Academic literature on the topic 'Bulk Graphene'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bulk Graphene.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bulk Graphene"
Simionescu, Octavian-Gabriel, Andrei Avram, Bianca Adiaconiţă, Petruţa Preda, Cătălin Pârvulescu, Florin Năstase, Eugen Chiriac, and Marioara Avram. "Field-Effect Transistors Based on Single-Layer Graphene and Graphene-Derived Materials." Micromachines 14, no. 6 (May 23, 2023): 1096. http://dx.doi.org/10.3390/mi14061096.
Full textEnglert, Jan M., Christoph Dotzer, Guang Yang, Martin Schmid, Christian Papp, J. Michael Gottfried, Hans-Peter Steinrück, Erdmann Spiecker, Frank Hauke, and Andreas Hirsch. "Covalent bulk functionalization of graphene." Nature Chemistry 3, no. 4 (March 20, 2011): 279–86. http://dx.doi.org/10.1038/nchem.1010.
Full textQuintana, Mildred, Alejandro Montellano, Antonio Esau del Rio Castillo, Gustaaf Van Tendeloo, Carla Bittencourt, and Maurizio Prato. "Selective organic functionalization of graphene bulk or graphene edges." Chemical Communications 47, no. 33 (2011): 9330. http://dx.doi.org/10.1039/c1cc13254g.
Full textTian, Leilei, Xin Wang, Li Cao, Mohammed J. Meziani, Chang Yi Kong, Fushen Lu, and Ya-Ping Sun. "Preparation of Bulk13C-Enriched Graphene Materials." Journal of Nanomaterials 2010 (2010): 1–5. http://dx.doi.org/10.1155/2010/742167.
Full textJi, Qianyu, Bowen Wang, Yajuan Zheng, Fanguang Zeng, and Bingheng Lu. "Field emission performance of bulk graphene." Diamond and Related Materials 124 (April 2022): 108940. http://dx.doi.org/10.1016/j.diamond.2022.108940.
Full textFeng, Xiayu, Wufeng Chen, and Lifeng Yan. "Electrochemical reduction of bulk graphene oxide materials." RSC Advances 6, no. 83 (2016): 80106–13. http://dx.doi.org/10.1039/c6ra17469h.
Full textAbramov, A. S., D. A. Evseev, I. O. Zolotovskii, and D. I. Sementsov. "Dispersion of Bulk Waves in a Graphene–Dielectric–Graphene Structure." Optics and Spectroscopy 126, no. 2 (February 2019): 154–60. http://dx.doi.org/10.1134/s0030400x19020024.
Full textChe, Yongli, Guizhong Zhang, Yating Zhang, Xiaolong Cao, Mingxuan Cao, Yu Yu, Haitao Dai, and Jianquan Yao. "Solution-processed graphene phototransistor functionalized with P3HT/graphene bulk heterojunction." Optics Communications 425 (October 2018): 161–65. http://dx.doi.org/10.1016/j.optcom.2018.04.058.
Full textEndoh, Norifumi, Shoji Akiyama, Keiichiro Tashima, Kento Suwa, Takamasa Kamogawa, Roki Kohama, Kazutoshi Funakubo, et al. "High-Quality Few-Layer Graphene on Single-Crystalline SiC thin Film Grown on Affordable Wafer for Device Applications." Nanomaterials 11, no. 2 (February 4, 2021): 392. http://dx.doi.org/10.3390/nano11020392.
Full textKUMAR, AMIT, J. M. POUMIROL, W. ESCOFFIER, M. GOIRAN, B. RAQUET, and J. M. BROTO. "ELECTRONIC PROPERTIES OF GRAPHENE, FEW-LAYER GRAPHENE, AND BULK GRAPHITE UNDER VERY HIGH MAGNETIC FIELD." International Journal of Nanoscience 10, no. 01n02 (February 2011): 43–47. http://dx.doi.org/10.1142/s0219581x11007703.
Full textDissertations / Theses on the topic "Bulk Graphene"
Yu, Fei. "Graphene-enhanced Polymer Bulk-heterojunction Solar Cells." University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1439310775.
Full textLi, Yangdi. "Innovative synthesis and characterization of large h-BN single crystals : From bulk to nanosheets." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI025/document.
Full textIn the past decades, due to their exceptional chemical and thermal stabilities together with their electrical insulation properties, hexagonal boron nitride nanosheets (BNNSs) have become a promising support substrate for graphene and promoted the incentive of various van der Waals heterostructures. For such applications, BNNSs are generally obtained by Chemical Vapor Deposition (CVD) or exfoliation. In order to achieve high quality and large BNNSs, our group has proposed a novel synthesis strategy based on the Polymer Derived Ceramics (PDCs) route combined with sintering techniques: Spark Plasma Sintering (SPS) or Hot Isostatic Pressing (HIP). Since hexagonal boron nitride (h-BN) crystallization is a key point in the synthesis of high quality BNNSs, efforts have been led to understand the beneficial role of a promotor of crystallization (Li3N), adopting a suitable in situ dynamic approach. It has been established that Li3N does improve the crystallization level of the product, and lower the transformation temperatures from polyborazylene to h-BN. Then, we have further investigate the influence of the SPS sintering temperature (1200-1950°C) and of the crystal promoter content (Li3N, 0-10 wt.%) on BN growth. The tested SPS parameters strongly modify the size of the resulting h-BN flakes. For an optimal Li3N concentration of 5 wt.%, h-BN flakes larger than 200 μm2 (average flake area) have been obtained. A high degree of crystallinity and purity have been achieved, even if the very-sensitive cathodoluminescence technic indicated traces of impurities, probably due to surrounding graphite parts of the SPS. Few-layered BNNSs have been successfully isolated, through exfoliation process. As a final application purpose, further physical measurements have confirmed that SPS derived h-BN exhibits an interesting dielectric constant of 3.9 associated with a dielectric strength of 0.53 V/nm. Due to a very high compact character of SPS-derivative h-BN crystals, the post-exfoliation step is made very difficult, resulting in BNNSs of tens of microns lateral size. Therefore, we have studied another sintering procedure by HIP for the ceramization process. Through this combination, we aim to promote the size of h-BN single crystals, leading to larger size exfoliated BNNSs. Characterizations from bulk crystals to BNNSs have been carried out in three aspects: morphology, lattice structure and chemical composition. This novel attempt has provided us transparent and colorless h-BN single crystals with large lateral size, up to 2000 μm. Besides, BNNSs with high purity have also been confirmed. HIP, as a new ceramization process of PDCs, has to be considered as a promising way to obtain large h-BN single crystals and nanosheets for supporting graphene and 2D heterostructures
Cunning, Benjamin V. "An Exploration in Nano-Carbons: Bulk Graphene, Ultrafast Physics, Carbon-Nanotubes." Thesis, Griffith University, 2013. http://hdl.handle.net/10072/367408.
Full textThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Biomolecular and Physical Sciences
Science, Environment, Engineering and Technology
Full Text
Knapp, Marius [Verfasser], and Oliver [Akademischer Betreuer] Ambacher. "Graphene - from synthesis to the application as a virtually massless electrode material for bulk acoustic wave resonators." Freiburg : Universität, 2018. http://d-nb.info/1179694619/34.
Full textSrivastava, Deepanshu. "Effect of processing conditions and second-phase additives on thermoelectric properties of SrTiO3 based ceramics." Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/effect-of-processing-conditions-and-secondphase-additives-on-thermoelectric-properties-of-srtio3-based-ceramics(ff3c590e-4fc5-4c5d-b47b-823369ae369d).html.
Full textMao, Fang. "Synthesis, Characterization, and Evaluation of Ag-based Electrical Contact Materials." Doctoral thesis, Uppsala universitet, Oorganisk kemi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-320235.
Full textXu, Junjie [Verfasser], and R. [Akademischer Betreuer] Schuster. "A microcalorimetric study of concentration effects on the reaction entropy during Al- and Li- bulk deposition and of phase transitions during Li intercalation in graphite electrodes / Junjie Xu ; Betreuer: R. Schuster." Karlsruhe : KIT-Bibliothek, 2018. http://d-nb.info/1172351759/34.
Full textHuang, Xing-Tyng, and 黃新亭. "Characterization Analysis of Graphene Films Prepared by Graphite Bulk." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/x2w994.
Full text國立臺北科技大學
材料科學與工程研究所
102
Graphene is a two-dimensional crystal of carbon atoms arranged in a honeycomb lattice with excellent properties such as high conductivity,high mechanical stress, high specific surface area, and high electron mobility. In this study, graphite bulk of metal films generated on the high temperature catalytic principle. Graphite powder pressed into bulk ingot, ingot as graphite bulk and then to the substrate, respectively, the composite sputtering a metal films (copper films, nickel films) on the surface of the graphite bulk ingot, and then by vacuum sintering furnace heat treatment, the carbon atom at time (1hr) diffusion within the graphite bulk to result metal films formed on the surface of the bulk ingot silvery graphene films, in the same identical process parameters, with three kinds of heat treatment temperature (1000°C, 900°C, 800°C) different ways to scanning electron microscope of three different heat treatment temperatures of the metal films surface wrinkling stack structure. By Raman spectrum, it is discovered that G peak, which is quite sharp, is at the position of 1580 cm-1, and 2D peak, which is a characteristics of graphene, is at about 2750 cm-1,and found in the resulting two-dimensional crystal of the graphite films, In this experiment to see graphene films heat treatment temperature 1000 ° C and 800 ° C, 900 ° C compared to the heat treatment temperature, in the graphene films 1000 ° C generated more large area continuous graphite films, 900 ° C graphite films area and heat treatment 1000 ° C no difference is less and less of the graphene films generated 800 ° C, and a small area is not continuous graphite films.
Basu, Dipanjan. "Quantum transport and bulk calculations for graphene-based devices." Thesis, 2010. http://hdl.handle.net/2152/ETD-UT-2010-12-2081.
Full texttext
Chuang, Shu-Yu, and 莊舒伃. "Measurement and Application of Lithium Niobate Bulk Wave Sensors with Graphene Film." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/88609872229863369832.
Full text大同大學
機械工程學系(所)
102
Global warming have been an important issue for many years. It’s because the carbon dioxide and other greenhouse gases are increasing constantly. With industrial development and progress, the emission of exhaust from factory、automobile and motorcycle is the culprit caused by rising carbon dioxide concentration in atmospheric. A variety of policies to reduce carbon dioxide emissions has been undertaken internationally, in order to monitor the emissions of carbon dioxide effectively and trace concentrations of atmospheric carbon dioxide, it's necessary to develop a low cost and high sensitivity sensor for carbon dioxide. The surface acoustic wave gas sensor has many characteristics like good stability, sensitivity, and low cost is adequate for use as carbon dioxide sensing. However, the LFE form gas sensor through bulk wave to detect, only used in liquid sensing in the past. This study try to combine the characteristic of graphene high sensitive for environment changes to improve the defect which LFE sensor doesn’t apply to use in gas measure. Then make a lightweight and sensitive gas sensing devices. In this paper, we used 128°YXLiNbO3 as a substrate and graphene as a sensing layer, oscillated by the form of the Lateral Field Excited to develop a bulk wave sensors to measure carbon dioxide. We use finite element analysis (COMSOL) to analyze the property of LFE seneor, frequency response and conductivity changes, and compared with experimental results. The results showed that when pass into 1000ppm carbon dioxide to chamber, the frequency drift about 210Hz, consistent with its trends and forecasts.
Books on the topic "Bulk Graphene"
Haasz, A. A. The effect of bulk hydrogen inventory on the chemical erosion of graphite. [S.l.]: [s.n.], 1986.
Find full textHaasz, A. A. The effect of bulk hydrogen inventory on the chemical erosion of graphite. Mississauga, Ont: CFFTP, 1985.
Find full textBook chapters on the topic "Bulk Graphene"
Sharma, Rajni, Firoz Alam, A. K. Sharma, V. Dutta, and S. K. Dhawan. "Hydrophobic ZnO Anchored Graphene Nanocomposite Based Bulk Hetro-Junction Solar Cells to Improve Short Circuit Current Density." In Graphene Materials, 245–75. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119131816.ch8.
Full textIssi, Jean-Paul, Paulo T. Araujo, and Mildred S. Dresselhaus. "Electron and Phonon Transport in Graphene in and out of the Bulk." In Physics of Graphene, 65–112. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02633-6_3.
Full textXu, Liu-Jun, and Ji-Ping Huang. "Theory for Thermal Edge States: Graphene-Like Convective Lattice." In Transformation Thermotics and Extended Theories, 305–15. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5908-0_22.
Full textHaldar, S., S. Bhandary, P. Chandrachud, B. S. Pujari, M. I. Katsnelson, O. Eriksson, D. Kanhere, and B. Sanyal. "Ab Initio Studies on the Hydrogenation at the Edges and Bulk of Graphene." In Carbon Nanostructures, 203–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-20644-3_25.
Full textChen, D., and L. Zhang. "Harmonic Vibration of Inclined Porous Nanocomposite Beams." In Lecture Notes in Civil Engineering, 497–501. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3330-3_52.
Full textPrasad, T. N. V. K. V., S. Adam, P. Visweswara Rao, Venkata Subbaiah Kotakadi, P. Sudhakar, B. Ravindra Reddy, B. Bhaskar, and T. Giridhara Krishna. "Novel Effects of Phytogenic Bulk Graphene on Germination and Growth of Monocots and Dicots." In Lecture Notes on Multidisciplinary Industrial Engineering, 493–506. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7643-6_40.
Full textOzdemir, Servet. "Bulk Versus Surface Conduction in Rhombohedral Graphite Films." In Springer Theses, 85–89. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-88307-2_4.
Full textCambronero, L. E. G., P. Sánchez, J. M. Ruiz-Román, J. Pous, and F. A. Corpas. "Radial Crushing Strength of Bronce with Nickel-Graphite Additions." In Materials Development and Processing - Bulk Amorphous Materials, Undercooling and Powder Metallurgy, 315–22. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527607277.ch51.
Full textKhorkov, Kirill, Dmitriy Kochuev, Ruslan Chkalov, Valery Prokoshev, and Sergei Arakelian. "Nonlinear Dynamic Processes in Laser-Induced Transitions to Low-Dimensional Carbon Nanostructures in Bulk Graphite Unit." In New Trends in Nonlinear Dynamics, 131–39. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-34724-6_14.
Full text"Electrochemical Exfoliation: A Cost-Effective Approach to Produce Graphene Nanoplatelets in Bulk Quantities." In Graphite, Graphene, and Their Polymer Nanocomposites, 162–91. CRC Press, 2012. http://dx.doi.org/10.1201/b13051-8.
Full textConference papers on the topic "Bulk Graphene"
Chen, Zhen, Wanyoung Jang, Wenzhong Bao, Chun Ning Lau, and Chris Dames. "Heat Transfer in Encased Graphene." In ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/ht2009-88370.
Full textGhosh, Suchismita, Denis L. Nika, Evgenni P. Pokatilov, Irene Calizo, and Alexander A. Balandin. "Extraordinary Thermal Conductivity of Graphene: Prospects of Thermal Management Applications." In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-22348.
Full textKhusyainov, D. I., A. V. Gorbatova, A. M. Buryakov, and E. D. Mishina. "THz surface emission from bulk and monolayer WSe2." In PROCEEDINGS OF INTERNATIONAL CONGRESS ON GRAPHENE, 2D MATERIALS AND APPLICATIONS (2D MATERIALS 2019). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0055455.
Full textMukherjee, P. S., and K. Jayasankar. "Bulk production of graphene by innovative milling techniques." In Proceedings of the International Conference on Nanotechnology for Better Living. Singapore: Research Publishing Services, 2016. http://dx.doi.org/10.3850/978-981-09-7519-7nbl16-rps-334.
Full textSandoz-Rosado, Emil, and Elon J. Terrell. "The Wear Characteristics of Graphene as an Atomically-Thin Protective Coating." In ASME/STLE 2012 International Joint Tribology Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ijtc2012-61135.
Full textMohapatra, P. K., Dushyant Kushavah, J. Mohapatra, and B. P. Singh. "Interaction of graphene quantum dots with bulk semiconductor surfaces." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON CONDENSED MATTER PHYSICS 2014 (ICCMP 2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4915443.
Full textCho, Won Bae, Hwang Woon Lee, Sun Young Choi, Jun Wan Kim, Dong-II Yeom, Fabian Rotermund, Jinho Kim, and Byung Hee Hong. "Monolayer graphene saturable absorber for bulk laser mode-locking." In Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/cleo.2010.jthe86.
Full textLei, Nan, Pengfei Li, Wei Xue, and Jie Xu. "Gate-Free Graphene-Based Sensor for pH Monitoring." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-65166.
Full textLiu, Ruiyi, Xiaohu Wu, and Zheng Cui. "Photon Tunneling via Coupling Graphene Plasmons With Phonon Polaritons of Hexagonal Boron Nitride in Reststrahlen Bands." In ASME 2021 Heat Transfer Summer Conference collocated with the ASME 2021 15th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/ht2021-62180.
Full textCai, Chun-Hua, Ming Qin, and Jian-Qiu Huang. "High-performance bulk silicon interdigital capacitive temperature sensor based on graphene oxide." In 2012 IEEE Sensors. IEEE, 2012. http://dx.doi.org/10.1109/icsens.2012.6411222.
Full textReports on the topic "Bulk Graphene"
Pisani, William, Dane Wedgeworth, Michael Roth, John Newman, and Manoj Shukla. Exploration of two polymer nanocomposite structure-property relationships facilitated by molecular dynamics simulation and multiscale modeling. Engineer Research and Development Center (U.S.), March 2023. http://dx.doi.org/10.21079/11681/46713.
Full text