. De plus, ces résultats sont comparés à ceux de mélanges isooctane/éthanol. Le dégagement de chaleur dans un moteur à allumage commandé est en partie piloté par la vitesse de combustion laminaire. Cette caractéristique a été étudiée de manière expérimentale et numérique pour différentes conditions initiales (pression et richesse) dans une enceinte à volume constant. Puis, une étude sur les premières étapes de la propagation de la combustion a été réalisée dans un moteur monocylindre à accès optique. Ces résultats en moteur ont été corrélés avec les informations laminaires. Enfin, les émissions de polluants réglementés et non-réglementés, ainsi que les performances ont été étudiées dans un moteur monocylindre à allumage commandé. Une baisse de la plupart de ces émissions a été observée avec l’ajout des deux alcools
For the past few years, the oil stock decrease encourages the different countries to increase their energy independence. Moreover, reducing the environmental impact of transportation became one of the priorities of our society. In this way, European emissions standards are stricter while several pollutants have been identified to have a negative impact on health and the environment. To answer this double problem, the use of alcohols biofuels in spark-ignition engines is one the promising ways. The European Union have already taken a small step in that direction by allowing a maximum of 10% of ethanol into gasoline. As well as ethanol is already marketed, Biobutanol, a 2nd generation biofuel, appears as a serious candidate with a strong potential for a spark-ignition engines use. The objective of this dissertation is to study the potential of the iso-octane/butanol blends use in spark-ignition engines, in terms of performance and pollutants emissions. Moreover, these results are compared to isooctane/ethanol blends. The heat release in spark-ignition engine is piloted for a part by laminar burning velocity. This characteristic was studied experimentally and numerically for different initial conditions (pressure and equivalence ratio) in a constant volume bomb. Then, the early flame kernel growth was studied in a spark-ignition single cylinder engine equipped with optical accesses. Those results were correlated with the results on the laminar burning velocity. Finally, regulated and non-regulated pollutants emissions and engine performance were investigated in a spark-ignition single cylinder engine. A decrease of most pollutant emissions was observed with both alcohols addition
APA, Harvard, Vancouver, ISO, and other styles
33

Balusamy, Saravanan. "Etude expérimentale de la propagation de flammes dans un mélange stratifié." Phd thesis, INSA de Rouen, 2010. http://tel.archives-ouvertes.fr/tel-00557915.

Full text
Abstract:
Pour mieux comprendre la combustion en mode stratifié, la propagation de flammes au sein de stratifications de richesse laminaire ou turbulente a été étudiée par des mesures simultanées de richesse et de vitesse effectuées par couplage de la PIV et de la PLIF. L'accent a été mis sur le développement de méthodes permettant d'améliorer la qualité des mesures locales. En particulier, un nouvel algorithme de PIV permettant la mesure locale de la vitesse des gaz frais véritablement à l'entrée de la zone de préchauffage a été développé. Pour améliorer la résolution,les mailles de calcul s'adaptent localement à la topologie de la flamme, pour tenir compte de la forme du front de flamme et de l'expansion des gaz. L'analyse statistique des mesures conditionnée sur la richesse locale a permis de caractériser les propriétés de la flamme soumise à une stratification de richesse dans un écoulement laminaire et turbulent, en particulier en mettant en évidence un effet mémoire.
APA, Harvard, Vancouver, ISO, and other styles
34

Varea, Emilien. "Experimental analysis of laminar spherically expanding flames." Phd thesis, INSA de Rouen, 2013. http://tel.archives-ouvertes.fr/tel-00800616.

Full text
Abstract:
Laminar burning velocity is very useful for both combustion modeling and kinetic scheme validationand improvement. Accurate experimental data are needed. To achieve this, the spherical flame method was chosen. However various expression for burning velocity from the spherically expanding flame can be found. A theorical review details all the expressions and models for the burning veolcity and shows how they can be obtained experimentally. These models were comparated considering basic fuels - various Lewis numbers. As a result, it is shown that the pure kinematic measurement method is the only one thet does not introduce any assumptions. This kinematic measurement had needed the development and validation of an original post-processing tool. Following the theorical review, a parametric experimental study is presented. The new technique is extended to extract burning velocity and Markstein length relative to the fresh gas for pure ethanol, isooctane and blended fuels at high pressure.
APA, Harvard, Vancouver, ISO, and other styles
35

Belerrajoul, Mohamed. "Modélisation multi-échelle de la combustion d'un nuage de particules." Thesis, Toulouse, INPT, 2019. http://www.theses.fr/2019INPT0014/document.

Full text
Abstract:
La présence de fines particules de matières oxydables est rencontrée dans de nombreuses situations industrielles. Le risque d'explosion de poussières présente une menace constante pour les industries de transformation qui fabriquent, utilisent ou manipulent des poudres ou despoussières de matières combustibles. Dans le secteur nucléaire, les scénarios envisagés traitent,en particulier, le risque d'explosion de poussières de graphite liées aux opérations dedémantèlement des réacteurs Uranium Naturel Graphite Gaz. La problématique considérée, dans le cadre de ce travail de thèse, est celle de la combustion d'un mélange dilué gaz-particules.L'objectif de cette thèse est de développer un modèle Euler-Lagrange macroscopique permettantde prédire la vitesse laminaire de flamme qui est une des données essentielles pour les modèlesde vitesse de flamme turbulente utilisés dans l'évaluation des risques d'explosion de poussières.Dans un premier temps, les équations macroscopiques de transferts massique et thermique sont dérivées à partir de la méthode de prise de moyenne volumique. L'intérêt de l'approche utilisée ici est de proposer des problèmes de fermeture permettant d'estimer les coefficients de transfertseffectifs, tels que les coefficients d'échanges thermiques et le coefficient effectif de la réactionhétérogène. Dans un deuxième temps, des simulations Euler-Lagrange sont utilisées pourdéterminer la vitesse de flamme laminaire diphasique plane en fonction des caractéristiques du mélange gazeux et des poussières de graphite. Le modèle proposé dans ce travail est comparé au modèle Euler-Lagrange classique basé sur la résolution du problème de couche limite pourune particule isolée en milieu infini. Cette étude montre que les effets du taux de dilution et deséchanges indirects entre les particules ne sont pas systématiquement négligeables dans leséchanges macroscopiques entre les deux phases. D'autre part, la présente étude laisse entrevoir la potentialité de l'approche proposée pour les simulations détaillées de l'écoulement diphasique
The presence of fine particles of oxidizable materials is encountered in many industrial situations.The risk of dust explosion presents a constant threat in transformation industries that manufacture,use or manipulate powders or combustible materials dusts. In nuclear safety analysis, one of themain scenarios is the risk of graphite dust explosion that may occur during decommissioningoperations of Uranium Natural Graphite Gas reactors. The issue considered in this thesis isrelated to combustion of a dilute gas-particle mixture. This work aims at developing a macroscopicEuler-Lagrange model for predicting laminar flame velocity, which is one of the essential data forturbulent flame velocity models used to evaluate the risk of dust explosion. First, the macroscopicheat and mass transfer equations are derived using the volume averaging method. The majorinterest of the proposed approach is to provide closure problems that allow to estimate theeffective transport coefficients, such as heat exchange coefficients and the effective coefficient ofthe heterogeneous reaction. Second, Euler-Lagrange simulations are used to determine the planetwo-phase laminar flame velocity as a function of gas mixture and graphite dust characteristics.The proposed model is compared to the classical Euler-Lagrange model based on the resolutionof the boundary layer problem in the vicinity of an isolated particle in infinite medium. Results showthat the dilution rate and the indirect particle-particle exchanges are not systematically negligible inthe macroscopic exchanges between the two-phases. On the other hand, this study suggests thepotentiality of the proposed approach for detailed simulations of two-phase flow
APA, Harvard, Vancouver, ISO, and other styles
36

Zhou, Jianxi. "Etude de l’effet du taux d’oxygène sur la combustion en moteur à allumage commandé suralimenté." Thesis, Orléans, 2013. http://www.theses.fr/2013ORLE2049/document.

Full text
Abstract:
Aujourd’hui, les constructeurs automobiles continuent de chercher les technologies renouvelables face à la pénurie d’énergie et les problèmes d’émission de polluants. Un moyen important pour optimiser l’économie de carburant et réduire les émissions polluantes des moteurs à allumage commandés est le concept ‘downsizing’. Cependant, ce concept est limité par le phénomène de cliquetis dû aux conditions de haute température et haut pression. Dans cette étude, le contrôle de la concentration d’oxygène dans l’air est proposé. Car d’une part, la combustion enrichie en oxygène permet d’améliorer la densité de puissance de moteur avec le même niveau de pression d’admission. Cela permet soit de ‘booster’ la combustion pour augmenter la puissance du moteur ou de l’activer lorsque le moteur fonctionne à faible charge ou dans des conditions de démarrage à froid. D’autre part, une faible concentration en oxygène dans l’air (ou dilution de N2) par un système membranaire peut être considérée comme une alternative à la recirculation des gaz d’échappement. Les expériences ont été effectuées dans un moteur monocylindre ‘downsizing’ avec différents taux d’oxygène et richesse. L’étude de l’impact du contrôle de la concentration d’oxygène sur les caractéristiques de combustion et d’émissions a été effectuée pour plusieurs charges en fonctionnement optimum pour limiter la consommation spécifique de carburant. L’effet de la concentration en oxygène sur les caractéristiques de combustion du moteur a été simulé en utilisant le logiciel commercial AMESim avec le modèle de combustion développé par IFP-EN. En mettant en oeuvre des corrélations de la vitesse de combustion laminaire, déterminées au préalable durant ce travail, et délai d’auto-inflammation, les pressions dans les cylindres sont parfaitement calibrés avec une erreur maximale inférieure à 2% et l’intensité du cliquetis a pu être prédite
Nowadays, car manufacturers continue to lead researches on new technologies facing to the energy shortage and pollutant emission problems. A major way to optimise fuel economy and reduce pollutant emissions for Spark-Ignition (SI) engines is the downsizing concept. However, this concept is unfortunately limited by ‘knock’ phenomena (abnormal combustion) due to high temperature and high pressure in-cylinder conditions. In the present study, control the oxygen concentration in air is proposed. Indeed, on the one hand, oxygen-enriched combustion can improve engine power density with the same intake pressure level. Thus, oxygen-enriched combustion can be used either as a booster to increase engine output or as a combustion enhancer when the engine operates at low loads or in cold start conditions. On the other hand, low oxygen concentration in air (or N2 dilution) can be considered as an alternative to exhaust gas recirculation (EGR). The experiments were carried out in a downsized single-cylinder SI engine with different rates of oxygen and equivalence ratios. The study of the impact of controlling oxygen concentration on the combustion characteristics and emissions was performed at several loads by optimizing the spark advance and the intake pressure to maintain the load and obtain a minimum value of indicated Specific Fuel Consumption (SFC). The effect of oxygen concentration on the engine combustion characteristics was simulated by using the commercial software AMESim, with the combustion model developed by IFP-EN. By implementing correlations for the laminar burning velocity, determined previously during this study, and auto-ignition delay data base, the in-cylinder pressures were perfectly calibrated with a maximum pressure relative error less than 2%, and the knock intensity was predicted
APA, Harvard, Vancouver, ISO, and other styles
37

Chica, Cano Juan Pablo. "Etude de l'influence de la dilution à la vapeur d'eau H2O d'une flamme CH4/air enrichi en dioxygène O2. Combustion Optimisée pour le Captage de CO2." Thesis, Normandie, 2019. http://www.theses.fr/2019NORMR029/document.

Full text
Abstract:
Ce travail de thèse porte sur l’analyse des effets de la recirculation des gaz de combustion, via l’étude de la dilution par le dioxyde de carbone et plus particulièrement de la vapeur d’eau sur des flammes méthane/air enrichi en dioxygène, dans le cas d’une combustion prémélangée pressurisée rencontrée dans les turbines à gaz. Des mesures de vitesses de flammes CH4/O2/H2O/N2 laminaires pressurisées ont été obtenues à l’aide d’une flamme sphérique se propageant librement dans une enceinte close. L’analyse des résultats expérimentaux a permis de vérifier la validité du schéma cinétique GRIMech ?3.0 au travers des calculs numériques de flammes libres monodimensionnelles. Des calculs complémentaires ont permis l’établissement d’une base de données (vitesse de flamme laminaire, longueur de Markstein et nombre de Lewis, température adiabatique de combustion et épaisseur de flamme) en fonction des paramètres d’entrées de la combustion (température, pression, X(H2O), richesse et enrichissement en dioxygène. L’étude expérimentale complémentaire en régime turbulent des flammes diluées à l’H2O ou au CO2 a permis de mettre en avant l’effet de la vitesse laminaire de flamme sur les structures moyennes et la stabilité des flammes turbulentes. Elle a également permis d’analyser les paramètres (température adiabatique, X(H2O), X(CO2), X(N2), Vitesse de flamme laminaire) ayant un rôle important sur la production des polluants CO et NO
This PhD thesis deals with the analysis of the effects of exhaust gas recirculation (EGR) through the study of the dilution by carbon dioxide and more particularly of the water steam on dioxygen enriched methane/air flames, in the case of a premixed pressurized combustion encountered in gas turbines. CH4/O2/H2O/N2 pressurized laminar burning velocity measurement were obtained using a spherical flame propagating freely in a closed chamber. The analysis of the experimental results made it possible to check the validity of the kinetic scheme GRIMech.3.0 through numerical calculations of one-dimensional free flames. Further calculations allowed the establishment of a database (laminar burning velocity, Markstein length and Lewis number, adiabatic combustion temperature and flame thickness) as a function of combustion input parameters (temperature, pressure, X(H2O), equivalence ratio and dioxygen enrichment). The additional experimental study under turbulent regime, the flames diluted with H2O and CO2 allowed to highlight the effect of the laminar burning velocity on the average structures and the stability of turbulent flames. It also allowed to analyze the parameters (adiabatic flame temperature, pressure, X(H2O), X(CO2), X(N2), laminar burning velocity) which have an important role in the production of CO pollutants and NO
APA, Harvard, Vancouver, ISO, and other styles
38

Min, Jiesheng. "Comportement transitionnel et stabilisation de flammes-jets non-prémélangés de méthane dans un coflow d’air dilué en CO2." Thesis, Rouen, INSA, 2011. http://www.theses.fr/2011ISAM0005/document.

Full text
Abstract:
Ce travail s'intéresse à la compréhension du comportement des flammes non-prémélangées issues d'un jet de méthane assisté par un coflow d'air dilué avec du CO2, ou d'autres gaz chimiquement inertes pour discriminer les différents phénomènes impliqués dans la dilution. Les phénomènes transitionnels, décrochage et extinction, quantifiés par des limites de stabilité, sont analysés à l'aide de grandeurs physiques représentatives. Le domaine de stabilité de flamme est limité par des surfaces 3D dans le domaine physique ( Qdiluant/Qair (taux de dilution), Uair (vitesse d'air), UCH4 (vitesse de méthane)), révélant un effet compétitif entre l'aérodynamique et la dilution. Des cartographies génériques de décrochage et d'extinction communes à tous ces diluants sont proposées. Des grandeurs liées à la stabilisation sont toutes soumises à des lois d'évolution auto-simlilaires. Il en ressort que la vitesse de propagation de flamme est l'élément clé du mécanisme de stabilisation lors de la dilution
This work focuses on the understanding of the behaviours of non-premixed methane flame inside an air coflow diluted by carbon dyoxide (CO2) or by other chemically inert diluents in order to discriminate different phenomena involved in dilution. Transitional phenomena (liftoff and extinction) quantified trough the stability limits, are analyzed trough representative physical quantities. The flame stability domain is limited by 3D-surfaces (liftoff and extinction) in the physical domain (Qdiluant/Qair (dilution level), Uair (air velocity), UCH4 (methane velocity)) revealing a competitive effect between aerodynamics and dilution. Generic diagrams of flame liftoff and extinction are proposed for all the diluents. Physical quantities related to flame stabilization process are all submitted to, regardless of diluent, self-similar laws. This is explained by flame burning velocity which is considered as the key element in the flame stabilization mechanism with air-side dilution
APA, Harvard, Vancouver, ISO, and other styles
39

de, Rooy S. C. "Improved efficiencies in flame weeding." Lincoln University, 1992. http://hdl.handle.net/10182/18.

Full text
Abstract:
Possible areas of improving the efficiencies of the Lincoln University flame weeder are identified and investigated. The Hoffmann burner initially used in the Lincoln University flame weeder was found not to entrain sufficient air to allow complete combustion of the LPG used. A new burner, the Modified Lincoln University burner, was designed to improve the entrainment of air. Results show that the new design entrained sufficient air to theoretically allow complete combustion of the LPG, and this resulted in a 22.7% increase in heat output per Kg of LPG used over the Hoffmann burner. Temperature x time exposure constants required to kill weeds 0 - 15, 15 - 30, and 30 - 45 mm in size, were found to be respectively 750, 882, and 989 degrees Celsius.Seconds. These constants can be used to calculate the maximum speed of travel an operator can use a flame weeder at, once the temperature profile underneath its shields are established at various travel speeds, and therefore ensure that the flame weeder is used at its maximum efficiency. The constants can also be used to establish the cost efficiency of any flame weeder (in $/Ha), depending on the size of the weeds to be treated. The materials and methods used in establishing the temperature x time exposure constants can be used to establish the temperature x time exposure constant of any weed species at any size.
APA, Harvard, Vancouver, ISO, and other styles
40

Grasreiner, Sebastian. "Combustion modeling for virtual SI engine calibration with the help of 0D/3D methods." Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2012. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-90518.

Full text
Abstract:
Spark ignited engines are still important for conventional as well as for hybrid power trains and are thus objective to optimization. Today a lot of functionalities arise from software solutions, which have to be calibrated. Modern engine technologies provide an extensive variability considering their valve train, fuel injection and load control. Thus, calibration efforts are really high and shall be reduced by introduction of virtual methods. In this work a physical 0D combustion model is set up, which can cope with a new generation of spark ignition engines. Therefore, at first cylinder thermodynamics are modeled and validated in the whole engine map with the help of a real-time capable approach. Afterwards an up to date turbulence model is introduced, which is based on a quasi-dimensional k-epsilon-approach and can cope with turbulence production from large scale shearing. A simplified model for ignition delay is implemented which emphasizes the transfer from laminar to turbulent flame propagation after ignition. The modeling is completed with the calculation of overall heat release rates in a 0D entrainment approach with the help of turbulent flame velocities. After validation of all sub-models, the 0D combustion prediction is used in combination with a 1D gas exchange analysis to virtually calibrate the modern engine torque structure and the ECU function for exhaust gas temperature with extensive simulations
Moderne Ottomotoren spielen heute sowohl in konventionellen als auch hybriden Fahrzeugantrieben eine große Rolle. Aktuelle Konzepte sind hochvariabel bezüglich Ventilsteuerung, Kraftstoffeinspritzung und Laststeuerung und ihre Optimierungspotentiale erwachsen zumeist aus neuen Softwarefunktionen. Deren Applikation ist zeit- und kostenintensiv und soll durch virtuelle Methoden unterstützt werden. In der vorliegenden Arbeit wird ein physikalisches 0D Verbrennungsmodell für Ottomotoren aufgebaut und bis zur praktischen Anwendung geführt. Dafür wurde zuerst die Thermodynamik echtzeitfähig modelliert und im gesamten Motorenkennfeld abgeglichen. Der Aufbau eines neuen Turbulenzmodells auf Basis der quasidimensionalen k-epsilon-Gleichung ermöglicht anschließend, die veränderlichen Einflüsse globaler Ladungsbewegung auf die Turbulenz abzubilden. Für den Brennverzug wurde ein vereinfachtes Modell abgeleitet, welches den Übergang von laminarer zu turbulenter Flammenausbreitung nach der Zündung in den Vordergrund stellt. Der restliche Brennverlauf wird durch die physikalische Ermittlung der turbulenten Brenngeschwindigkeit in einem 0D Entrainment-Ansatz dargestellt. Nach Validierung aller Teilmodelle erfolgt die virtuelle Bedatung der Momentenstruktur und der Abgastemperaturfunktion für das Motorsteuergerät
APA, Harvard, Vancouver, ISO, and other styles
41

Shih, Hsin-Yu, and 施信宇. "Study of Burning Velocity inthe Combustion Chamber ofSI Engine." Thesis, 2003. http://ndltd.ncl.edu.tw/handle/2t9ud4.

Full text
Abstract:
碩士
逢甲大學
機械工程學所
91
Abstract Combustion process in an SI engine is very complex. Burning flame burning is premixed and turbulent. Flame propagation is spatial and unsteady. Factors affect the entire process are various, the best study is experimental research. In this experiment, a modified spark-ignition engine is applied. An acrylic cylinder head inserting five Photo-sensitive resistors and signal pick out circuit is located on a four-stroke single-cylinder engine block. Selecting liquefied petroleum gas or methane gas as fuel, the engine is motored by a variable velocity electrical motor mechanism and is fired by a magnet ignition system. The governing factors are air-fuel equivalence ratio, engine speed and inlet mixture temperature. Engine operating at various fuels, equivalence ratios, intake temperature and engine speeds have different burning flame velocity. For methane and LPG fueled, the maximum velocity occur during mixing stoichiometrically, the inlet temperature is in the range of 298K and 303K. Increasing engine speed, the mixing turbulence intensity is strengthened, the burning flame velocity increase.
APA, Harvard, Vancouver, ISO, and other styles
42

Koroll, Grant W. "Burning velocity, structure and kinetics of hydrogen flames containing diluents." 1985. http://hdl.handle.net/1993/28830.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Mannaa, Ossama. "Burning Characteristics of Premixed Flames in Laminar and Turbulent Environments." Diss., 2018. http://hdl.handle.net/10754/630077.

Full text
Abstract:
Considering the importance of combustion characteristics in combustion applications including spark ignition engines and gas turbines, both laminar and turbulent burning velocities were measured for gasoline related fuels. The first part of the present work focused on the measurements of laminar burning velocities of Fuels for Advanced Combustion Engines (FACE) gasolines and their surrogates using a spherical constant volume combustion chamber (CVCC) that can provide high-pressure high-temperature (HPHT) combustion mode up to 0.6 MPa, 395 K, and the equivalence ratios ranging 0.7-1.6. The data reduction was based on the linear and nonlinear extrapolation models considering flame stretch effect. The effect of flame instability was investigated based on critical Peclet and Karlovitz, and Markstein numbers. The sensitivity of the laminar burning velocity of the aforementioned fuels to various fuel additives being knows as octane boosters and gasoline extenders including alcohols, olfins, and SuperButol was investigated. This part of the study was further extended by examining exhaust gas re-circulation effect. Tertiary mixtures of toluene primary reference fuel (TPRF) were shown to successfully emulate the laminar burning characteristics of FACE gasolines associated with different RONs under various experimental conditions. A noticeable enhancement of laminar burning velocities was observed for blends with high ethanol content (vol ≥ 45 %). However, such enhancement effect diminished as the pressure increased. The reduction of laminar burning velocity cause by real EGR showed insensitivity to the variation of the equivalence ratio. The second part focused on turbulent burning velocities of FACE-C gasoline and its surrogates subjected to a wide range of turbulence intensities measured in a fan-stirred CVCC dedicated to turbulent combustion up to initial pressure of 1.0 MP. A Mie scattering imaging technique was applied revealing the mutual flame-turbulence interaction. Furthermore, considerable efforts were made towards designing and commissioning a new optically-accessible fan-stirred HPHT combustion vessel. A time-resolved stereoscopic particle image velocimetry (TR-PIV) technique was applied for the characterization of turbulent flow revealing homogeneous-isotropic turbulence in the central region to be utilized successfully for turbulent burning velocity measurement. Turbulent burning velocities were measured for FACE-C and TPRF surrogate fuels along with the effect of ethanol addition for a wide range of initial pressure and turbulent intensity. FACE-C gasoline was found to be more sensitive to both primarily the primary contribution of turbulence intensification and secondarily from pressure in enhancing its turbulent burning velocity. Several correlations were validated revealing a satisfactory scaling with turbulence and thermodynamic parameters. The final part focused on the turbulent burning characteristics of piloted lean methane-air jet flames subjected to a wide range of turbulence intensity by adopting TR-SPIV and OH-planar laser-induced florescence (OH-PLIF) techniques. Both of the flame front thickness and volume increased reasonably linearly as normalized turbulence intensity, u^'/ S_L^0, increased. As u^'/ S_L^0 increased, the flame front exhibited more fractalized structure and occasionally localized extinction (intermittency). Probability density functions of flame curvature exhibited a Gaussian like distribution at all u^'/ S_L^0. Two-dimensional flame surface density (2D-FSD) decreased for low and moderate u^'/ S_L^0, while it increased for high u^'/ S_L^0Turbulent burning velocity was estimated using flame area and fractal dimension methods showing a satisfactory agreement with the flamelet models by Peters and Zimont. Mean stretch factor was estimated and found to increase linearly as u^'/ S_L^0increased. Conditioned velocity statistics were obtained revealing the mutual flame-turbulence interaction.
APA, Harvard, Vancouver, ISO, and other styles
44

Rallis, Costa John. "A critical evaluation of the spherical constant volume vessel method for determining laminar burning velocity." Thesis, 2015. http://hdl.handle.net/10539/18100.

Full text
Abstract:
A Thesis Presen ted in Fulfilm ent of the Requirem ents for the Degree of Doctor of Philosophy in Engineering August 1963
The objectives of combustion research are considered and attention directed to laminar flames, the burning velocity of which is recognised as a basic parameter in all combustion problem s. Various methods of determining this property are critically reviewed and, as a result, it is concluded th at the spherical constant volume vessel technique is potentially one of the most versa tile and accurate. However this method does not appear to have been extensively used, probably because the available equations virtually relegate it to the status of a constant pressure technique
APA, Harvard, Vancouver, ISO, and other styles
45

Yarasu, Ravindra Babu. "Premixed Turbulent Combustion Of Producer Gas In Closed Vessel And Engine Cylinder." Thesis, 2009. http://hdl.handle.net/2005/927.

Full text
Abstract:
Producer gas derived from biomass is one of the most environment friendly substitutes to the fossil fuels. Usage of producer gas for power generation has effect of zero net addition of CO2 in atmosphere. The engines working on producer gas have potential to decrease the dependence on conventional fuels for power generation. However, the combustion process is governed by complex interactions between chemistry and fluid dynamics, some of which are not completely understood. Improved knowledge of combustion is, therefore, of vital importance for both direct use in the design of engines, and for the evolution of reliable simulation tools for engine development. The present work is related to the turbulent combustion of producer gas in closed vessels and engine cylinders. The main objective of the work was multi-dimensional simulation of turbulent combustion in the bowl-in-piston engine operating on producer gas fuel and to observe the flame and flow field interaction. First, the combustion model was validated in constant volume combustion chamber with experimental results. Experimental turbulent combustion data of producer gas (composition matching with engine operating conditions) was presented. The required data of laminar burning velocity of producer gas was computed and used in the simulation of turbulent combustion in closed vessel. The effect of squish and reverse squish flow on flame propagation in the bowl-in-piston engine cylinder was described. Laminar burning velocity of unstretched flame was computed using flame code which was developed earlier in this laboratory. One dimensional computations of unstretched planar flame were made to calculate laminar burning velocity of the producer gas-air mixture at pressures (1-10 bar) and temperatures (300-600 K). A correlation of laminar burning velocity of producer gas as a function of pressure and temperature was fitted and compared with experiments. A fixed composition and equivalence ratio of producer gas-air mixture, typical of the engine operating conditions, was considered. The correlation was used in simulation of turbulent combustion in closed vessel. The turbulent combustion experiments with producer gas-air mixture were conducted in a closed vessel. The aim of experiments was to generate pressure-time data, in closed vessel during turbulent flame propagation, which was required to validate turbulent combustion models. Determination of (ST /SL) was made from pressure-time data which requires corresponding laminar combustion data with same initial conditions. For this purpose a set of laminar combustion experiments was conducted. Experimental setup consists of a constant volume combustion chamber of cubical shape and size 80 x 80 x 80 mm3 . The initial mixtures pressure and temperature were 1 bar and 300 K respectively. A fixed composition and equivalence ratio of producer gas-air mixture, typical of the engine operating conditions, was used. The composition of producer gas was H2 -19.61%, CO2 -19.68%, CH4 -2.52%, CO2 -12.55% and N2 -45.64% on volume basis. Fuel-air mixture was ignited with electric spark at the center of the cube. Initial turbulence in the chamber was created by moving a perforated plate with specified velocity. Perforated plate was placed in chamber so that the central hole in the plate passes over the spark electrodes as it sweeps across the chamber. Two geometrically similar plates with hole diameter of 5 and 10 mm were used. The new experimental setup constructed as a part of this work was first tested with one set of experiments each with methane and propane data of SL and ST /SL from the literature. Maximum turbulent intensity (u’) achieved was 1.092 ms−1 . The ratios of turbulent to laminar burning velocity (ST /SL) values were determined at six different turbulence intensity levels. Laminar combustion experiments were extended to elevated initial pressures 2-5 bar and temperature 300 K. The value of SL was calculated from the pressure-time history recorded during laminar stretching flame propagation inside closed vessel. These SL values were compared with computed SL,∞ after accounting for stretch. Turbulent combustion simulations were carried out to validate combustion models suitable for multi-dimensional CFD simulation of combustion in constant volume closed chamber. Two models proposed by Choi and Huh, based on Flame Surface Density (FSD) were tested with the present experimental results. User FORTRAN code for the source terms in transport equation of FSD was implemented in ANSYS-CFX 10.0 software. First model called CFM1, grossly under-predicted the rate of combustion. The second model called CFM2, predicted the results satisfactorily after replacing the arbitrary length scale with turbulent integral length scale (lt) having a limiting value near the wall. The modified CFM2 model was able to predict the propagation phase of the developed flame satisfactorily, though the duration for initial flame development was over-predicted by the model. CFD simulation of producer gas engine combustion process was carried out using ANSYSCFX software. Mesh deformation option was used to take care of moving boundaries such as piston and valve surfaces. The fluid domain expands during suction process and contracts during compression process. In order to avoid excessive distortion of the mesh elements, a series of meshes at different crank angle positions were generated and checked for their quality during mesh motion in the solver. For suction process simulation, unstructured meshes having 0.1 to 0.3 million cells were used. During the compression and combustion process simulations, structured meshes having 40,000 to 0.1 million cells were used. k-ε model was used for turbulence simulation. The suction, compression and combustion processes of an SI engine were simulated. Initial flame kernel was given by providing high flame surface density in a small volume comparable to the spark size at the time of ignition. The flame surface density model, CFM-2, was adapted with the modification of length scale tested against constant volume experiments. A suitable limiting value was used to avoid abnormal flame propagation near the wall. The limiting value of integral length scale (lt) near the wall was determined by linear extrapolation of the integral length scale in the domain to the wall. Engine p - θ curves of three different ignition timings 26°, 12° and 6°before top dead center (TDC) were simulated and compared with earlier experimental results. The effects of flow field on flame propagation have been observed. A comparison of the simulated and experimental p - θ diagram of the engine for all above cases gave mixed results. For the ignition timing at 26° before TDC case, predicted peak pressure value was 17% higher and at 3° earlier than those of the experimental peak. For the other two cases, the predicted peak pressure value was 28% lower and 5° later than those of the experimental peak. The reason for under-prediction of the pressure values could be due to the delay in development of initial flame kernel. Simulated pressure curves have offset about 3-4° compared to the experimental pressure curves. It was observed that in all predicted p - θ cases, there was a delay in the initial flame development. It is evident from the under-prediction of pressure values, especially in the initial flame kernel development phase and it also affects the p - θ curve at later stage. The delay was about 3-4° of crank angle rotation in various cases. The delay in predicting the initial flame development needs to be corrected in order to predict the combustion process properly. The proposed FSD model seems to have capability to predict p - θ values fairly in the propagation phase of developed flame. Reasonably good match was obtained by advancing the ignition timing in the computation by about 3-4° compared to the experimental setting. In the bowl-in-piston engine cylinders, the flow in the cylinder is characterised by squish and reverse squish when the piston is moving towards and away from the top dead center (TDC) respectively. The effect of squish and reverse squish flow on flame propagation has been assessed. For the more advanced ignition case, i.e., 26° before TDC, The flame propagation did not have favorable effect by the flow field. The direction of flame propagation was against the squish and reverse squish flow. This resulted in suppressed peak velocities in the cylinder compared the motoring process. Hence the burning rate was not augmented by the turbulence inside the cylinder. For the ignition 12° before TDC case, the flame propagation did have favorable effect by the flow field. During the reverse squish period, the flame had reached the bowl wall. At this stage, the flame was pushing the reactants out and this augments the reverse-squish flow, and hence the maximum reverse-squish velocity was increased to 2.03 times the peak reverse-squish velocity of motoring case. The reverse-squish flow was distorting the flame from spherical shape and the flame gets stretched. Flame surface enters the cylindrical region faster compared to the previous case. The stretched flame in the reverse-squish flow may be considered as reverse squish flame, as was proposed earlier by Sridhar G. The burn rate during the reverse squish period may be 2 to 2.5 times the normal burn rate. For the ignition 6° before TDC case, the flame was very small in size and it did not affect the flow in squish period. During the reverse squish period, the flame radius was moderate compared to the bowl radius. The flame was pushing the reactants out and it increased the maximum reverse-squish velocity to 1.3 times by the flame. In this case, the reverse-squish flow moderately affecting the flame shapes. The results of this study could give an idea of what ignition timing must be kept for favorable use of flow field inside the engine cylinder. Main contributions from the present work are: Multi-dimensional simulation of combustion process inside the engine cylinder operating on producer gas was carried out to examine flame/flow field interactions. Two models based on FSD were first tested against present experimental results in constant volume combustion chamber. In CFM2 model; a modification of replacing the arbitrary length scale by integral length scale with a limiting value near the wall was suggested to avoid prediction of abnormally large turbulent burning velocity near the wall. This combustion model has been implemented in ANSYS-CFX10. The required data of laminar and turbulent burning velocities of producer gas-air mixture has been determined by experiments and computations at varied initial pressures and turbulent intensities. Finally, the simulated engine pressure data has been compared with earlier experimental data of the engine operating on producer gas. The proposed FSD model has the capability to match well with the experimental results except for the initial flame kernel development phase. Even though this issue needs to be resolved, the work has brought out the important interaction between the flame propagation and flow field within the bowl-in-piston engine cylinder.
APA, Harvard, Vancouver, ISO, and other styles
46

Byun, Jung Joo. "Laminar burning velocities and laminar flame speeds of multi-component fuel blends at elevated temperatures and pressures." Thesis, 2011. http://hdl.handle.net/2152/ETD-UT-2011-05-516.

Full text
Abstract:
Iso-octane, n-heptane, ethanol and their blends were tested in a constant volume combustion chamber to measure laminar burning velocities. The experimental apparatus was modified from the previous version to an automatically-controlled system. Accuracy and speed of data acquisition were improved by this modification. The laminar burning velocity analysis code was also improved for minimized error and fast calculation. A large database of laminar burning velocities at elevated temperatures and pressures was established using this improved experimental apparatus and analysis code. From this large database of laminar burning velocities, laminar flame speeds were extracted. Laminar flame speeds of iso-octane, n-heptane and blends were investigated and analysed to derive new correlations to predict laminar flame speeds of any blending ratio. Ethanol and ethanol blends with iso-octane and/or n-heptane were also examined to see the role of ethanol in the blends. Generally, the results for iso-octane and n-heptane agree with published data. Additionally, blends of iso-octane and n-heptane exhibited flame speeds that followed linear blending relationships. A new flame speed model was successfully applied to these fuels. Ethanol and ethanol blends with iso-octane and/or n-heptane exhibited a strongly non-linear blending relationship and the new flame speed model was not applied to these fuels. It was shown that the addition of ethanol into iso-octane and/or n-heptane accelerated the flame speeds.
text
APA, Harvard, Vancouver, ISO, and other styles
47

LIN, TZU-HAO, and 林子皓. "Evaluation on the dust explosion parameters and burning velocity mode with adipic acid, p-terephthalic acid, and powdered polyester resin." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/63620309098770107361.

Full text
Abstract:
碩士
國立雲林科技大學
環境與安全衛生工程系
104
In the chemical industrial processes, dust explosion is a critical hazard in numerous manufacturings and storage facilities. When the explosion calamity happened, life and property must be paid out with huge economic costs, and the reputation of corporation will deteriorate. For this reason, how to prevent accidents is a significant issue. On this research, we focused on the product of polyester resin and main materials with adipic acid (AA) and p-terephthalic acid (PTA). All of the parameters can be obtained by a variety of measuring equipment. In regards to the physical parameters, particle size analyzer and thermogravimetry can provide the particle size and peak temperature (Tp). Regarding of chemical parameters, minimum ignition energy analyzer and 20-L apparatus are representative instruments for the explosion coefficient. According to the results, particle size have high correlation about the minimum ignition energy tests. In the explosion parameter tests, not only the particle size but also chemical structure should be considered. Regarding the forecast burning velocity, probing its correlation with explosion parameters is a important topic. Therefore, building up a safety as well as complete protection mechanisms is a significant issue.
APA, Harvard, Vancouver, ISO, and other styles
48

Yuen, Frank Tat Cheong. "Experimental Investigation of the Dynamics and Structure of Lean-premixed Turbulent Combustion." Thesis, 2009. http://hdl.handle.net/1807/19306.

Full text
Abstract:
Turbulent premixed propane/air and methane/air flames were studied using planar Rayleigh scattering and particle image velocimetry on a stabilized Bunsen type burner. The fuel-air equivalence ratio was varied from Φ=0.7 to 1.0 for propane flames, and from Φ=0.6 to 1.0 for methane flames. The non-dimensional turbulence intensity, u'/SL (ratio of fluctuation velocity to laminar burning velocity), covered the range from 3 to 24, equivalent to conditions of corrugated flamelets and thin reaction zones regimes. Temperature gradients decreased with the increasing u'/SL and levelled off beyond u'/SL > 10 for both propane and methane flames. Flame front thickness increased slightly as u'/SL increased for both mixtures, although the thickness increase was more noticeable for propane flames, which meant the thermal flame front structure was being thickened. A zone of higher temperature was observed on the average temperature profile in the preheat zone of the flame front as well as some instantaneous temperature profiles at the highest u'/SL. Curvature probability density functions were similar to the Gaussian distribution at all u'/SL for both mixtures and for all the flame sections. The mean curvature values decreased as a function of u'/SL and approached zero. Flame front thickness was smaller when evaluated at flame front locations with zero curvature than that with curvature. Temperature gradients and FSD were larger when the flame curvature was zero. The combined thickness and FSD data suggest that the curvature effect is more dominant than that of the stretch by turbulent eddies during flame propagation. Integrated flame surface density for both propane and methane flames exhibited no dependance on u'/SL regardless of the FSD method used for evaluation. This observation implies that flame surface area may not be the dominant factor in increasing the turbulent burning velocity and the flamelet assumption may not be valid under the conditions studied. Dκ term, the product of diffusivity evaluated at conditions studied and the flame front curvature, was a magnitude smaller than or the same magnitude as the laminar burning velocity.
APA, Harvard, Vancouver, ISO, and other styles
49

Luo, Caimao. "Study on the inhibition mechanisms of CBrF₃, CF₃I and C₃F₇H in methane fuelled premixed flames." Thesis, 2010. http://hdl.handle.net/1959.13/805503.

Full text
Abstract:
Research Doctorate - Doctor of Philosophy (PhD)
This dissertation is focused on developing updated inhibition kinetics of hydrofluorocarbon (HFC), CBrF₃, CF₃I and C₃F₇H and modelling of inhibition phenomenon using the updated kinetic mechanism. The thesis is divided into three bodies of work: the first is presented in three chapters, which outlines the purpose of the study, a review of the relevant literature and numerical techniques developed and applied for kinetic analysis; the second part of the thesis involves updating CBrF₃, CF₃I and C₃HF₇ inhibition mechanisms while the final part applies the three updated kinetic mechanisms to specific applications. In the first section, the background of the study, the literature related to elementary reactions of hydrofluorocarbon (HFC), CBrF₃, CF₃I and C₃HF₇ inhibition mechanisms and numerical techniques used to obtain insight to the complicated kinetics of hydrocarbon flames inhibited by halon and halon alternatives are presented. In the second section of the thesis, based on comparing the burning velocity and flame structure of methane-air-CBrF₃ (or CF₃I or C₃F₇H) systems, the inhibition kinetics of CBrF₃, CF₃I and C₃F₇H are updated. At the same time, the inhibition mechanism based on Br, I or H atom flux, in addition to the more standard C atom flux, is assessed. The higher inhibition capability of the bromine or iodine containing compounds is assessed by identifying and analysing the inhibition cycles, by which the Br or I containing compounds are regenerated and enhance scavenging of radicals. Several inhibition cycles are revealed using the Br or I atom flux analysis. The third section of this dissertation pursues application of the inhibition mechanisms, which ultimately aims to solve specific fire-safety related problems. The first application is an assessment of the flame suppressing effect of combinations of CF₃I with hydrofluorocarbons (HFCs), such as C₃HF₇, C₂HF₅, CHF₃, and fluorocarbons (FCs), such as C₂F₆. The inhibition efficiency is divided into physical and chemical effects, with chemical influences decreasing once the agent concentration exceeds a specified value termed the agent saturation limit. An assessment of whether other suppressants will change the agent saturation limit and determine whether the combined chemistry or physical effects of two agents is coupled or uncoupled, whether or not the combined chemistry or thermal physics effect of two agents is independent each other, is presented. Finally, we determine whether or not the existence of other agent influences the chemical reaction inhibition pathways. Reaction pathway analysis based on C, I and F atom fluxes is used to explain these phenomena. The second application gives an explanation as to the apparent reverse suppressing effect of the CBrF₃ in inhibiting the methanol-fuelled flames compared to CF₃I. The major reactions responsible for this suppressing phenomenon are presented, and an explanation for the high suppression capability of CF₃I over CBrF₃ for methanol flame is presented. The third application investigates the evolution of toxic gases, such as CO, HBr, HF and HI in hot layers formed in enclosed fires mitigated with CBrF₃ and CF₃I. Both equilibrium and time-evolving concentrations of toxic gases were estimated. The effect of the global equivalence ratio, temperature of the hot layer, agent concentration on the toxic gases is studied by comparing the species evolution histories.
APA, Harvard, Vancouver, ISO, and other styles
50

Richter, Sandra. "Charakterisierung grundlegender Verbrennungseigenschaften von alternativen Treibstoffen und Treibstoffkomponenten." 2018. https://tubaf.qucosa.de/id/qucosa%3A33893.

Full text
Abstract:
Im Rahmen dieser Arbeit wurden die laminaren Flammengeschwindigkeit und die Zündverzugszeit für verschiedene alternative Treibstoffe und Treibstoffkomponenten experimentell bestimmt. Mit Farnesan, Alcohol-to-Jet SPK, Alcohol-to-Jet SKA und ReadiJet wurden vier verschiedene alternative Treibstoffe untersucht, die sich durch ihre Herkunft und in ihrer Zusammensetzung unterscheiden. Die Betrachtung einzelner Treibstoffkomponenten diente der Untersuchung inwieweit die Molekülstruktur einen Einfluss auf die Verbrennungseigenschaften hat. Dazu wurde aus jeder der vier Hauptstrukturgruppen (n-Alkane, iso-Alkane, Cycloalkane und Aromaten) jeweils ein Vertreter ausgewählt: n-Dodecan, Isooctan, n-Propylcyclohexan und n-Propylbenzol. Alle erhaltenen Ergebnisse worden mit Jet A-1, einem realen Treibstoff, verglichen. Aus den einzelnen Komponenten wurde auch ein aromatenfreies Surrogat hergestellt von welchem die Verbrennungseigenschaften ebenfalls experimentell untersucht wurden. Für das Surrogat wie auch seine Komponenten wurden die laminare Flammengeschwindigkeit und die Zündverzugszeit zusätzlich in einer Modellierung berechnet.:SYMBOLVERZEICHNIS ABKÜRZUNGSVERZEICHNIS 1 EINLEITUNG 2 GRUNDLAGEN ZUR VERBRENNUNG VON TREIBSTOFFEN 2.1 Laminare Flammen und Zündprozesse 2.2 Vorgänge bei der Oxidation von Kohlenwasserstoffen 2.3 Schadstoffbildung 3 UNTERSUCHTE TREIBSTOFFE 3.1 Jet A‐1 3.2 Alternative Treibstoffe 3.3 Treibstoffkomponenten 4 EXPERIMENTE 4.1 Einführung 4.2 Laminare Flammengeschwindigkeit 4.2.1 Einführung zur Messung der laminaren Flammengeschwindigkeit 4.2.2 Anwendung der Winkelmethode 4.2.3 Einfluss der Streckung auf laminare Flammen 4.2.4 Versuchsaufbau und Durchführung der Messung 4.2.5 Messergebnisse 4.3 Zündverzugszeit 4.3.1 Einführung zur Messung der Zündverzugszeit 4.3.2 Funktionsprinzip eines Stoßrohres 4.3.3 Versuchsaufbau und Durchführung der Messung 4.3.4 Messergebnisse 5 ZUSAMMENHANG ZWISCHEN STRUKTUR UND REAKTIVITÄT 5.1 Vergleich von n‐Dodecan und Isooctan 5.2 Vergleich von n‐Propylcyclohexan und n‐Propylbenzol 6 BERECHNUNG DER VERBRENNUNGSEIGENSCHAFTEN 6.1 DLR‐Mechanismus 6.2 Berechnung der laminaren Flammengeschwindigkeit 6.3 Berechnung der Zündverzugszeit 7 ZUSAMMENFASSUNG 8 FAZIT UND AUSBLICK 9 LITERATURVERZEICHNIS ABBILDUNGSVERZEICHNIS TABELLENVERZEICHNIS ANHANG
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography