Academic literature on the topic 'Buoyancy-driven MHD'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Buoyancy-driven MHD.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Buoyancy-driven MHD"

1

DAVOUST, L., M. D. COWLEY, R. MOREAU, and R. BOLCATO. "Buoyancy-driven convection with a uniform magnetic field. Part 2. Experimental investigation." Journal of Fluid Mechanics 400 (December 10, 1999): 59–90. http://dx.doi.org/10.1017/s002211209900645x.

Full text
Abstract:
In this paper, an experimental study of laminar magnetohydrodynamic (MHD) buoyancy-driven flow in a cylindrical cell with axis horizontal is described. A steady uniform magnetic field is applied vertically to the mercury-filled cell, which is also subjected to a horizontal temperature gradient. The main features of this internal MHD thermogravitational flow are made experimentally evident from temperature and electric potential measurements. Whatever the level of convection, raising the Hartmann number Ha to a value of the order of 10 is sufficient to stabilize an initially turbulent flow. At much higher values of the Hartmann number (Ha∼100) the MHD effects cause a change of regime from boundary-layer driven to core driven. In this latter regime an inviscid inertialess MHD core flow is bounded by a Hartmann layer on the horizontal cylindrical wall and viscous layers on the endwalls. Since the Hartmann layer is found to stay electrically inactive along the cell, the relevant asymptotic (Ha[Gt ]1) laws for velocity and heat transfer are found from the balance between the curl of buoyancy and Lorentz forces in the core, together with the condition that the flow of electric current between core and Hartmann layer is negligible. A modified Rayleigh number RaG/Ha2, which is a measure of the ratio of thermal convection to diffusion when there is a balance between buoyancy and Lorentz forces, is the determining parameter for the flow.
APA, Harvard, Vancouver, ISO, and other styles
2

Hanasz, Michał, K. Otmianowska-Mazur, H. Lesch, et al. "Cosmic-ray driven dynamo in galactic disks." Proceedings of the International Astronomical Union 4, S259 (2008): 479–84. http://dx.doi.org/10.1017/s1743921309031147.

Full text
Abstract:
AbstractWe present new developments on the Cosmic–Ray driven, galactic dynamo, modeled by means of direct, resistive CR–MHD simulations, performed with ZEUS and PIERNIK codes. The dynamo action, leading to the amplification of large–scale galactic magnetic fields on galactic rotation timescales, appears as a result of galactic differential rotation, buoyancy of the cosmic ray component and resistive dissipation of small–scale turbulent magnetic fields. Our new results include demonstration of the global–galactic dynamo action driven by Cosmic Rays supplied in supernova remnants. An essential outcome of the new series of global galactic dynamo models is the equipartition of the gas turbulent energy with magnetic field energy and cosmic ray energy, in saturated states of the dynamo on large galactic scales.
APA, Harvard, Vancouver, ISO, and other styles
3

Davoust, L., R. Moreau, M. D. Cowley, P. A. Tanguy, and F. Bertrand. "Numerical and analytical modelling of the MHD buoyancy-driven flow in a Bridgman crystal growth configuration." Journal of Crystal Growth 180, no. 3-4 (1997): 422–32. http://dx.doi.org/10.1016/s0022-0248(97)00238-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Prakash, J., S. Gouse Mohiddin, and S. Vijaya Kumar Varma. "Free Convective MHD Flow Past a Vertical Cone with Variable Heat and Mass Flux." Journal of Fluids 2013 (November 18, 2013): 1–8. http://dx.doi.org/10.1155/2013/405985.

Full text
Abstract:
A numerical study of buoyancy-driven unsteady natural convection boundary layer flow past a vertical cone embedded in a non-Darcian isotropic porous regime with transverse magnetic field applied normal to the surface is considered. The heat and mass flux at the surface of the cone is modeled as a power law according to qwx=xm and qw*(x)=xm, respectively, where x denotes the coordinate along the slant face of the cone. Both Darcian drag and Forchheimer quadratic porous impedance are incorporated into the two-dimensional viscous flow model. The transient boundary layer equations are then nondimensionalized and solved by the Crank-Nicolson implicit difference method. The velocity, temperature, and concentration fields have been studied for the effect of Grashof number, Darcy number, Forchheimer number, Prandtl number, surface heat flux power-law exponent (m), surface mass flux power-law exponent (n), Schmidt number, buoyancy ratio parameter, and semivertical angle of the cone. Present results for selected variables for the purely fluid regime are compared with the published results and are found to be in excellent agreement. The local skin friction, Nusselt number, and Sherwood number are also analyzed graphically. The study finds important applications in geophysical heat transfer, industrial manufacturing processes, and hybrid solar energy systems.
APA, Harvard, Vancouver, ISO, and other styles
5

Wood, Charles E., and Chris J. Lawn. "Two-phase MHD energy conversion from buoyancy-driven flows of liquid metal coolant in a fusion reactor." Fusion Engineering and Design 151 (February 2020): 111288. http://dx.doi.org/10.1016/j.fusengdes.2019.111288.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Liu, Zhipeng, Chaowei Jiang, Xueshang Feng, Pingbing Zuo, and Yi Wang. "Numerical Simulation of Solar Magnetic Flux Emergence Using the AMR–CESE–MHD Code." Astrophysical Journal Supplement Series 264, no. 1 (2022): 13. http://dx.doi.org/10.3847/1538-4365/ac9d2b.

Full text
Abstract:
Abstract Magnetic flux emergence from the solar interior to the atmosphere is believed to be a key process in the formation of solar active regions and driving solar eruptions. Due to the limited capabilities of observations, the flux emergence process is commonly studied using numerical simulations. In this paper, we develop a numerical model to simulate the emergence of a twisted magnetic flux tube from the convection zone to the corona, using the AMR–CESE–MHD code, which is based on the conservation-element solution-element method, with adaptive mesh refinement. The results of our simulation agree with those of many previous studies with similar initial conditions, but by using different numerical codes. In the early stage, the flux tube rises from the convection zone, being driven by magnetic buoyancy, until it reaches close to the photosphere. The emergence is decelerated there, and with the piling up of the magnetic flux, the magnetic buoyancy instability is triggered, which allows the magnetic field to partially enter into the atmosphere. Meanwhile, two gradually separated polarity concentration zones appear in the photospheric layer, transporting the magnetic field and energy into the atmosphere through their vortical and shearing motions. Correspondingly, the coronal magnetic field is also reshaped into a sigmoid configuration, containing a thin current layer, which resembles the typical pre-eruptive magnetic configuration of an active region. Such a numerical framework of magnetic flux emergence as established will be applied to future investigations of how solar eruptions are initiated in flux emergence active regions.
APA, Harvard, Vancouver, ISO, and other styles
7

Subhrajit Kanungo and Tumbanath Samantara. "Flow And Heat Transfer of Unsteady Two-Phase Boundary Layer Flow Past an Inclined Permeable Stretching Sheet with Electrification of Particles." CFD Letters 15, no. 5 (2023): 134–44. http://dx.doi.org/10.37934/cfdl.15.5.134144.

Full text
Abstract:
In the present study, an analysis has been carried out for a particle laden boundary layer flow with existence of electrification of particles has been studied over an inclined permeable stretching sheet. In most of the MHD fluid flow problems, either the plate is externally supplied by the magnetic/electric field or the fluid is electrically conducting. In the present problem, neither the plate is electrified nor the fluid is electrically conducted, but due to the random motion of the particles, collision of particle-particle and particle–wall, the particles are electrified. This electric field affects the fluid flow and heat transfer of the flow problem. Again, in the previous literatures, Buoyancy force is considered in momentum equations of fluid phase only. But in reality, both the phases are affected by the buoyancy force. For this reason, a reasonable mathematical model for two-phase buoyancy driven flow has been formulated with the consideration of electrification of particles in both fluid and particle phase. The governing system of PDEs are transferred to system of ODEs by applying similarity transformations and then computed by implementing Runga-Kutta method. The impact of electrification and other fluid parameters on flow and heat transfer has been studied. The results are represented through graphs and tables
APA, Harvard, Vancouver, ISO, and other styles
8

Gouse, Mohiddin, Anwar Bég, and Vijaya Varma. "Numerical study of free convective MHD flow past a vertical cone in non-Darcian porous media." Theoretical and Applied Mechanics 41, no. 2 (2014): 119–40. http://dx.doi.org/10.2298/tam1402119g.

Full text
Abstract:
A numerical study of buoyancy-driven unsteady natural convection boundary layer flow past a vertical cone embedded in a non-Darcian isotropic porous regime with transverse magnetic field applied normal to the surface is considered. The heat and mass flux at the surface of the cone is modeled as a power-law according to qw(x) = xm and q*w (x) = xn respectively, where x denotes the coordinate along the slant face of the cone. Both Darcian drag and Forchheimer quadratic porous impedance are incorporated into the two-dimensional viscous flow model. The transient boundary layer equations are then non-dimensionalized and solved by the Crank-Nicolson implicit difference method. The velocity, temperature and concentration fields have been studied for the effect of Grashof number, Darcy number, Forchheimer number, Prandtl number, surface heat flux power-law exponent (m), surface mass flux power-law exponent (n), Schmidt number, buoyancy ratio parameter and semi-vertical angle of the cone. Present results for selected variables for the purely fluid regime are compared with the non-porous study by Hossain and Paul [9] and are found to be in excellent agreement. The local skin friction, Nusselt number and Sherwood number are also analyzed graphically. The study finds important applications in geophysical heat transfer, industrial manufacturing processes and hybrid solar energy systems.
APA, Harvard, Vancouver, ISO, and other styles
9

Suzuki, Takeru K., Yasuo Fukui, Kazufumi Torii, Mami Machida, Ryoji Matsumoto, and Kensuke Kakiuchi. "Investigating Magnetic Activity in the Galactic Centre by Global MHD Simulation." Proceedings of the International Astronomical Union 11, S322 (2016): 137–40. http://dx.doi.org/10.1017/s1743921316012461.

Full text
Abstract:
AbstractBy performing a global magnetohydrodynamical (MHD) simulation for the Milky Way with an axisymmetric gravitational potential, we propose that spatially dependent amplification of magnetic fields possibly explains the observed noncircular motion of the gas in the Galactic centre (GC) region. The radial distribution of the rotation frequency in the bulge region is not monotonic in general. The amplification of the magnetic field is enhanced in regions with stronger differential rotation, because magnetorotational instability and field-line stretching are more effective. The strength of the amplified magnetic field reaches ≳ 0.5 mG, and radial flows of the gas are excited by the inhomogeneous transport of angular momentum through turbulent magnetic field that is amplified in a spatially dependent manner. As a result, the simulated position-velocity diagram exhibits a time-dependent asymmetric parallelogram-shape owing to the intermittency of the magnetic turbulence; the present model provides a viable alternative to the bar-potential-driven model for the parallelogram shape of the central molecular zone. In addition, Parker instability (magnetic buoyancy) creates vertical magnetic structure, which would correspond to observed molecular loops, and frequently excited vertical flows. Furthermore, the time-averaged net gas flow is directed outward, whereas the flows are highly time dependent, which would contribute to the outflow from the bulge.
APA, Harvard, Vancouver, ISO, and other styles
10

Hanasz, M., D. Woltanski, and K. Kowalik. "Interstellar and intergalactic dynamos." Proceedings of the International Astronomical Union 8, S294 (2012): 225–36. http://dx.doi.org/10.1017/s1743921313002573.

Full text
Abstract:
AbstractWe review recent developments of amplification models of galactic and intergalactic magnetic field. The most popular scenarios involve variety of physical mechanisms, including turbulence generation on a wide range of physical scales, effects of supernovae, buoyancy as well as the magnetorotational instability. Other models rely on galaxy interaction, which generate galactic and intergalactic magnetic fields during galaxy mergers. We present also global galactic-scale numerical models of the Cosmic Ray (CR) driven dynamo, which was originally proposed by Parker (1992). We conduct a series of direct CR+MHD numerical simulations of the dynamics of the interstellar medium (ISM), composed of gas, magnetic fields and CR components. We take into account CRs accelerated in randomly distributed supernova (SN) remnants, and assume that SNe deposit small-scale, randomly oriented, dipolar magnetic fields into the ISM. The amplification timescale of the large-scale magnetic field resulting from the CR-driven dynamo is comparable to the galactic rotation period. The process efficiently converts small-scale magnetic fields of SN-remnants into galactic-scale magnetic fields. The resulting magnetic field structure resembles the X-shaped magnetic fields observed in edge-on galaxies.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography