Academic literature on the topic 'Bulk charge transport'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bulk charge transport.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Bulk charge transport"

1

Slonopas, Andre, Benjamin J. Foley, Joshua J. Choi, and Mool C. Gupta. "Charge transport in bulk CH3NH3PbI3 perovskite." Journal of Applied Physics 119, no. 7 (February 21, 2016): 074101. http://dx.doi.org/10.1063/1.4941532.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Onwona-Agyeman, Boateng, Yong Sun, and Hayami Hattori. "Charge transport measurements in compressed bulk graphene oxide." International Journal of Materials Research 111, no. 7 (August 1, 2020): 552–58. http://dx.doi.org/10.1515/ijmr-2020-1110704.

Full text
Abstract:
Abstract Charge transport measurements in compressed bulk graphene oxide (GO) have been studied within the temperature range 15-450 K. Structural properties and surface morphologies of the bulk compressed GO were studied using X-ray diffraction and transmission electron microscopy. Raman and X-ray photoelectron spectroscopies were also used to confirm the presence of graphitic phases and the various functional groups in the GO, respectively. Current-voltage characteristics of the GO measured with gold (Au) electrodes at different temperatures showed no Schottky barrier at the Au/GO interface. At low temperatures and low bias voltages, the electron transport through the compressed GO sample showed no significant voltage dependence, which is consistent with a direct tunneling mechanism at all the bias voltages (0.01 -1.0 V). It was also observed that no Fowler- Nordheim transport mechanism occurred within this bias voltage range.
APA, Harvard, Vancouver, ISO, and other styles
3

Tessema, Genene. "Charge transport across bulk heterojunction organic thin film." Applied Physics A 106, no. 1 (December 1, 2011): 53–57. http://dx.doi.org/10.1007/s00339-011-6676-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Onwona-Agyeman, Boateng, Yong Sun, and Hayami Hattori. "Charge transport measurements in compressed bulk graphene oxide." International Journal of Materials Research 111, no. 7 (July 15, 2020): 552–58. http://dx.doi.org/10.3139/146.111915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fitting, H. J., N. Cornet, M. Touzin, D. Goeuriot, C. Guerret-Piécourt, and D. Tréheux. "Injection and selfconsistent charge transport in bulk insulators." Journal of the European Ceramic Society 27, no. 13-15 (January 2007): 3977–82. http://dx.doi.org/10.1016/j.jeurceramsoc.2007.02.078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kažukauskas, V., A. Arlauskas, M. Pranaitis, M. Glatthaar, and A. Hinsch. "Charge Transport and Trapping in Bulk-Heterojunction Solar Cells." Journal of Nanoscience and Nanotechnology 10, no. 2 (February 1, 2010): 1376–80. http://dx.doi.org/10.1166/jnn.2010.1859.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Juška, Gytis, Kęstutis Arlauskas, and Kristijonas Genevičius. "Charge carrier transport and recombination in disordered materials." Lithuanian Journal of Physics 56, no. 3 (October 17, 2016): 182–89. http://dx.doi.org/10.3952/physics.v56i3.3367.

Full text
Abstract:
In this brief review the methods for investigation of charge carrier transport and recombination in thin layers of disordered materials and the obtained results are discussed. The method of charge carrier extraction by linearly increasing voltage (CELIV) is useful for the determination of mobility, bulk conductivity and density of equilibrium charge carriers. The extraction of photogenerated charge carriers (photo-CELIV) allows one to independently investigate relaxation of both the mobility and density of photogenerated charge carriers. The extraction of injected charge carriers (i-CELIV) is effective for the independent investigation of transport peculiarities of both injected holes and electrons in bulk heterojunctions. For the investigation of charge carrier recombination we proposed integral time-of-flight (TOF) and double-injection (DI) current transient methods. The methods allowed us to obtain the following significant results: to determine the reason of the conductivity dependence on electric field strength and temperature in the amorphous and microcrystalline hydrogenated silicon and π-conjugated polymers, the time dependent Langevin recombination, the impact of morphology on charge carrier mobility, the reason of reduced Langevin recombination in RR-PHT (regioregular poly(3-hexylthiophene))/PCBM (1-(3-methoxycarbonyl)propyl-1phenyl-[6,6]-methanofullerene) bulk heterojunction structures – 2D Langevin recombination; and to evaluate that the mobility of holes is predetermined by off-diagonal dispersion in poly-PbO.
APA, Harvard, Vancouver, ISO, and other styles
8

Stolterfoht, Nikolaus. "Simulations of Ion-Guiding Through Insulating Nanocapillaries of Varying Diameter: Interpretation of Experimental Results." Atoms 8, no. 3 (August 21, 2020): 48. http://dx.doi.org/10.3390/atoms8030048.

Full text
Abstract:
The guiding of highly charged ions through a single nanocapillary is simulated in comparison with previous experiments performed with highly insulating polyethylene terephthalate (PET). The simulations are carried out using 3-keV Ne7+ ions injected into capillaries with diameters ranging from 100 nm to 400 nm. In the calculations, non-linear effects are applied to model the charge transport along the capillary surface and into the bulk depleting the deposited charges from the capillary walls. In addition to the surface carrier mobility, the non-linear effects are also implemented into the bulk conductivity. A method is presented to determine the parameters of the surface charge transport and the bulk conductivity by reproducing the oscillatory structure of the mean emission angle. A common set of charge depletion rates are determined with relatively high accuracy providing confidence in the present theoretical analysis. Significant differences in the oscillatory structures, experimentally observed, are explained by the calculations. Experimental and theoretical results of the guiding power for capillaries of different diameters are compared. Finally, dynamic non-linear effects on the surface and bulk relaxation rates are determined from the simulations.
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, Chi, Xia Wang, Kai Wu, Chuanhui Cheng, Chuang Wang, Yuwei Fu, and Zaiqin Zhang. "Space charge and trap energy level characteristics of SiC wide bandgap semiconductor." AIP Advances 12, no. 3 (March 1, 2022): 035017. http://dx.doi.org/10.1063/5.0085118.

Full text
Abstract:
Charge carrier transport and accumulation in silicon carbide (SiC) wide bandgap semiconductors caused by the defect and impurity are likely to lead to serious performance degradation and failure of the semiconductor materials, and the high temperature effect makes the charge behaviors more complex. In this paper, charge carrier transport and accumulation in semi-insulating vanadium doped 4H–SiC crystal materials and the correlated temperature effect were investigated. Attempts were made to address the effect of deep trap levels on carrier transport. A combination of pulsed electro-acoustic direct space charge probing, an electrical conduction·current experiment, and x-ray diffraction measurement was employed. Space charge quantities including trap depth and trap density were extracted. The results show hetero-charge accumulation at adjacent electrode interfaces under a moderate electrical stress region (5–10 kV/mm). The charge carrier transports along the SiC bulk and is captured by the deep traps near the electrode interfaces. The deep trap energy levels originating from the vanadium dopant in SiC crystals are critical to carrier transport, providing carrier trapping sites for charges. This paper could promote the understandings of the carrier transport dynamic and trap energy level characteristic of SiC crystal materials.
APA, Harvard, Vancouver, ISO, and other styles
10

Sumets, M. "Charge transport in LiNbO3-based heterostructures." Journal of Nonlinear Optical Physics & Materials 26, no. 01 (March 2017): 1750011. http://dx.doi.org/10.1142/s0218863517500114.

Full text
Abstract:
Successful application of the LiNbO3-based heterostructures in the integrated electronics and optoelectronics is mostly determined by the charge transport phenomenon in the LiNbO3 since this affects their basic parameters. Depending on the particular conditions (temperature, applied field, properties of LiNbO3/substrate heterojunction, etc.), various conduction mechanisms occur simultaneously and primarily, they can be divided into two major groups: contact-limited and bulk-limited. Identification and study of the charge transport mechanisms allow deriving the vital physical properties such as the barrier height at LiNbO3 film/substrate interface, charged defect concentration, traps spacing as well as type and drift mobility of the carriers in the LiNbO3 films. In this paper, the conduction mechanisms in LiNbO3-based heterostructures are discussed in detail and electrical parameters are derived.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Bulk charge transport"

1

Li, Zhe. "Charge transport in bulk heterojunction organic photovoltaics." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Solak, Sevinç Selen [Verfasser]. "Charge transport in bulk heterojunctions with perylene diimide based acceptors / Selen Solak Sevinç." Mainz : Universitätsbibliothek Mainz, 2017. http://d-nb.info/1126759317/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chan, Ka Hin. "Charge injection and transport characterization of semiconducting polymers and their bulk heterojunction blends." HKBU Institutional Repository, 2012. https://repository.hkbu.edu.hk/etd_ra/1405.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lafalce, Evan. "Photophysical and Electronic Properties of Low-Bandgap Semiconducting Polymers." Scholar Commons, 2014. https://scholarcommons.usf.edu/etd/5424.

Full text
Abstract:
In this Ph.D. work, we investigate the optoelectronic properties of low-bandgap semiconducting polymers and project the potential for employing these materials in electronic and photonics devices, with a particular emphasis on use in organic solar cells. The field of organic solar cells is well developed and many of the fundamental aspects of device operation and material requirements have been established. However, there is still more work to be done in order for these devices to ultimately reach their full potential and achieve commercialization. Of immediate concern is the low power conversion efficiency demonstrated in these devices so far. In order to improve upon this efficiency, several routes are being explored. Because the optical bandgaps of semiconducting polymers are larger than in inorganic semiconductors, one of the most promising routes currently under exploration is the development of low-bandgap materials. Using polymers with lower band gaps will allow more of the solar irradiance spectrum to be absorbed and converted into electricity and thus possibly boost the overall efficiency. The bandgap of these semiconducting polymers is determined by the chemical structure, and therefore can be tailored through synthesis if the relevant structure-property relationships are well-understood. The materials studied in this work, a new series of Poly(thienylenevinylene) (PTV) derivatives, posses lower band gaps than conventional polymers through a design that incorporates aromatic-quinoid structural disturbances. This type of chemical structure delocalizes the electronic structure along the polymer backbone and reduces the energy of the lowest excited-state leading to a smaller band-gap. We investigate these materials through a variety of techniques including linear spectroscopy such as absorption and photoluminescence, pump-probe techniques like cw-photoinduced absorption and transient photo-induced absorption, and the non-linear electroasborption technique in order to interrogate the consequences of the delocalized electronic structure and its response to optical stimuli. We additionally consider the effects of environmental factors such as temperature, solvents and chemical doping agents. During the course of these investigations, we consider both of the two primary categorical descriptions of structure-property relationships for polymers within the molecular exciton model, namely the role of inter-molecular interactions on the electronic properties through the variation of supermolecular order and the fundamental determination of electronic structure due to specific intra-molecular interaction along the backbone of the polymer chain. We show that the dilution of aromaticity in semiconducting polymers, while being a viable means of reducing the optical band gap, results in a significant increase in the role of electron-electron interactions in determining the electronic properties. This is observed to be detrimental for device performance as the highly polarizable excited state common to polymers gives way to highly correlated state that extinguishes both the emissive properties and more importantly for solar cells, the charge-generating characteristics. This situation is shown to be predominant regardless of the nature of interchain interactions. We therefore show that the method of obtaining low-bandgap polymers here comes along with costly side-effects that inhibit their efficient application in solar cells. Further, we directly probe the efficacy of these materials in the common bulk-heterojunction architecture with both spectroscopy and device characterization in order to determine the limiting and beneficial factors. We show that, while from the point of view of absorption of solar radiation these low-bandgap polymers are more suited for solar cells, the ability to convert the absorbed photons into electron-hole pairs and generate electricity is lacking, due to the internal conversion into the highly correlated state and thus, the absorbed photon energy is lost. For completeness, we fabricate devices and verify that both the charge-transport properties and alignment of charge extraction levels with those of the contacts can not be responsible for the dramatic decrease in efficiency found from these devices as compared to other higher band gap polymers. We thus conclusively determine that the lack of power converison efficiency is governed by the inefficiency of charge-generation resulting from the intrinsic defective molecular structures rendering a low-lying optically forbidden state below the lowest optical allowed state that consumes the majority of the photogenerated excitons. It is emphasized that our means of investigation allow us to truly access the potential of these materials. In contrast, the direct application of these systems in devices and interpretation of the performance is exceedingly complex and may obscure their true potential. In other words, poor performance from a device may be extrinsic in nature and the optimization process may be very costly with respect to both time and materials. The methods used here however, allow us to determine the intrinsic potential. Not only is this beneficial in terms of preserving the resources that would be used on the trial-and-error method for devices, but it also allows us to learn more on a fundamental level about the structure-property relationships and their implications for device performance. The benefits of this increased understanding are two-fold. First, by learning about the fundamental response of a material, a new application may be realized. For example, the rapidly efficient internal conversion process that renders the materials in this study as poor candidates for solar cells may make them useful for photonics applications, as optical switches, for instance. Secondly, this type of investigation has implications for the whole organic electronics community instead of just being limited to the particular material system and the primary application attempted. In this case, we are essentially able to determine a threshold for aromaticty necessary in a structure that will preserve the stability of the ionic excited state that is useful for charge generation in solar cells.
APA, Harvard, Vancouver, ISO, and other styles
5

Han, Tianyan. "Bulk heterojunction solar cells based on solution-processed triazatruxene derivatives." Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAD036/document.

Full text
Abstract:
La conception de cellules solaires organiques de type hétérojonction en volume a été proposée pour la première fois en 1990. Ces dispositifs sont composés d’un mélange de polymères conjugués, donneurs d’électrons, et de fullerènes, accepteur d’électrons, et ont pour la première fois permis d’atteindre un rendement de conversion énergétique significatif (de l’ordre de 2%) avec des semi-conducteurs organiques. Dans ce contexte, cette thèse a porté sur l'étude approfondie d’une série de molécules donneurs d’électrons de forme d’haltère, dont le groupement planaire est l’unité triazatruxène (TAT) et le cœur déficient en électrons le thienopyrroledione (TPD). Les molécules de cette série se différencient par la nature des chaînes alkyles, attachées à l’unité centrale et aux unités TAT. Plus précisément, la relation entre la nature des chaînes latérales et les propriétés moléculaires et thermiques de ces molécules en forme d’haltère ont été étudiées en détail. L'impact des chaînes alkyles sur la morphologie en film mince à l’échelle nanométrique a également été étudié. Afin de mieux comprendre l’influence de la microstructure des films minces (constitués soit uniquement des molécules donneuses soit de mélanges molécules/fullerènes), le transport de charge dans le plan du film et perpendiculairement au plan ont été mesurées en fonction de la phase (amorphe, cristalline, …) du matériau. Des cellules solaires BHJ en mélange avec le dérivé de fullerène ont également été réalisées
The prospective conception of electron-donor/electron-acceptor (D/A) bulk heterojunction solar cells was first reported in 1990s, which blended the semiconducting polymer with fullerene derivatives, enhancing the power conversion efficiency. Since then, interests on this domain has been increasing continuously, and the efficiencies of BHJ solar cells have been increased dramatically. In this context, this thesis focuses on the study of a series of dumbbell-shaped small molecule donors, based on a highly planar unit called triazatruxene. The only difference between those molecules is the side-chains attached to central units and TAT units. As a consequence, the relationship between side chains nature and optoelectronic and structural properties of our TAT-based dumbbell-shaped molecular architecture will be investigated in detail. The impact of the alkyl chains on the molecular and thin film properties was also studied, with a particular emphasis put on microstructure and charge transport aspects. In-plane and out-of-plane charge carrier transport, with pure molecules and blend with fullerene, are measured in different systems. BHJ solar cells in blend with fullerene derivatives were also realized
APA, Harvard, Vancouver, ISO, and other styles
6

Baumann, Andreas [Verfasser], and Vladimir [Akademischer Betreuer] Dyakonov. "Charge Transport and Recombination Dynamics in Organic Bulk Heterojunction Solar Cells / Andreas Baumann. Betreuer: Vladimir Dyakonov." Würzburg : Universitätsbibliothek der Universität Würzburg, 2011. http://d-nb.info/1014891965/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Maitra, Kingsuk. "Electron transport in bulk-Si NMOSFETs in presence of high-k insulator-charge trapping and mobility." NCSU, 2005. http://www.lib.ncsu.edu/theses/available/etd-11272005-222631/.

Full text
Abstract:
Recent advancements in gate stack engineering has led to the development of aggressively scaled, high mobility, high-k dielectric based NMOSFETs with metal gates. Most of the current literature on the subject also stressed on the need for a high temperature process step to attain the high mobility under minimal change of effective oxide thickness. However, the physical origin of high mobility is not well understood. In this work, fundamental insight into the necessity of the high temperature process step is provided. Novel experimental strategies are developed to understand the impact of interface states and bulk traps separately and exclusively on channel mobility. It is conjectured that the interface states at the SiO2/(100) bulk-Si interface are identical in nature (as far as coupling with the channel electrons is concerned) to those at the high-k/SiO2/(100) bulk-Si interface. Thus, the response of interface states on channel electrons in high-k insulator based NMOSFETs is properly calibrated by a novel thermal desorption of hydrogen experiment on SiO2/(100) bulk-Si NMOSFETs to yield a highly accurate parameterized equation. The value of interface state response parameter determined by the aforementioned experiment is compared with theoretical predictions, and independently determined projections from electrical stress measurements. The impact of transient charging on transport in the channel is investigated. It is conclusively shown that remote charge has minimal impact on mobility in the channel. The role of nitrogen induced fixed oxide charge is studied on a set of Hf-silicate samples. Role of soft optical phonon scattering and the beneficial impact of metal gates on soft optical phonon limited mobility are thoroughly investigated both theoretically and experimentally. Conclusions are drawn on the fundamental limit of mobility attainable in high-k dielectric based NMOSFETs.
APA, Harvard, Vancouver, ISO, and other styles
8

Gadisa, Abay. "Studies of Charge Transport and Energy Level in Solar Cells Based on Polymer/Fullerene Bulk Heterojunction." Doctoral thesis, Linköping : LInköping University, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-8047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ibraikulov, Olzhas. "Bulk heterojunction solar cells based on low band-gap copolymers and soluble fullerene derivatives." Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAD046/document.

Full text
Abstract:
La structure chimique des semiconducteurs organiques utilisés dans les cellules photovoltaïques à base d’hétérojonction en volume peut fortement influencer les performances du dispositif final. Pour cette raison, une meilleure compréhension des relations structure-propriétés demeure cruciale pour l’amélioration des performances. Dans ce contexte, cette thèse fait état d'études approfondies du transport des charges, de la morphologie et des propriétés photovoltaïques sur de nouveaux copolymères à faible bande interdite. En premier lieu, l'impact de la position des chaînes alkyles sur les propriétés opto-électroniques et morphologiques a été étudié sur une famille de polymères. Les mesures du transport de charges ont montré que la planéité du squelette du copolymère influe sur l’évolution de la mobilité des charges avec la concentration de porteurs libres. Ce comportement suggère que le désordre énergétique électronique est fortement impacté par les angles de torsion intramoléculaire le long de la chaîne conjuguée. Un second copolymère à base d'unités accepteur de [2,1,3] thiadiazole pyridique, dont les niveaux d’énergie des orbitales frontières sont optimales pour l’application photovoltaïque, a ensuite été étudié. Les performances obtenues en cellule photovoltaïque sont très inférieures aux attentes. Des analyses de la morphologie et du transport de charge ont révélé que l’orientation des lamelles cristallines est défavorable au transport perpendiculaire au film organique et empêche ainsi une bonne extraction des charges photo-générées. Enfin, les propriétés opto-électroniques et photovoltaïques de copolymères fluorés ont été étudiées. Dans ce cas, les atomes de fluor favorisent la formation de lamelles orientées favorablement pour le transport. Ces bonnes propriétés nous ont permis d'atteindre un rendement de conversion de puissance de 9,8% avec une simple hétérojonction polymère:fullerène
The chemical structure of organic semiconductors that are utilized in bulk heterojunction photovoltaic cells may strongly influence the final device performances. Thus, better understanding the structure-property relationships still remains a major task towards high efficiency. Within this framework, this thesis reports in-depth material investigations including charge transport, morphology and photovoltaic studies on various novel low band-gap copolymers. First, the impact of alkyl side chains on the opto-electronic and morphological properties has been studied on a series of polymers. Detailed charge transport investigations showed that a planar conjugated polymer backbone leads to a weak dependence of the charge carrier mobility on the carrier concentration. This observation points out that the intra-molecular torsion angle contributes significantly to the electronic energy disorder. Solar cells using another novel copolymer based on pyridal[2,1,3]thiadiazole acceptor unit have been studied in detail next. Despite the almost ideal frontier molecular orbital energy levels, this copolymer did not perform in solar cells as good as expected. A combined investigation of the thin film microstructure and transport properties showed that the polymers self-assemble into a lamellar structure with polymer chains being oriented preferentially “edge-on”, thus hindering the out-of-plane hole transport and leading to poor charge extraction. Finally, the impact of fluorine atoms in fluorinated polymers on the opto-electronic and photovoltaic properties has been investigated. In this case, the presence of both flat-lying and standing lamellae enabled efficient charge transport in all three directions. As a consequence, good charge extraction was possible and allowed us to achieve a maximum power conversion efficiency of 9.8%
APA, Harvard, Vancouver, ISO, and other styles
10

Simon, Mark Alexander. "Second Phase Filamentation and Bulk Conduction in Amorphous Thin Films." University of Toledo / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1302207950.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Bulk charge transport"

1

Fernandez-Serra, M. V., and X. Blase. Electronic and transport properties of doped silicon nanowires. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.013.2.

Full text
Abstract:
This article describes a number of theoretical works and methods dedicated to the analysis of the atomic and electronic structure, doping properties and transport characteristics of silicon nanowires (SiNWs). The goal is to show how quantum confinement and dimensionality effects can intrinsically change the behavior of SiNWs as compared to their bulk and thin film counterparts. The article begins with a review of work done on surface reconstructions and electronic structure of SiNWs as a function of system doping and passivation. It then considers the problem of doping in SiNWs as well as the methodology typically used to analyze the problems of transport. It also discusses the electronic transport properties of SiNWs as a function of dopant type, along with their chemical functionalization. Finally, it demonstrates how surface dangling-bond defects trap the impurities in SiNWs and neutralize them.
APA, Harvard, Vancouver, ISO, and other styles
2

Bouchet, Freddy, Tapio Schneider, Antoine Venaille, and Christophe Salomon, eds. Fundamental Aspects of Turbulent Flows in Climate Dynamics. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198855217.001.0001.

Full text
Abstract:
This book collects the text of the lectures given at the Les Houches Summer School on “Fundamental aspects of turbulent flows in climate dynamics”, held in August 2017. Leading scientists in the fields of climate dynamics, atmosphere and ocean dynamics, geophysical fluid dynamics, physics and non-linear sciences present their views on this fast growing and interdisciplinary field of research, by venturing upon fundamental problems of atmospheric convection, clouds, large-scale circulation, and predictability. Climate is controlled by turbulent flows. Turbulent motions are responsible for the bulk of the transport of energy, momentum, and water vapor in the atmosphere, which determine the distribution of temperature, winds, and precipitation on Earth. Clouds, weather systems, and boundary layers in the oceans and atmosphere are manifestations of turbulence in the climate system. Because turbulence remains as the great unsolved problem of classical physics, we do not have a complete physical theory of climate. The aim of this summer school was to survey what is known about how turbulent flows control climate, what role they may play in climate change, and to outline where progress in this important area can be expected, given today’s computational and observational capabilities. This book reviews the state-of-the-art developments in this field and provides an essential background to future studies. All chapters are written from a pedagogical perspective, making the book accessible to masters and PhD students and all researchers wishing to enter this field. It is complemented by online video of several lectures and seminars recorded during the summer school.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Bulk charge transport"

1

Mozer, A. J., and N. S. Sariciftci. "Charge Transport and Recombination in Donor-Acceptor Bulk Heterojunction Solar Cells." In Thin Film Solar Cells, 387–426. Chichester, UK: John Wiley & Sons, Ltd, 2006. http://dx.doi.org/10.1002/0470091282.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Riedel, I., M. Pientka, and V. Dyakonov. "Charge Carrier Photogeneration and Transport in Polymer-Fullerene Bulk-Heterojunction Solar Cells." In Physics of Organic Semiconductors, 433–50. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527606637.ch15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chan, Kevin K. H., Harrison K. H. Lee, and S. K. So. "Charge Transport Study of OPV Polymers and Their Bulk Heterojunction Blends by Admittance Spectroscopy." In Topics in Applied Physics, 43–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-45509-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Dawei, Guangping Zhu, Hao Zhang, Lilin Tian, and Zhiping Yu. "2D Quantum Mechanical (QM) Charge Model and Its Application to Ballistic Transport of Sub-50nm Bulk Silicon MOSFETs." In Simulation of Semiconductor Processes and Devices 2004, 271–74. Vienna: Springer Vienna, 2004. http://dx.doi.org/10.1007/978-3-7091-0624-2_63.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dajuma, Alima, Siélé Silué, Kehinde O. Ogunjobi, Heike Vogel, Evelyne Touré N’Datchoh, Véronique Yoboué, Arona Diedhiou, and Bernhard Vogel. "Biomass Burning Effects on the Climate over Southern West Africa During the Summer Monsoon." In African Handbook of Climate Change Adaptation, 1515–32. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-45106-6_86.

Full text
Abstract:
AbstractBiomass Burning (BB) aerosol has attracted considerable attention due to its detrimental effects on climate through its radiative properties. In Africa, fire patterns are anticorrelated with the southward-northward movement of the intertropical convergence zone (ITCZ). Each year between June and September, BB occurs in the southern hemisphere of Africa, and aerosols are carried westward by the African Easterly Jet (AEJ) and advected at an altitude of between 2 and 4 km. Observations made during a field campaign of Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) (Knippertz et al., Bull Am Meteorol Soc 96:1451–1460, 2015) during the West African Monsoon (WAM) of June–July 2016 have revealed large quantities of BB aerosols in the Planetary Boundary Layer (PBL) over southern West Africa (SWA).This chapter examines the effects of the long-range transport of BB aerosols on the climate over SWA by means of a modeling study, and proposes several adaptation and mitigation strategies for policy makers regarding this phenomenon. A high-resolution regional climate model, known as the Consortium for Small-scale Modelling – Aerosols and Reactive Traces (COSMO-ART) gases, was used to conduct two set of experiments, with and without BB emissions, to quantify their impacts on the SWA atmosphere. Results revealed a reduction in surface shortwave (SW) radiation of up to about 6.5 W m−2 and an 11% increase of Cloud Droplets Number Concentration (CDNC) over the SWA domain. Also, an increase of 12.45% in Particulate Matter (PM25) surface concentration was observed in Abidjan (9.75 μg m−3), Accra (10.7 μg m−3), Cotonou (10.7 μg m−3), and Lagos (8 μg m−3), while the carbon monoxide (CO) mixing ratio increased by 90 ppb in Abidjan and Accra due to BB. Moreover, BB aerosols were found to contribute to a 70% increase of organic carbon (OC) below 1 km in the PBL, followed by black carbon (BC) with 24.5%. This work highlights the contribution of the long-range transport of BB pollutants to pollution levels in SWA and their effects on the climate. It focuses on a case study of 3 days (5–7 July 2016). However, more research on a longer time period is necessary to inform decision making properly.This study emphasizes the need to implement a long-term air quality monitoring system in SWA as a method of climate change mitigation and adaptation.
APA, Harvard, Vancouver, ISO, and other styles
6

"Electric Field Domains in Bulk Semiconductors I: the Gunn Effect." In Nonlinear Wave Methods for Charge Transport, 125–74. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527628674.ch6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

"Electric Field Domains in Bulk Semiconductors II: Trap-Mediated Instabilities." In Nonlinear Wave Methods for Charge Transport, 175–201. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527628674.ch7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Souier, Tewfik. "Conductive Probe Microscopy Investigation of Electrical and Charge Transport in Advanced Carbon Nanotubes and Nanofibers-Polymer Nanocomposites." In Handbook of Research on Nanoscience, Nanotechnology, and Advanced Materials, 343–75. IGI Global, 2014. http://dx.doi.org/10.4018/978-1-4666-5824-0.ch014.

Full text
Abstract:
In this chapter, the main scanning probe microscopy-based methods to measure the transport properties in advanced polymer-Carbon Nanotubes (CNT) nanocomposites are presented. The two major approaches to investigate the electrical and charge transport (i.e., Electrostatic Force Microscopy [EFM] and Current-Sensing Atomic Force Microscopy [CS-AFM]) are illustrated, starting from their basic principles. First, the authors show how the EFM-related techniques can be used to provide, at high spatial resolution, a three-dimensional representation CNT networks underneath the surface. This allows the studying of the role of nanoscopic features such as CNTs, CNT-CNT direct contact, and polymer-CNT junctions in determining the overall composite properties. Complementary, CS-AFM can bring insight into the transport mechanism by imaging the spatial distribution of currents percolation paths within the nanocomposite. Finally, the authors show how the CS-AFM can be used to quantify the surface/bulk percolation probability and the nanoscopic electrical conductivity, which allows one to predict the macroscopic percolation model.
APA, Harvard, Vancouver, ISO, and other styles
9

LI, Feng. "Single Crystal Hybrid Perovskite Optoelectronics: Progress and Perspectives." In Optoelectronics [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.95046.

Full text
Abstract:
Organic–inorganic hybrid perovskites, which combine the superior optical and electronic properties and solution-processed manufacturing, have emerged as a new class of revolutionary optoelectronic devices with the potential for various practical applications. Encouraged by the advantages of longer carrier diffusion length, higher carrier mobility and lower trap densities as compared to the polycrystalline counterparts’, increasing research attention has focused on preparation and optimization of perovskite crystal candidates, via using various facile growth techniques, for the development of a wide range of optoelectronic applications. This chapter presents a comprehensive review of recent advances in the field of optoelectronic technologies based on different forms of single crystals, including bulk crystals and thin ones, with emphasis placed on the optimization of crystals and the relationship among the charge-carrier transport, operation mechanism, device architecture, and device performance. First, we introduce the main methods used to prepare bulk and thin single crystals, and analyze several aspects of their properties. Thereafter, the applications of single crystals into solar cells, photodetectors, light-emitting diodes, and lasers, are discussed in depth. Finally, we summarize the challenges of perovskite single crystals and propose further improvements in the synthesis approaches and device applications.
APA, Harvard, Vancouver, ISO, and other styles
10

Schmickler, Wolfgang. "Transient techniques." In Interfacial Electrochemistry. Oxford University Press, 1996. http://dx.doi.org/10.1093/oso/9780195089325.003.0019.

Full text
Abstract:
The classical electrochemical methods are based on the simultaneous measurement of current and electrode potential. In simple cases the measured current is proportional to the rate of an electrochemical reaction. However, generally the concentrations of the reacting species at the interface are different from those in the bulk, since they are depleted or accumulated during the course of the reaction. So one must determine the interfacial concentrations. There are two principal ways of doing this. In the first class of methods one of the two variables, either the potential or the current, is kept constant or varied in a simple manner, the other variable is measured, and the surface concentrations are calculated by solving the transport equations under the conditions applied. In the simplest variant the overpotential or the current is stepped from zero to a constant value; the transient of the other variable is recorded and extrapolated back to the time at which the step was applied, when the interfacial concentrations were not yet depleted. In the other class of method the transport of the reacting species is enhanced by convection. If the geometry of the system is sufficiently simple, the mass transport equations can be solved, and the surface concentrations calculated. The interpretation becomes complicated if several reactions take place simultaneously. Since the measured current gives only the sum of the rate of all charge-transfer reactions, the elucidation of the reaction mechanism and the measurement of several rate constants becomes an art. A number of tricks can be used, such as complicated potential or current programs, auxiliary electrodes, etc., which work for special cases. There are several good books on the classical electrochemical techniques. Here we give a brief outline of the most important methods. We mostly restrict ourselves to the study of simple reactions, but will consider one example in which the charge-transfer reaction is preceded by a chemical reaction. The measurement of current and potential provides no direct information about the microscopic structure of the interface, though a clever experimentalist may make some inferences.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Bulk charge transport"

1

Pivrikas, Almantas, Gytis Juška, Markus Scharber, Niyazi Serdar Sariciftci, and Ronald Österbacka. "Charge Transport and Recombination in Bulk-Heterojunction Solar Cells." In Organic Photonics and Electronics. Washington, D.C.: OSA, 2006. http://dx.doi.org/10.1364/ope.2006.optuc3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pivrikas, A., G. Juska, K. Arlauskas, M. Scharber, A. Mozer, N. S. Sariciftci, H. Stubb, and R. Österbacka. "Charge carrier transport and recombination in bulk-heterojunction solar-cells." In Optics & Photonics 2005, edited by Zakya H. Kafafi and Paul A. Lane. SPIE, 2005. http://dx.doi.org/10.1117/12.614864.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Duan, Chuanhua, and Arun Majumdar. "Ion Transport in 2-NM Nanochannels." In ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2009. http://dx.doi.org/10.1115/icnmm2009-82190.

Full text
Abstract:
In this paper, we report ion transport in 2-nm-deep nanochannels. These nanochannels are formed by controlled dry etching in silicon wafer and following anodic bonding with pyrex substrate. Our results show that surface charge dominates ion transport in these channels at concentration up to 100 mM. Due to geometry confinement effect, these nanochannel take ultra long time to reach a steady state, 3 or 4 magnitude longer than bulk diffusion. Conductance data at different ionic concentrations are compared with simulation results from a one dimensional model that accounts for salt & pH-dependent surface charge. Difference between model and experimental data indicates that proton mobility at low concentration is one magnitude higher than bulk mobility while Na+/K+ mobility doens’t change at this length scale.
APA, Harvard, Vancouver, ISO, and other styles
4

Maqsood, Ishtiaq, Lance D. Cundy, Matt Biesecker, Jung-Han Kimn, Elise Darlington, Ethan P. Hettwer, Sabina Schill, and Venkat Bommisetty. "Charge transport kinetics in organic bulk heterojunction morphologies: Mesoscale Monte Carlo simulation analysis." In 2014 IEEE 40th Photovoltaic Specialists Conference (PVSC). IEEE, 2014. http://dx.doi.org/10.1109/pvsc.2014.6925261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Haarer, Dietrich, Roland Bilke, Mukundan Thelakkat, and Claus Jaeger. "Charge transport and charge generation in the bulk and at interfaces: discotic hole conductors versus amorphous hole conductors." In Integrated Optoelectronics Devices, edited by James G. Grote and Toshikuni Kaino. SPIE, 2003. http://dx.doi.org/10.1117/12.475456.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Danielson, Eric, Christopher Lombardo, and Ananth Dodabalapur. "Characterization of charge transport via in situ potentiometry in bulk heterojunction organic photovoltaic materials." In SPIE Organic Photonics + Electronics, edited by Zakya H. Kafafi, Christoph J. Brabec, and Paul A. Lane. SPIE, 2012. http://dx.doi.org/10.1117/12.928881.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Danielson, Eric, Zi-En Ooi, and Ananth Dodabalapur. "Effect of film nanostructure on in-plane charge transport in organic bulk heterojunction materials." In SPIE NanoScience + Engineering, edited by Natalie Banerji and Carlos Silva. SPIE, 2013. http://dx.doi.org/10.1117/12.2026547.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Elumalai, Naveen Kumar, Chellappan Vijila, Arthi Sridhar, and Seeram Ramakrishna. "Influence of trap depth on charge transport in inverted bulk heterojunction solar cells employing zno as electron transport layer." In 2013 IEEE International Nanoelectronics Conference (INEC). IEEE, 2013. http://dx.doi.org/10.1109/inec.2013.6466043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ilinskii, A. V. "Charge Transport in High-Resistivity Photorefractive Crystals (Bi12SiO20, ZnSe, GaAs)." In Photorefractive Materials, Effects, and Devices II. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/pmed.1991.tuc7.

Full text
Abstract:
The paper reviews our studies[1−7] concerned of photoinduced charge dynamics and electric field evolution in the case of external field screening. The experimental methods providing possibility of electric field distribution direct measurements are considered. It is found that there are two different regimes of electric field screening which depend on experimental conditions (kind of crystal, temperature): narrowing of major cariers depletion region and stratification effect (numerous space charge layers of alternating sign) with increasing charge density - regime 1 and the slow broadening of single layer with constant charge density may occur in bulk of a sample - regime 2.These regimes were experimentally investigated in Bi12SiO20, ZnSe and GaAs crystals. A theoretical description is given of a sufficiently general charge transfer model involving the photogeneration of free carriers, their drift and trapping throughout the depth of the material.
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Deyu, Min Yue, Rohit Karnik, Arun Majumdar, Rong Fan, and Peidong Yang. "Ion Transport in Nanochannels." In ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ht-fed2004-56717.

Full text
Abstract:
Two kinds of nanochannels have been fabricated and ion transport in these nanochannels has been measured. Silica nanotube arrays have been fabricated from Si nanowire templates. The silica nanotubes can be more than 20 μm long with an inner diameter from 10 to 200 nm. A nanofluidic device based on individual silica nanotubes has been fabricated by placing the nanotube on a glass substrate and patterning with respect to individual nanotubes. A similar nanofluidic device with SiNx as the channel wall material has also been fabricated. The cross-section of the SiNx nanochannel is 40 nm high and 1 μm wide, while the channel length extends up to more than 24 μm. Ion transport though these nanochannels has been studied with different concentration KCl solutions to investigate the effects of electric double layer thickness on ion transport. Results show that for high concentration solutions, the measured current fit the theoretical prediction based on the bulk concentration. However, for low concentration solutions, the measured current was larger than that calculated with the bulk concentration, indicating that for low concentration solutions, the ion concentration within the channel was decided not only by the bulk solutions, but also by the surface charge density.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Bulk charge transport"

1

Shenker, Moshe, Paul R. Bloom, Abraham Shaviv, Adina Paytan, Barbara J. Cade-Menun, Yona Chen, and Jorge Tarchitzky. Fate of Phosphorus Originated from Treated Wastewater and Biosolids in Soils: Speciation, Transport, and Accumulation. United States Department of Agriculture, June 2011. http://dx.doi.org/10.32747/2011.7697103.bard.

Full text
Abstract:
Beneficial use of reclaimed wastewater (RW) and biosolids (BS) in soils is accompanied by large input of sewage-originated P. Prolonged application may result in P accumulation up to levelsBeneficial use of reclaimed wastewater (RW) and biosolids (BS) in soils is accompanied by large input of sewage-originated P. Prolonged application may result in P accumulation up to levels that impair plant nutrition, increase P loss, and promote eutrophication in downstream waters. This study aims to shed light on the RW- and BS-P forms in soils and to follow the processes that determine P reactivity, solubility, availability, and loss in RW and BS treated soils. The Technion group used sequential P extraction combined with measuring stable oxygen isotopic composition in phosphate (δ18OP) and with 31P-NMR studies to probe P speciation and transformations in soils irrigated with RW or fresh water (FW). The application of the δ18OP method to probe inorganic P (Pi) speciation and transformations in soils was developed through collaboration between the Technion and the UCSC groups. The method was used to trace Pi in water-, NaHCO3-, NaOH-, and HCl- P fractions in a calcareous clay soil (Acre, Israel) irrigated with RW or FW. The δ18OP signature changes during a month of incubation indicated biogeochemical processes. The water soluble Pi (WSPi) was affected by enzymatic activity yielding isotopic equilibrium with the water molecules in the soil solution. Further it interacted rapidly with the NaHCO3-Pi. The more stable Pi pools also exhibited isotopic alterations in the first two weeks after P application, likely related to microbial activity. Isotopic depletion which could result from organic P (PO) mineralization was followed by enrichment which may result from biologic discrimination in the uptake. Similar transformations were observed in both soils although transformations related to biological activity were more pronounced in the soil treated with RW. Specific P compounds were identified by the Technion group, using solution-state 31P-NMR in wastewater and in soil P extracts from Acre soils irrigated by RW and FW. Few identified PO compounds (e.g., D-glucose-6-phosphate) indicated coupled transformations of P and C in the wastewater. The RW soil retained higher P content, mainly in the labile fractions, but lower labile PO, than the FW soil; this and the fact that P species in the various soil extracts of the RW soil appear independent of P species in the RW are attributed to enhanced biological activity and P recycling in the RW soil. Consistent with that, both soils retained very similar P species in the soil pools. The HUJ group tested P stabilization to maximize the environmental safe application rates and the agronomic beneficial use of BS. Sequential P extraction indicated that the most reactive BS-P forms: WSP, membrane-P, and NaHCO3-P, were effectively stabilized by ferrous sulfate (FeSul), calcium oxide (CaO), or aluminum sulfate (alum). After applying the stabilized BS, or fresh BS (FBS), FBS compost (BSC), or P fertilizer (KH2PO4) to an alluvial soil, P availability was probed during 100 days of incubation. A plant-based bioassay indicated that P availability followed the order KH2PO4 >> alum-BS > BSC ≥ FBS > CaO-BS >> FeSul-BS. The WSPi concentration in soil increased following FBS or BSC application, and P mineralization further increased it during incubation. In contrast, the chemically stabilized BS reduced WSPi concentrations relative to the untreated soil. It was concluded that the chemically stabilized BS effectively controlled WSPi in the soil while still supplying P to support plant growth. Using the sequential extraction procedure the persistence of P availability in BS treated soils was shown to be of a long-term nature. 15 years after the last BS application to MN soils that were annually amended for 20 years by heavy rates of BS, about 25% of the added BS-P was found in the labile fractions. The UMN group further probed soil-P speciation in these soils by bulk and micro X-ray absorption near edge structure (XANES). This newly developed method was shown to be a powerful tool for P speciation in soils. In a control soil (no BS added), 54% of the total P was PO and it was mostly identified as phytic acid; 15% was identified as brushite and 26% as strengite. A corn crop BS amended soil included mostly P-Fe-peat complex, variscite and Al-P-peat complex but no Ca-P while in a BS-grass soil octacalcium phosphate was identified and o-phosphorylethanolamine or phytic acid was shown to dominate the PO fraction that impair plant nutrition, increase P loss, and promote eutrophication in downstream waters. This study aims to shed light on the RW- and BS-P forms in soils and to follow the processes that determine P reactivity, solubility, availability, and loss in RW and BS treated soils. The Technion group used sequential P extraction combined with measuring stable oxygen isotopic composition in phosphate (δ18OP) and with 31P-NMR studies to probe P speciation and transformations in soils irrigated with RW or fresh water (FW). The application of the δ18OP method to probe inorganic P (Pi) speciation and transformations in soils was developed through collaboration between the Technion and the UCSC groups. The method was used to trace Pi in water-, NaHCO3-, NaOH-, and HCl- P fractions in a calcareous clay soil (Acre, Israel) irrigated with RW or FW. The δ18OP signature changes during a month of incubation indicated biogeochemical processes. The water soluble Pi (WSPi) was affected by enzymatic activity yielding isotopic equilibrium with the water molecules in the soil solution. Further it interacted rapidly with the NaHCO3-Pi. The more stable Pi pools also exhibited isotopic alterations in the first two weeks after P application, likely related to microbial activity. Isotopic depletion which could result from organic P (PO) mineralization was followed by enrichment which may result from biologic discrimination in the uptake. Similar transformations were observed in both soils although transformations related to biological activity were more pronounced in the soil treated with RW. Specific P compounds were identified by the Technion group, using solution-state 31P-NMR in wastewater and in soil P extracts from Acre soils irrigated by RW and FW. Few identified PO compounds (e.g., D-glucose-6-phosphate) indicated coupled transformations of P and C in the wastewater. The RW soil retained higher P content, mainly in the labile fractions, but lower labile PO, than the FW soil; this and the fact that P species in the various soil extracts of the RW soil appear independent of P species in the RW are attributed to enhanced biological activity and P recycling in the RW soil. Consistent with that, both soils retained very similar P species in the soil pools. The HUJ group tested P stabilization to maximize the environmental safe application rates and the agronomic beneficial use of BS. Sequential P extraction indicated that the most reactive BS-P forms: WSP, membrane-P, and NaHCO3-P, were effectively stabilized by ferrous sulfate (FeSul), calcium oxide (CaO), or aluminum sulfate (alum). After applying the stabilized BS, or fresh BS (FBS), FBS compost (BSC), or P fertilizer (KH2PO4) to an alluvial soil, P availability was probed during 100 days of incubation. A plant-based bioassay indicated that P availability followed the order KH2PO4 >> alum-BS > BSC ≥ FBS > CaO-BS >> FeSul-BS. The WSPi concentration in soil increased following FBS or BSC application, and P mineralization further increased it during incubation. In contrast, the chemically stabilized BS reduced WSPi concentrations relative to the untreated soil. It was concluded that the chemically stabilized BS effectively controlled WSPi in the soil while still supplying P to support plant growth. Using the sequential extraction procedure the persistence of P availability in BS treated soils was shown to be of a long-term nature. 15 years after the last BS application to MN soils that were annually amended for 20 years by heavy rates of BS, about 25% of the added BS-P was found in the labile fractions. The UMN group further probed soil-P speciation in these soils by bulk and micro X-ray absorption near edge structure (XANES). This newly developed method was shown to be a powerful tool for P speciation in soils. In a control soil (no BS added), 54% of the total P was PO and it was mostly identified as phytic acid; 15% was identified as brushite and 26% as strengite. A corn crop BS amended soil included mostly P-Fe-peat complex, variscite and Al-P-peat complex but no Ca-P while in a BS-grass soil octacalcium phosphate was identified and o-phosphorylethanolamine or phytic acid was shown to dominate the PO fraction.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography