Academic literature on the topic 'Bulges on the tube'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bulges on the tube.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bulges on the tube"
Farley, F. J. M., R. C. T. Rainey, and J. R. Chaplin. "Rubber tubes in the sea." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370, no. 1959 (January 28, 2012): 381–402. http://dx.doi.org/10.1098/rsta.2011.0193.
Full textLiu, Yuyang, Yong Luan, Xinbo Dai, Senyun Liu, Xian Yi, and Yu Rao. "A Numerical Study on Swirling Hot Air Anti-Icing with Various Surface Structures on the Internal Wall." Energies 16, no. 3 (January 20, 2023): 1179. http://dx.doi.org/10.3390/en16031179.
Full textWen, Hua Dian, Xiao Ting Xiao, Kai Zhang, and Ying Chen. "Metal Flow Rule of Multi-Way Tube Hydro Forming for Air Handling Unit." Advanced Materials Research 239-242 (May 2011): 1597–600. http://dx.doi.org/10.4028/www.scientific.net/amr.239-242.1597.
Full textInoue, Tadanobu, Erina Kitahara, Yuka Hara, and Koji Nakazato. "Mud Crab’s Mottled, Deep-Blue Exoskeleton: Surface Morphology and Internal Microstructure." Minerals 12, no. 12 (December 14, 2022): 1607. http://dx.doi.org/10.3390/min12121607.
Full textChaplin, J. R., V. Heller, F. J. M. Farley, G. E. Hearn, and R. C. T. Rainey. "Laboratory testing the Anaconda." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370, no. 1959 (January 28, 2012): 403–24. http://dx.doi.org/10.1098/rsta.2011.0256.
Full textMagin, Norbert, Regine Classen, and Claudia Gack. "The morphology of false anthers in Craterostigma plantagineum and Torenia polygonoides (Scrophulariaceae)." Canadian Journal of Botany 67, no. 7 (July 1, 1989): 1931–37. http://dx.doi.org/10.1139/b89-245.
Full textBoonpuek, P., S. Jirathearanat, and N. Depaiwa. "Flow Stress Determination of Steel Tube for Hydroformability Evaluation." Advanced Materials Research 622-623 (December 2012): 656–60. http://dx.doi.org/10.4028/www.scientific.net/amr.622-623.656.
Full textHwang, Yeong-Maw, H. C. Chuang, and B. J. Chen. "Hydraulic Bulge Tests of Magnesium Tubes at Elevated Temperatures." Advanced Materials Research 83-86 (December 2009): 1135–42. http://dx.doi.org/10.4028/www.scientific.net/amr.83-86.1135.
Full textOpryshko, L. V., and T. V. Golovnyak. "Study of surface defects in tubes made from nondeformed continuously cast billets." Metaloznavstvo ta obrobka metalìv 98, no. 2 (June 7, 2021): 54–62. http://dx.doi.org/10.15407/mom2021.02.054.
Full textMitsui, Satoshi, Taisuke Miyagawa, Hajime Yasui, and Shoichiro Yoshihara. "Warm Bulge Forming of Small Diameter A1100 Aluminium Tube." Materials Science Forum 920 (April 2018): 149–54. http://dx.doi.org/10.4028/www.scientific.net/msf.920.149.
Full textDissertations / Theses on the topic "Bulges on the tube"
Wu, Zhi-Qian. "Caveolin in membrane nanotubes : curvature sensing and bulge formation." Electronic Thesis or Diss., Université Paris sciences et lettres, 2024. http://www.theses.fr/2024UPSLS007.
Full textCaveolin is one of the major protein components of caveolae, which are small cup-shaped invaginations in the plasma membrane. It is synthesized in the endoplasmic reticulum in a signal recognition particle-dependent manner and transported to the Golgi apparatus via COPII-coated vesicles. At the trans-Golgi network (TGN), caveolin 8S complexes further oligomerize into 70S complexes with the facilitation of cholesterol. They are then sorted intotransport carriers through an unknown mechanism and transported to the plasma membrane. The conventional structural model of caveolin might suggest it is a curvature-sensing protein based on its hairpin molecular shape. However, a recently discovered structure model of the caveolin 8S complex in detergent micelles based on cryo-electron microscopy, which exhibits a flat disc geometry, raises questions about its curvature sensitivity.Furthermore, cavins, another major protein component of caveolae that cooperate with caveolins in bending the membrane to form caveolae, do not associate with caveolins at the TGN. Given that no other known candidate, apart from cavins, can cooperate with caveolin to form transport carriers at the TGN, it becomes unclear how these carriers for caveolin are formed there. Therefore, in this project, we aimed to elucidate the curvaturesensitivity and induction of caveolin. We addressed these issues by reconstituting caveolin-1 (Cav1) into the membrane of giant unilamellar vesicles (GUVs) and by performing tube-pulling experiments. The results showed that caveolin is indeed a curvature-sensing protein, with caveolin 8S complexes exhibiting approximately a 5 degree tilt from the horizontal, which endows them with curvature sensitivity. Furthermore, we showed that caveolin 8S complexes can collectively generate membrane curvature at low tension and form scaffolds on the tubes at high tension. In summary, our results showed that caveolin is a curvature-sensing and -inducing protein, suggesting the possibility of its sorting into transport carriers at the TGN based on these properties. Interestingly, we observed that above a certain membrane tension Tt that depends on Cav1 density, nanotubes pulled from Cav1-GUVs no longer exhibit a constant radius and that caveolins form bulges on the tube. To explore how Cav1 form these bulges, we first observed that on average, bulges' size decreases with an increase in membrane tension. We found that the bulge size is proportional to the total amount of caveolin in the bulge, suggesting a constant Cav1 density in the bulges. Additionally, higher density of caveolin in the membrane favors bulge formation and lowers Tt. These results suggest that when the tube radius decreases, caveolin might induce formation of bulges to relax mechanicalconstraints due to the tubular geometry, but a model and high resolution imaging are now needed to explain these observations
Linardon, Camille. "Etirage de tubes de précision pour applications biomédicales : contribution à l'analyse et l'amélioration du procédé par expérimentation, modélisation et simulation numérique." Phd thesis, Université de Grenoble, 2013. http://tel.archives-ouvertes.fr/tel-00956588.
Full textVoirand, Antoine. "Etude théorique de la dynamique d'une bulle dans un tube capillaire chauffé." Thesis, Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2016. http://www.theses.fr/2016ESMA0008/document.
Full textThe model of a single bubble moving in a capillary tube is written as a contribution to the modeling of Pulsating Heat Pipes. A constant heat load is considered at the wall, and the reference temperature of the problem is defined to be the outside medium temperature, which is closer to reality, and thus allowing the saturation temperature of the vapor phase to vary. Using domain perturbation techniques, a step-by-step resolution ofthe model is implemented, allowing minor physical effects to be taken into consideration,for example the inertial effect on the receding meniscus. A new correlation is proposed on the thickness of the liquid film deposited by the receding meniscus, by means of the capillary number and an evaporation number representing the thermal condition. The velocity and temperature fields in the liquid plug ahead of the meniscus can also be obtained. The resolution of the problem associated with the rear-end of the bubble,where the rear meniscus advances on either a micrometric liquid film or an adsorbed film left by the dry-out of the capillary wall, shows a corrugating liquid-vapor interface.The magnitude of these corrugations is strongly dependent on the value of the heat load applied at the wall. In the case of wall rewetting, the interface corrugations at the triple line are due to its displacement, and not to the thermal boundary condition. Because the evaporative mass flux through the liquid-vapor interface modifies the vapor bubble mass, a complete transient thermodynamical model of the bubble is implemented. In this case, the important parameters controlling the kinematics, dynamics and thermodynamics of the bubble were identified
Hervieu, Eric. "Ecoulement monophasique et diphasique à bulles dans un branchement en Té : étude théorique et expérimentale." Grenoble INPG, 1988. http://www.theses.fr/1988INPG0031.
Full textTouhami, Kamel. "Contribution a l'etude des ecoulements diphasiques dans un tube en u : hydrodynamique et transfert de matiere." Toulouse, INSA, 1987. http://www.theses.fr/1987ISAT0029.
Full textHutchinson, Mark Ian. "Bulge forming of tubular components." Thesis, Sheffield Hallam University, 1988. http://shura.shu.ac.uk/19849/.
Full textHéraud, Pierre. "Etude de la dynamique des bulles infinies : application à l'étude de la vidange et du remplissage de réservoir." Phd thesis, Université de Provence - Aix-Marseille I, 2002. http://tel.archives-ouvertes.fr/tel-00011664.
Full textProctor, Robert Neil. "Metallicities and stellar populations in spiral bulges." Thesis, University of Central Lancashire, 2002. http://clok.uclan.ac.uk/20825/.
Full textFalcon, Barroso Jesus. "Kinematics & stellar populations of nearby bulges." Thesis, University of Nottingham, 2003. http://eprints.nottingham.ac.uk/10016/.
Full textBallero, Silvia Kuna. "Evolution of chemical abundances in active and quiescent spiral bulges." Doctoral thesis, Università degli studi di Trieste, 2008. http://hdl.handle.net/10077/2560.
Full textIn this thesis I develop a chemical evolution model which takes advantage of the most recent high-quality abundance observations in the Galactic bulge to put constraints on its formation and evolution and to obtain a baseline model for bulges in general. I adopt updated massive star nucleosynthesis and follow the evolution of several alpha-elements and Fe by varying the evolutionary parameters. The [alpha/Fe] ratios in the bulge are correctly predicted to be supersolar for a wide range in [Fe/H], and the stellar metallicity distribution is reproduced assuming a short formation timescale, a high star formation efficiency and an initial mass function flatter than the disk. Metallicity-dependent oxygen yields with stellar mass loss are included in the chemical evolution models for the bulge and the solar neighbourhood. The agreement between predicted and observed [O/Mg] trends above solar metallicity is significantly improved; a normalisation problem probably indicates that the adopted semi-empirical yields need adjustment. The difference between [O/Fe] and the other [alpha/Fe] ratios in the bulge and solar neighbourhood is explained. I test the so-called universal initial mass function, suitable for ellipticals and disks, to see if the bulge stellar metallicity distribution can be reproduced by varying the yields for very massive stars, and included M31 in my analysis. I show that assuming a flatter initial mass function than the universal one is necessary, and that a variation exists in the initial mass function among different environments. Finally, I investigate the evolution of spiral bulges hosting Seyfert nuclei, with detailed calculations of the galactic potential and of the feedback from the central supermassive black hole in an Eddington-limited accretion regime. New spectro-photometrical evolution codes covering a wide range of stellar ages and metallicities allowed to model the photometric features of local bulges. I successfully predict the observed black hole-host bulge mass relation. The observed present-day nuclear bolometric luminosity is achieved only for the most massive bulges, otherwise a rejuvenation is necessary. The observed high star formation rates and metallicities, constancy of chemical abundances with the redshift and bulge present-day colours are reproduced, but a steeper initial mass function is required to match the colour-magnitude relation and the present K-band bulge luminosity.
In questa tesi, ho sviluppato un modello di evoluzione chimica che si avvale di recenti osservazioni ad alta qualità di abbondanze chimiche nel bulbo della Via Lattea, per porre dei vincoli sui suoi meccanismi di formazione ed evoluzione e ottenere un modello generale per i bulbi di spirale. Ho adottato una nucleosintesi aggiornata per le stelle massicce e seguito l'evoluzione di diversi elementi-alpha e del ferro, variando i parametri evolutivi. Si prevede correttamente che i rapporti [alpha/Fe] nel bulbo siano soprasolari per un ampio intervallo in [Fe/H]. La distribuzione in metallicità è riprodotta con un tempo di formazione breve, un'alta efficienza di formazione stellare e una funzione iniziale di massa più piatta che nel disco. Yields di ossigeno con perdita di massa stellare in funzione della metallicità sono stati inclusi nei modelli di evoluzione chimica del bulbo e dei dintorni solari. L'accordo tra gli andamenti di [O/Mg] previsti e osservati per metallicità soprasolari risulta sensibilmente migliorato; si spiega inoltre la differenza tra il rapporto [O/Fe] e gli altri [alpha/Fe] nel bulbo e nei dintorni solari. Un problema di normalizzazione indica che probabilmente gli yields semi-empirici adottati necessitano una revisione. Ho verificato se con la cosiddetta funzione iniziale di massa universale, adeguata per galassie ellittiche e dischi, la distribuzione in metallicità stellare del bulge può essere riprodotta calibrando gli yields delle stelle supermassicce, includendo M31 nell'analisi. Si dimostra che una funzione iniziale di massa più piatta di quella universale è necessaria, e che esiste una variazione nella funzione iniziale di massa tra i diversi ambienti. Infine, ho studiato l'evoluzione di bulbi di spirali che ospitano galassie di Seyfert, mediante calcoli dettagliati del potenziale galattico e del feedback dal buco nero supermassiccio centrale in un regime di accrescimento limitato dal tasso di Eddington. Nuovi codici spettro-fotometrici che coprono un ampio intervallo di età stellari e di metallicità hanno permesso di modellizzare le caratteristiche fotometriche dei bulbi locali. La relazione osservata tra massa del buco nero e del bulbo ospite è prevista con successo. La luminosità bolometrica nucleare misurata al tempo presente si consegue solo per i bulbi più massicci, negli altri casi è necessario un "ringiovanimento". Le osservazioni di alto tasso di formazione stellare, alte metallicità, invarianza di abbondanze chimiche col redshift e colori dei bulbi locali sono riprodotte; una funzione iniziale di massa più ripida è invece richiesta per la relazione colore-magnitudo e la luminosità dei bulbi in banda K al tempo presente.
XX Ciclo
1979
Books on the topic "Bulges on the tube"
Gallery, Southern Alberta Art. Panya Clark: Like ancient pots spilled from a drowned ship, tube sponges bulge eerily ... Alberta: Southern Alberta Art Gallery, 1994.
Find full textLaurikainen, Eija, Reynier Peletier, and Dimitri Gadotti, eds. Galactic Bulges. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-19378-6.
Full textDejonghe, Herwig, and Harm J. Habing, eds. Galactic Bulges. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-0922-2.
Full textJames, Hart, O'Toole Mitch, and O'Toole Gjyn, eds. Time tube. Clayton South, Vic: Blake Education, 2005.
Find full textDunitz-Scheer, Marguerite, and Peter J. Scheer. Child-led Tube-management and Tube-weaning. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-09090-5.
Full textMoyer, R. G. Reduction of pressure-tube/calandria-tube contact conductance. Pinawa, Man: Whiteshell Laboratories, 1992.
Find full textLazareff, Jorge A. Neural tube defects. Singapore: World Scientific Pub. Co., 2011.
Find full textArchiv, Max Beckmann. Minna Beckmann-Tube. München: Bayerische Staatsgemäldesammlungen, Max Beckmann Archiv, 1998.
Find full textClermont, Jean-Robert, and Amine Ammar. Stream-Tube Method. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65470-2.
Full textMalhó, Rui, ed. The Pollen Tube. Berlin/Heidelberg: Springer-Verlag, 2006. http://dx.doi.org/10.1007/11493198.
Full textBook chapters on the topic "Bulges on the tube"
King, Ivan R. "Review of the Galactic Bulge." In Galactic Bulges, 3–20. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-0922-2_1.
Full textRenzini, Alvio. "Formation and Evolution of Stars in Galactic Bulges." In Galactic Bulges, 151–68. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-0922-2_10.
Full textRich, R. Michael. "The Stellar Population of the Inner 200 Parsecs." In Galactic Bulges, 169–90. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-0922-2_11.
Full textde Zeeuw, Tim. "Dynamics of the Galactic Bulge." In Galactic Bulges, 191–208. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-0922-2_12.
Full textKormendy, John. "Kinematics of Extragalactic Bulges: Evidence that some Bulges are Really Disks." In Galactic Bulges, 209–30. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-0922-2_13.
Full textBertola, Francesco. "Photometric Properties of Extragalactic Bulges." In Galactic Bulges, 231–42. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-0922-2_14.
Full textFranx, Marijn. "What is the Connection between Ellipticals and Bulges ?" In Galactic Bulges, 243–62. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-0922-2_15.
Full textFreeman, K. C. "Summary: Achievements and Open Questions." In Galactic Bulges, 263–70. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-0922-2_16.
Full textFriedli, D., and S. Udry. "3D Gas Dynamics in Triaxial Systems." In Galactic Bulges, 273–74. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-0922-2_17.
Full textGerhard, Ortwin E., and James Binney. "Dynamics of the Galactic Bulge from Gas Motions." In Galactic Bulges, 275–82. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-0922-2_18.
Full textConference papers on the topic "Bulges on the tube"
French, Stephen, and Carl Skelonis. "Creep Failure of a Chromized Waterwall Tube in a Supercritical Boiler." In ASME 2005 Pressure Vessels and Piping Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/pvp2005-71018.
Full textHimeno, M., S. Noda, R. Himeno, and K. Fukasaku. "Application of Genetic Algorithm to Prediction of Artery Geometry." In ASME/JSME 2007 5th Joint Fluids Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/fedsm2007-37241.
Full textMemon, Shabbir, Obaidur Rahman Mohammed, and Hamid M. Lankarani. "Effect of Pre-Bending on Formability of DQ Steel and Al 5182." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-87321.
Full textBECHLER, Jan. "Influence of the forming pre-strain on the fatigue performance of upset bulge formed tubes." In Material Forming. Materials Research Forum LLC, 2024. http://dx.doi.org/10.21741/9781644903131-106.
Full textMemon, Shabbir, and Chetan P. Nikhare. "A Numerical Analysis on Taper Tube Hydroforging." In ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-95536.
Full textChen, Kuo-Kuang. "The Bulge of Tubes and a Failure Criterion for Tube Hydroforming." In SAE 2001 World Congress. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2001. http://dx.doi.org/10.4271/2001-01-1132.
Full textvan Zyl, Gys, and Sultan Al-Harthi. "Fitness for Service Assessment and Repair of the Liner of a High Pressure Heat Exchanger." In ASME 2018 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/pvp2018-85001.
Full textD’Urso, G., M. Longo, and C. Giardini. "Characterization of Friction Stir Welded Tubes by Means of Tube Bulge Test." In THE 14TH INTERNATIONAL ESAFORM CONFERENCE ON MATERIAL FORMING: ESAFORM 2011. AIP, 2011. http://dx.doi.org/10.1063/1.3589689.
Full textMendes, A. C., L. M. A. Paredes, F. A. S. Gil, and J. R. Chaplin. "Small-Scale Model Tests of a Rubber-Tube Wave Energy Converter With Pneumatic Power Take-Off." In ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/omae2014-23452.
Full textZheng, Boren, Kunrong Shen, Wei Li, Xiang Ma, Chuancai Zhang, Yan He, Hanbing Ke, and Yuansheng Lin. "Condensation Characteristics of Flows Inside the Three-Dimensional Enhanced Tubes." In ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2020 Heat Transfer Summer Conference and the ASME 2020 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/icnmm2020-1052.
Full textReports on the topic "Bulges on the tube"
Grossmann, Rafael J. Chest Tube Insertion. Touch Surgery Simulations, March 2015. http://dx.doi.org/10.18556/touchsurgery/2015.s0041.
Full textKurita, C. H. EC Tube Fits. Office of Scientific and Technical Information (OSTI), March 1987. http://dx.doi.org/10.2172/1030739.
Full textSwift, G., and D. Gardner. Downhole pulse tube refrigerators. Office of Scientific and Technical Information (OSTI), December 1997. http://dx.doi.org/10.2172/555366.
Full textBeaux II, Miles Frank, and Igor Olegovich Usov. Molybdenum Tube Characterization report. Office of Scientific and Technical Information (OSTI), February 2017. http://dx.doi.org/10.2172/1342881.
Full textFaltens, A. Pulsed Drift Tube Accelerator. Office of Scientific and Technical Information (OSTI), October 2004. http://dx.doi.org/10.2172/861362.
Full textMacDonald, P. E., V. N. Shah, L. W. Ward, and P. G. Ellison. Steam generator tube failures. Office of Scientific and Technical Information (OSTI), April 1996. http://dx.doi.org/10.2172/236258.
Full textReichenbach, H., and G. Scheklinski-Gluck. EMI Shock Tube Experiments. Fort Belvoir, VA: Defense Technical Information Center, July 1991. http://dx.doi.org/10.21236/ada239055.
Full textRossi, D., M. Widgoff, and E. Alyea. Streamer tube readout electronics. Office of Scientific and Technical Information (OSTI), March 1989. http://dx.doi.org/10.2172/7018875.
Full textMulcahy, T. M. Leakage flow-induced vibration of an eccentric tube-in-tube slip joint. Office of Scientific and Technical Information (OSTI), August 1985. http://dx.doi.org/10.2172/5043218.
Full textMulcahy, T. M. Leakage flow-induced vibrations for variations of a tube-in-tube slip joint. Office of Scientific and Technical Information (OSTI), January 1986. http://dx.doi.org/10.2172/5764500.
Full text