Journal articles on the topic 'Building energy simulation. Overheating risk'

To see the other types of publications on this topic, follow the link: Building energy simulation. Overheating risk.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Building energy simulation. Overheating risk.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Laouadi, Abdelaziz, Lili Ji, Chang Shu, Liangzhu (Leon) Wang, and Michael A. Lacasse. "Overheating Risk Analysis in Long-Term Care Homes—Development of Overheating Limit Criteria." Buildings 13, no. 2 (February 1, 2023): 390. http://dx.doi.org/10.3390/buildings13020390.

Full text
Abstract:
Climate heat waves occurring in urban centers are a serious threat to public health and wellbeing. Historically, most heat-related mortalities have arisen from excessive overheating of building interiors housing older occupants. This paper developed an approach that combines the results from building simulation and bioheat models to generate health-based limit criteria for overheating in long-term care homes (LTCHs) by which the body dehydration and core temperature of older residents are capped during overheating events. The models of the LTCHs were created for buildings representative of old and current construction practices for selected Canadian locations. The models were calibrated using measurements of indoor temperature and humidity acquired from monitoring the building interiors and the use of published building energy use intensity data. A general procedure to identify overheating events and quantify their attributes in terms of duration, intensity, and severity was developed and applied to LTCHs to generate the limit criteria. Comparing the limit criteria from the proposed and comfort-based methods showed evident differences. The proposed method predicted the overheating risk consistent with the overall thermal comfort during overheating events in contrast to the comfort-based methods. The new limit criteria are intended to be used in any study to evaluate overheating risk in similar buildings.
APA, Harvard, Vancouver, ISO, and other styles
2

Salem, Radwa, Ali Bahadori-Jahromi, and Anastasia Mylona. "Investigating the impacts of a changing climate on the risk of overheating and energy performance for a UK retirement village adapted to the nZEB standards." Building Services Engineering Research and Technology 40, no. 4 (April 24, 2019): 470–91. http://dx.doi.org/10.1177/0143624419844753.

Full text
Abstract:
The death toll of the 2003 heat wave in Europe exceeded 35,000 heat-related deaths. The elderly population were the most affected. The current paradigm within the construction industry in cold-dominant countries is to design/retrofit buildings with high levels of insulation. Whilst thermal comfort may be reached during colder months with this approach, the risk of overheating can be increased during hotter months. This paper aims to examine the impacts of a changing climate on the risk of overheating and energy performance for a UK retirement village. For this study, the buildings within the retirement village will be designed to reach the nearly zero energy building standard. Consequently, the risk of overheating of the buildings within the retirement village as they currently stand and as zero energy buildings will be investigated under current and future climatic conditions. The analysis is carried out using thermal analysis simulation software (TAS, Edsl). Combined heat and power and combined cooling, heat and power will be investigated as mitigating strategies with regard to overheating. The results of this study do not undermine the importance of continuing to improve the energy efficiency of existing buildings but rather highlight that the approach undertaken should be reconsidered. Practical application: Currently, there is emphasis placed on retrofitting and designing buildings, with high energy efficiency standards. Whilst this is in line with our vision as a society towards reaching a decarbonised, sustainable future, this work highlights that doing so, carries risks with regard to overheating. Nonetheless, the results demonstrate that with the incorporation of suitable mitigation strategies and adequate ventilation strategies, it is possible to achieve an energy efficient building that meets the heating and cooling demand (and thereby thermal comfort of occupants) during the heating and non-heating season.
APA, Harvard, Vancouver, ISO, and other styles
3

Brembilla, Eleonora, Christina J. Hopfe, John Mardaljevic, Anastasia Mylona, and Eirini Mantesi. "Balancing daylight and overheating in low-energy design using CIBSE improved weather files." Building Services Engineering Research and Technology 41, no. 2 (November 14, 2019): 210–24. http://dx.doi.org/10.1177/0143624419889057.

Full text
Abstract:
A new set of CIBSE weather files for building performance simulation was recently developed to address the need for better quality solar data. These are essential for most building performance simulation applications, particularly for daylighting studies and low-energy building design, which requires detailed irradiation data for passive solar design and overheating risk analysis. The reliability of weather data becomes paramount when building performance is pushed to its limits. Findings illustrate how principles of good window design can be applied to a case study building, built to the Passivhaus standard, and how its expected performance is affected by the quality of solar irradiation data. Analyses using test reference years were most affected by changes in the solar radiation model (up to 8.3% points), whereas for design summer years the maximum difference was 1.7% points. Adopting the new model caused overheating risk to be classified as more severe using test reference years than design summer years, prompting a discussion on the design summer year selection method. Irradiance data measured on-site were used as a benchmark to evaluate the new solar radiation model, which was found to significantly improve the accuracy of irradiance data within weather files and so the reliability of overheating assessments. Practical application: CIBSE weather files are widely used for compliance verification of building performance in the UK context. This paper tests how the introduction of a new solar radiation model in weather files will affect daylighting and overheating simulation results. Examples are given on how low-energy building design considerations driven by advanced simulation techniques can help reaching indoor visual and thermal comfort requirements.
APA, Harvard, Vancouver, ISO, and other styles
4

Habitzreuter, Leonardo, Stefan Thor Smith, and Trevor Keeling. "Modelling the overheating risk in an uniform high-rise building design with a consideration of urban context and heatwaves." Indoor and Built Environment 29, no. 5 (June 25, 2019): 671–88. http://dx.doi.org/10.1177/1420326x19856400.

Full text
Abstract:
Overheating in buildings is one of the increasing concerns related to climate change and can lead to an increase in heat-related health issues and higher energy consumption due to the use of air conditioning systems. Literature shows that internal conditions and demand on environmental control systems can vary with height within buildings. However, an architectural trend towards highly glazed façades for tall buildings suggests the vertical gradient of performance is not always considered in the design process. By simulating a high-rise residential building in London, a comparative analysis of the overheating risks and daylighting at different levels in the building was conducted. In this study the model was able to consider the influence of surrounding built environment on solar gain and so influence of urban location on overheating risk was taken into account. Simulations were conducted using typical reference years as well as meteorological data for specific heat-wave periods experienced in London and that are expected to become more intense and frequent due to climate change. Passive mitigation options (external shading) are demonstrated to help reduce overheating occurrence by 74%, at the same time the impact of decreased daylighting (30%) is less problematic at higher levels where daylight factor is greater.
APA, Harvard, Vancouver, ISO, and other styles
5

Jang, Jihoon, Sukumar Natarajan, Joosang Lee, and Seung-Bok Leigh. "Comparative Analysis of Overheating Risk for Typical Dwellings and Passivhaus in the UK." Energies 15, no. 10 (May 23, 2022): 3829. http://dx.doi.org/10.3390/en15103829.

Full text
Abstract:
There is growing concern that airtight and well-insulated buildings designed to limit heat loss in temperate and cold climates could unintentionally elevate the risk of overheating in summers. Existing literature primarily uses dynamic simulation to investigate this problem due to the difficulty of obtaining large-scale in-performance data. To address this gap, we undertake a meta-analysis of large-scale indoor air temperature data for 195 UK dwellings, as a study of performance in a temperate climate. Of these, 113 are baseline (i.e., typical existing dwellings) and the rest designed to the high-performance Passivhaus standard. Using both Passivhaus and the well-known CIBSE TM59 overheating standards, this study found that there were few overheated cases for any building type. However, the average summer nighttime temperature of Passivhaus bedrooms was 1.6 °C higher than baseline, with 20 out of 31 measured bedrooms exceeding the overheating criterion, and the average overheating hours constituting approximately 19% of the total summertime observation period. These findings suggest that bedrooms in highly insulated dwellings may pose an overheating risk although whole-dwelling overheating risk is low.
APA, Harvard, Vancouver, ISO, and other styles
6

Attia, Shady, and Camille Gobin. "Climate Change Effects on Belgian Households: A Case Study of a Nearly Zero Energy Building." Energies 13, no. 20 (October 14, 2020): 5357. http://dx.doi.org/10.3390/en13205357.

Full text
Abstract:
Overheating in residential building is a challenging problem that causes thermal discomfort, productivity reduction, and health problems. This paper aims to assess the climate change impact on thermal comfort in a Belgian reference case. The case study represents a nearly zero energy building that operates without active cooling during summer. The study quantifies the impact of climate change on overheating risks using three representative concentration pathway (RCP) trajectories for greenhouse gas concentration adopted by the Intergovernmental Panel on Climate Change (IPCC). Building performance analysis is carried out using a multizone dynamic simulation program EnergyPlus. The results show that bioclimatic and thermal adaptation strategies, including adaptive thermal comfort models, cannot suppress the effect of global warming. By 2050, zero energy buildings will be vulnerable to overheating.
APA, Harvard, Vancouver, ISO, and other styles
7

Pajek, Luka, and Mitja Košir. "Exploring Climate-Change Impacts on Energy Efficiency and Overheating Vulnerability of Bioclimatic Residential Buildings under Central European Climate." Sustainability 13, no. 12 (June 16, 2021): 6791. http://dx.doi.org/10.3390/su13126791.

Full text
Abstract:
Climate change is expected to expose the locked-in overheating risk concerning bioclimatic buildings adapted to a specific past climate state. The study aims to find energy-efficient building designs which are most resilient to overheating and increased cooling energy demands that will result from ongoing climate change. Therefore, a comprehensive parametric study of various passive building design measures was implemented, simulating the energy use of each combination for a temperate climate of Ljubljana, Slovenia. The approach to overheating vulnerability assessment was devised and applied using the increase in cooling energy demand as a performance indicator. The results showed that a B1 heating energy efficiency class according to the Slovenian Energy Performance Certificate classification was the highest attainable using the selected passive design parameters, while the energy demand for heating is projected to decrease over time. In contrast, the energy use for cooling is in general projected to increase. Furthermore, it was found that, in building models with higher heating energy use, low overheating vulnerability is easier to achieve. However, in models with high heating energy efficiency, very high overheating vulnerability is not expected. Accordingly, buildings should be designed for current heating energy efficiency and low vulnerability to future overheating. The paper shows a novel approach to bioclimatic building design with global warming adaptation integrated into the design process. It delivers recommendations for the energy-efficient, robust bioclimatic design of residential buildings in the Central European context, which are intended to guide designers and policymakers towards a resilient and sustainable built environment.
APA, Harvard, Vancouver, ISO, and other styles
8

ZepedaRivas, Daniel, Sergi Aguacil Moreno, and Jorge Rodríguez Álvarez. "Effectiveness of passive climate change adaptation measures in Switzerland: A climate-based analysis on natural ventilation and overheating risks reduction in dwellings." Journal of Physics: Conference Series 2042, no. 1 (November 1, 2021): 012151. http://dx.doi.org/10.1088/1742-6596/2042/1/012151.

Full text
Abstract:
Abstract Building energy codes have been implemented in Switzerland as well as across the world to reduce building energy consumption, however, due to the progressive effect of climate change phenomena and the precipitate change in occupancy patterns due to the global pandemic, their effectiveness and limitations must be constantly re-examined. This paper explores the effectiveness of natural ventilation as a passive cooling strategy, as well as the overheating patterns in dwellings across the Swiss territory. The work is based on a climate-based simulation model at a territorial scale, from which the building performance is further analysed considering the heating energy consumption and overheating risk hours above 26.5°C. The effectiveness of natural ventilation through the operable window operable area in reducing overheating risk was also estimated. The results show the effectiveness across the whole territory of the current regulation (SIA 380/1:2016), which is focused on the performance of the building envelope to reduce heat losses. An unattended alarming overheating pattern was spotted in locations with altitudes below 1500 meters as a direct consequence of the climate change phenomena, hence a series of recommendations are proposed to update and improve the current legal requirements.
APA, Harvard, Vancouver, ISO, and other styles
9

Zukowska, Daria, Myrto Ananida, Jakub Kolarik, Mandana Sarey Khanie, and Toke Rammer Nielsen. "Solar control solutions for reducing overheating risks in retrofitted Danish apartment buildings from the period 1850- 1900 – A simulation-based study." E3S Web of Conferences 111 (2019): 03051. http://dx.doi.org/10.1051/e3sconf/201911103051.

Full text
Abstract:
Advancing energy efficient renovation solutions in residential buildings necessitate adopting high-insulation and airtightness to avoid heat loss through transmission and infiltration, which can result in overheating. Elevated indoor temperatures have been proved to have a highly negative effect on occupants’ health and well-being. Energy efficient solutions to the problem with overheating include limiting the solar heat gains through the glazed parts of the facade and effective ventilation. A typical Danish residential apartment building from 1850-1900 recently refurbished, was modelled with five different solar shading devices and three typical ventilation solutions. External solar shading could efficiently reduce overheating below the limits specified by the national building regulations in all tested cases. The marquisolette reduced the number of occupied hours with temperature above 27 °C by min. 85%, the external venetian blinds by min. 81%, and the drop arm awning by min. 74% compared to the situation without solar shading. The internal solar shading as venetian blinds and roller blind could reduce the overheating hours by 20-40%, which was efficient only in combination with mechanical ventilation in case of south and east building orientations.
APA, Harvard, Vancouver, ISO, and other styles
10

Rakotonjanahary, Michaël, Frank Scholzen, and Daniele Waldmann. "Summertime Overheating Risk Assessment of a Flexible Plug-In Modular Unit in Luxembourg." Sustainability 12, no. 20 (October 14, 2020): 8474. http://dx.doi.org/10.3390/su12208474.

Full text
Abstract:
Modular buildings offer faster construction process, provide better construction quality, allow reducing construction waste and are potentially flexible. Frames of modular units can be made of metal, timber, concrete or mixed materials but lightweight structures do not always allow erecting high-rise buildings and generally present a higher risk of overheating and/or overcooling. To reconcile these pros and cons, a typology of modular building called Slab was designed by a group of architects. The building is composed on the one hand of a permanent concrete structure named shelf-structure and on the other hand of several flexible removable timber modular units, also known as modules. The shelf-structure will host the common utility rooms and will serve as docking infrastructure for the housing modules. To provide high flexibility, the Slab building was designed to adapt to any orientation and location in Luxembourg. An energy concept and a HVAC systems design has been developed for the Slab building. Furthermore, a two-fold sustainability analysis was carried out. The first part of the analysis regards the determination of the minimum required wall thicknesses of the modules in accordance with Luxembourgish regulatory requirements, although the current regulation does not yet consider the Slab building typology. The second part, which is the subject of this paper, is thermal comfort assessment, more precisely, summertime overheating risk assessment of these modules, in compliance with Luxembourgish standard. In this regard, dynamic thermal simulations have been realized on two module variants; the first fulfills the passive house requirements, and the second—the current requirements for building permit application, which in principle corresponds to low energy house requirements. Simulations showed that with adequate solar shading and reinforced natural ventilation by window opening, overheating risk could be avoided for the normal residential use scenario for both module variants.
APA, Harvard, Vancouver, ISO, and other styles
11

Velashjerdi Farahani, Azin, Juha Jokisalo, Natalia Korhonen, Kirsti Jylhä, Kimmo Ruosteenoja, and Risto Kosonen. "Overheating Risk and Energy Demand of Nordic Old and New Apartment Buildings during Average and Extreme Weather Conditions under a Changing Climate." Applied Sciences 11, no. 9 (April 27, 2021): 3972. http://dx.doi.org/10.3390/app11093972.

Full text
Abstract:
The global average air temperature is increasing as a manifestation of climate change and more intense and frequent heatwaves are expected to be associated with this rise worldwide, including northern Europe. Summertime indoor conditions in residential buildings and the health of occupants are influenced by climate change, particularly if no mechanical cooling is used. The energy use of buildings contributes to climate change through greenhouse gas emissions. It is, therefore, necessary to analyze the effects of climate change on the overheating risk and energy demand of residential buildings and to assess the efficiency of various measures to alleviate the overheating. In this study, simulations of dynamic energy and indoor conditions in a new and an old apartment building are performed using two climate scenarios for southern Finland, one for average and the other for extreme weather conditions in 2050. The evaluated measures against overheating included orientations, blinds, site shading, window properties, openable windows, the split cooling unit, and the ventilation cooling and ventilation boost. In both buildings, the overheating risk is high in the current and projected future average climate and, in particular, during exceptionally hot summers. The indoor conditions are occasionally even injurious for the health of occupants. The openable windows and ventilation cooling with ventilation boost were effective in improving the indoor conditions, during both current and future average and extreme weather conditions. However, the split cooling unit installed in the living room was the only studied solution able to completely prevent overheating in all the spaces with a fairly small amount of extra energy usage.
APA, Harvard, Vancouver, ISO, and other styles
12

Bo, Rui, Yu Shao, Yitong Xu, Yang Yu, Haibo Guo, and Wen-Shao Chang. "Research on the Relationship between Thermal Insulation Thickness and Summer Overheating Risk: A Case Study in Severe Cold and Cold Regions of China." Buildings 12, no. 7 (July 17, 2022): 1032. http://dx.doi.org/10.3390/buildings12071032.

Full text
Abstract:
Given the prediction of global warming, there is a growing concern about overheating in the severe cold and cold regions of China. In the past decades, indoor thermal comfort has been neglected in building practice, while efficiency-oriented improvements have been developed, such as increased insulation of building envelope. An extensive literature review shows contradictory conclusions about whether increased insulation can alleviate overheating. The aim of this research is to conduct simulations based on measured data to reveal the influence of insulation on overheating in dwellings in these regions of China. An unoccupied residential flat was monitored to determine the extent of overheating while eliminating the effects of other contributors, such as natural ventilation. Validated building performance simulations were carried out with altered insulation layer thickness in Integrated Environmental Solutions-Virtual Environment IESVE software to examine its influence on overheating during summertime in five representative cities. The results showed clear evidence of summer overheating in these regions. In Yichun, Harbin, Shenyang, Dalian and Beijing, walls with increased insulation were found to exacerbate overheating in the bedrooms without natural ventilation by 22.5%, 16.6%, 20.3%, 11.8% and 6.9%, respectively, compared to the uninsulated walls. This study provides useful information for building regulations on energy efficiency and thermal comfort.
APA, Harvard, Vancouver, ISO, and other styles
13

Belleri, Annamaria, Chiara Dipasquale, and Jennifer Adami. "A framework for the technical evaluation of residential buildings’ energy retrofit." E3S Web of Conferences 111 (2019): 03025. http://dx.doi.org/10.1051/e3sconf/201911103025.

Full text
Abstract:
Despite a wide range of energy-efficient technologies, financial products and public incentives are already available, the private as well as the public sector are struggling to invest in energy efficient solutions for buildings. The primary barriers are the high initial cost and the uncertain payback period of the energy refurbishment. Allowing for different scenario testing and considering interactions among different building energy systems, building energy simulation tools can help investors overcoming such barriers by offering support to the technical planning of energy refurbishment kits through quantitative information rather than qualitative. The energy performance and comfort of three reference multifamily residential buildings typologies were evaluated considering three envelope retrofitting performance levels (high-medium-low insulated and airtight) and different heating and domestic hot water systems (heat pump, boiler, district heating). The tested envelope retrofitting performance levels allow for heating need reduction between 50% and 90% compared to the reference case. The active cooling system is not accounted for and building energy simulations outputs include thermal comfort evaluation and overheating risk assessment during the summer season. The potential of photovoltaic system combined with heat pump is evaluated in the three reference cases leading to up to 30% of load coverage.
APA, Harvard, Vancouver, ISO, and other styles
14

Figueiredo, António, Romeu Vicente, Rui Oliveira, Fernanda Rodrigues, and António Samagaio. "Multiscale Modelling Approach Targeting Optimisation of PCM into Constructive Solutions for Overheating Mitigation in Buildings." Applied Sciences 10, no. 22 (November 12, 2020): 8009. http://dx.doi.org/10.3390/app10228009.

Full text
Abstract:
Nowadays, the rising gap between the global energy supply and demand is a well-known circumstance in society. Exploring the solution to invert this tendency leads to several different scenarios of energy demand saving strategies that can be improved using phase change materials (PCM), especially in cold-formed steel-framed buildings. The present research reports the overheating (indoor air temperature above 26 °C expressed as an annualized percentage rate) reduction in south-oriented compartments and energy performance of a detached house located in the Aveiro region, in Portugal. An optimisation study was performed incorporating different phase change materials (PCMs) solutions and their position in the exterior envelope focusing overheating rate reduction and heating demand. The optimisations were managed by using a hybrid evolutionary algorithm coupled with EnergyPlus® simulation software. The overheating risk was reduced by up to 24% in the cooling season, for the case of the building compartments with south orientation. Thus, the use of construction solutions using PCMs with different melting temperatures revealed to be a good strategy to maximise PCM efficiency as a passive solution.
APA, Harvard, Vancouver, ISO, and other styles
15

Heim, Dariusz, Anna Wieprzkowicz, Dominika Knera, Simo Ilomets, Targo Kalamees, and Zdenko Špitalský. "Towards Improving the Durability and Overall Performance of PV-ETICS by Application of a PCM Layer." Applied Sciences 11, no. 10 (May 19, 2021): 4667. http://dx.doi.org/10.3390/app11104667.

Full text
Abstract:
The main goal of the paper was to numerically analyse the risk of overheating of the Energy Activated External Thermal Insulation Composite System (En-ActivETICS) as an example of Building Integrated Photovoltaics (BIPV). The analyses were conducted with the coupled power flow method (thermal and electrical) for 20 European cities. All locations were analysed considering the local climate in the context of building performance simulation as well as electricity production. The obtained results allowed for the determination of the risk of overheating, which can influence system durability, accelerated thermal ageing, and overall performance. It was revealed that the risk of overheating above 80 °C is possible in almost all locations; however, the intensity considerably differs between southern and northern Europe. The effect of latent heat storage for better thermal stabilization and overall performance was determined numerically for all locations. Finally, the improved solution with a phase change material (PCM) layer beside the PV panel was proposed individually for specific climatic zones, considering the required heat capacity. The maximum panel temperature for improved En-ActivETICS does not exceed 85 °C for any location.
APA, Harvard, Vancouver, ISO, and other styles
16

Prozuments, Aleksejs, Arturs Staveckis, Jurgis Zemitis, and Diana Bajare. "Evaluation of Heating and Cooling Loads for a Well-Insulated Single-Family House under Variable Climate Pattern." Environmental and Climate Technologies 25, no. 1 (January 1, 2021): 750–63. http://dx.doi.org/10.2478/rtuect-2021-0056.

Full text
Abstract:
Abstract Single family houses consume substantially more thermal energy per floor area compared to multi-apartment buildings to satisfy space heating or cooling demand. Over the past decades there has been an undisputed evidence of a temperature rise across the world that has led to a growing concern of more extreme weather patterns and regular seasonal heat waves globally. As such, building occupants are at a continuously growing risk to overheating exposure inside the premises. Within the framework of this study a single-family house was examined with respect to its thermal performance in warm and cold seasons. A simulation model was developed in IDA-ICE software to evaluate annual thermal energy demand for a reference scenario, 3 shading scenarios and for an optimized scenario. At an optimized scenario that incorporates mechanical ventilation with a heat recovery unit and enhanced thermal performance of the external building elements, the annual thermal energy demand in the proposed single-family house was reduced by 39.5 % compared to the reference scenario, which is a significant step towards meeting nearly zero energy building criteria.
APA, Harvard, Vancouver, ISO, and other styles
17

Ji, Yingchun, Angela Lee, and William Swan. "Retrofit modelling of existing dwellings in the UK: the Salford Energy House case study." International Journal of Building Pathology and Adaptation 37, no. 3 (June 10, 2019): 344–60. http://dx.doi.org/10.1108/ijbpa-12-2018-0106.

Full text
Abstract:
Purpose There is a clear consensus that improving energy efficiency of existing housing stock is necessary to meet the UK’s legally binding carbon emission targets by 2050. The purpose of this paper is to assess the energy saving potentials from building retrofit using an end-terrace house, similar houses represent about 30 per cent of the existing building stock in the UK. Design/methodology/approach The Salford Energy House – a unique pre-1919 Victorian end-terrace house built within an environmental chamber – was used. Retrofit modelling analysis was carried out using IESVE – a dynamic thermal simulation tool. The retrofitted model was also evaluated using future projected climate data (CIBSE latest release) to examine energy demands and overheating. Findings Findings show that improving building fabric thermal characteristics can reduce space heating demands substantially. Heating modes, set point preferences and infiltration level all have strong impact on heating demands. Space heating demand savings can be as much as 77 per cent when the property facades were upgraded to the similar requirements of Passivhaus standards. The research implicates that, for dwelling retrofit practices, a whole house holistic approach should be the preferred option to improve energy efficiency. With future climate scenarios where temperatures are potentially elevated, the heating demands can be potentially reduced as much as 27 per cent. Practical implications The likelihood of overheating in dwellings after a deep retrofit due to future elevated temperatures becomes apparent. Therefore, mitigation of overheating risk becomes a necessity for future domestic housing stock retrofit planning and policy making. Originality/value The research presented in this paper highlights the effectiveness of various retrofit measures individually as well as holistically, also the implications on energy demands and the likelihood of overheating in dwellings under future climate scenarios.
APA, Harvard, Vancouver, ISO, and other styles
18

Bruno, Roberto, Piero Bevilacqua, Daniela Cirone, Stefania Perrella, and Antonino Rollo. "A Calibration of the Solar Load Ratio Method to Determine the Heat Gain in PV-Trombe Walls." Energies 15, no. 1 (January 4, 2022): 328. http://dx.doi.org/10.3390/en15010328.

Full text
Abstract:
The Trombe wall is a passive system used in buildings that indirectly transfers thermal energy to the adjacent environment by radiation and convection, and directly by the thermo-circulation that arises in the air cavity delimited between a transparent and an absorbing surface. Nevertheless, the latter is painted black to increase the energy gains, but this produces a negative visual impact and promotes the overheating risk in summer. To mitigate these aspects, a hybrid Trombe wall equipped with PV panels can be employed. The PV installation results in a more pleasing wall appearance and the overheating risk reduces because part of the absorbed solar radiation is transformed into electricity. To determine the actual performance of a such system, transient simulation tools are required to consider properly the wall thermal storage features, variation of the optical properties, air thermo-circulation, and PV power production. Alternatively, regarding the traditional Trombe wall, the literature provides a simplified empirical method based on the dimensionless parameter solar load ratio (SLR) that allows for preliminary evaluations and design. In this paper, the SLR method was calibrated to determine the monthly auxiliary energy to be supplied in buildings equipped with PV-Trombe walls in heating applications. The SLR method was tuned by a multiple linear regression by data provided by TRNSYS simulation that allowed to obtain the energy performances in actual conditions of PV-Trombe walls installed on the same building but located in different localities. The comparison between the TRNSYS results and the calibrated SLR method determined average errors ranging between 0.7% and 1.4%, demonstrating the validity of the proposed methodology.
APA, Harvard, Vancouver, ISO, and other styles
19

Szagri, Dóra, Bálint Dobszay, Balázs Nagy, and Zsuzsa Szalay. "Wireless Temperature, Relative Humidity and Occupancy Monitoring System for Investigating Overheating in Buildings." Sensors 22, no. 22 (November 9, 2022): 8638. http://dx.doi.org/10.3390/s22228638.

Full text
Abstract:
With the climate change we are experiencing today, the number and intensity of heatwaves are increasing dramatically, significantly impacting our buildings’ overheating. The majority of the prefabricated concrete panel buildings in Hungary are considered outdated from an energy point of view. These buildings may be at greater risk from extreme weather events. To examine this, long-term monitoring measurements are needed. Therefore, we developed a unique, reliable, and cost-effective wireless monitoring system, which can track in real time the indoor air quality data (temperature, relative humidity, CO2) of the investigated apartment building, as well as users’ habits, such as resident presence, window opening, and blind movement. The data were used to analyse and quantify the summer overheating of the dwelling and user habits. The measurements showed that the average temperature in all rooms was above 26 °C, and there were several occasions when the temperature exceeded 30 °C. Overheating in apartment buildings in summer is a significant problem that needs to be addressed. Further investigation of ventilation habits will help develop favourable ventilation strategies, and using these measurements in dynamic simulations will also help improve the models’ validity for further studies.
APA, Harvard, Vancouver, ISO, and other styles
20

Schwartz, Y., I. Korolija, P. Symonds, D. Godoy-Shimizu, J. Dong, S. M. Hong, A. Mavrogianni, D. Grassie, and D. Mumovic. "Indoor Air Quality and Overheating in UK Classrooms – an Archetype Stock Modelling Approach." Journal of Physics: Conference Series 2069, no. 1 (November 1, 2021): 012175. http://dx.doi.org/10.1088/1742-6596/2069/1/012175.

Full text
Abstract:
Abstract Children spend a large part of their waking lives in school buildings. There is substantial evidence that poor indoor air quality (IAQ) and thermal discomfort can have detrimental impacts on the performance, wellbeing and health of schoolchildren and staff. Maintaining good IAQ while avoiding overheating in classrooms is challenging due to the unique occupancy patterns and heat properties of schools. Building stock modelling has been extensively used in recent years to quantify and evaluate performance of large numbers of buildings at various scales. This paper builds on an archetype stock modelling approach which represents the diversity of the school stock in England through an analysis of The Property Data Survey Programme (PDSP) and the Display Energy Certificates (DEC) databases. The model was used for simulating Indoor-to-Outdoor pollution ratios to estimate indoor air pollution levels (NO2, PM2.5 and CO2) and thermal comfort (overheating) in two climate areas in England: London and the West Pennines. analysis highlighted variations in classrooms’ indoor CO2 levels in different seasons and explored the risk of overheating in relation to a classroom’s orientation.
APA, Harvard, Vancouver, ISO, and other styles
21

Attia, Shady, Stéphanie Bertrand, Mathilde Cuchet, Siliang Yang, and Amir Tabadkani. "Comparison of Thermal Energy Saving Potential and Overheating Risk of Four Adaptive Façade Technologies in Office Buildings." Sustainability 14, no. 10 (May 17, 2022): 6106. http://dx.doi.org/10.3390/su14106106.

Full text
Abstract:
Adaptive façades are gaining greater importance in highly efficient buildings under a warming climate. There is an increasing demand for adaptive façades designed to regulate solar and thermal gains/losses, as well as avoid discomfort and glare issues. Occupants and developers of office buildings ask for a healthy and energy-neutral working environment. Adaptive façades are appropriate dynamic solutions controlled automatically or through occupant interaction. However, relatively few studies compared their energy and overheating risk performance, and there is still a vast knowledge gap on occupant behavior in operation. Therefore, we chose to study four dynamic envelopes representing four different façade families: dynamic shading, electrochromic glazing, double-skin, and active ventilative façades. Three control strategies were chosen to study the dynamic aspect of solar control, operative temperature, and glare control. Simulations were realized with EnergyPlus on the BESTEST case 600 from the ASHRAE standard 140/2020 for the temperate climate of Brussels. A sensitivity analysis was conducted to study the most influential parameters. The study findings indicate that dynamic shading devices and electrochromic glazing have a remarkable influence on the annual thermal energy demand, decreasing the total annual loads that can reach 30%. On the other hand, BIPV double-skin façades and active ventilative façades (cavity façades) could be more appropriate for cold climates. The study ranks the four façade technologies and provides novel insights for façade designers and building owners regarding the annual energy performance and overheating risk.
APA, Harvard, Vancouver, ISO, and other styles
22

Mutasim Baba, Fuad, and Hua Ge. "Effect of climate change on the energy performance and thermal comfort of high-rise residential buildings in cold climates." MATEC Web of Conferences 282 (2019): 02066. http://dx.doi.org/10.1051/matecconf/201928202066.

Full text
Abstract:
Buildings now produce more than a third of global greenhouse gases, making them more than any other sector contributing to climate change. This paper investigates the effect of climate change on the energy performance and thermal comfort of a high-rise residential building with different energy characteristic levels, i.e. bylaw to meet current National Energy Code of Canada for Buildings (NECB), and passive house (PH) under two climate zones in British Columbia, Canada. SRES A2, RCP-4.5 and RCP-8.5 emission scenarios are used to generate future horizon weather data for 2020, 2050, and 2080. The simulation results show that for both bylaw and PH cases, the heating energy consumption would be reduced while cooling energy consumption would be increased. As a result, for the bylaw case, the total energy consumption would be decreased for two climate zones, while for PH case, the total energy consumption would be increased for zone 4 and decreased for zone 7. In addition, the number of hours with overheating risks would be increased under future climates, e.g. doubled in 2080, compared to the historical weather data. Therefore, efforts should be made in building design to take into account the impact of climate change to ensure buildings built today would perform as intended under changing climate.
APA, Harvard, Vancouver, ISO, and other styles
23

Lassandro, Paola, and Teresa Cosola. "Climate change mitigation: resilience indicators for roof solutions." International Journal of Disaster Resilience in the Built Environment 9, no. 1 (February 12, 2018): 4–17. http://dx.doi.org/10.1108/ijdrbe-11-2016-0046.

Full text
Abstract:
Purpose This paper aims to increase the resilience of building systems, especially roofs, in relation to climate changes. The focus is on Mediterranean cities, where, often, there is no regulation about these issues. Therefore, it is necessary to define resilience indicators through comparative studies of adaptive roof solutions to mitigate overheating in summer. Design/methodology/approach Through software simulations and data comparison, a specific methodological approach is used to analyze the resilience levels of different roof solutions (phase change materials, aerogel, green and cool roof), starting from energy efficiency as a prerequisite of resilience. Moreover, a case study of a historic existing building in a southern Italian town is examined. Findings The findings show the best strategies for building systems, especially for roofs, to decrease urban heat island effects according to the defined resilience indicators against overheating mitigation. Research limitations/implications Other building systems, such as facades, also have to be investigated in relation to climate change mitigation. Practical implications The implementation of resilient solutions that can also affect neighborhood for urban heat island mitigation. Social implications Because of resilience indicators definition, it is easier to introduce economic incentives according to reference thresholds and to increase community involvement. Originality/value The paper provides a new approach for the evaluation of technological solutions for a building from a resilience point of view, which has energy efficiency as pre-condition.
APA, Harvard, Vancouver, ISO, and other styles
24

Liu, C., W. Chung, F. Cecinati, S. Natarajan, and D. Coley. "Current and future test reference years at a 5 km resolution." Building Services Engineering Research and Technology 41, no. 4 (October 8, 2019): 389–413. http://dx.doi.org/10.1177/0143624419880629.

Full text
Abstract:
Frequently, the computer modelling of the natural and human-made environment requires localised weather files. Traditionally, the weather files are based on the observed weather at a small number of locations (14 for the UK). Unfortunately, both the climate and the weather are known to be highly variable across the landscape, so the small number of locations has the potential to cause large errors. With respect to buildings, this results in incorrect estimates of the annual energy use (sometimes by a factor of 2), or of overheating risk. Here we use a validated weather generator running on a 5 × 5 km grid to create probabilistic test reference years (pTRYs) for the UK at 11,326 locations. We then investigate the spatial variability of these pTRYs and of annual energy estimates and temperatures in buildings generated by them, both now and in 2080. Further pTRYs targeted at understanding the impact of minimum and maximum temperatures are proposed and produced at the same locations. Finally, we place these pTRYs, which represent the first set of reference weather files at this spatial resolution in the world and that include the urban heat island effect, into a publicly accessible database so researchers and industry can access them. Practical applications: Insufficiently localised weather data for building simulations have limited the accuracy of previous estimations of energy use and overheating risk in buildings. This work produces localised probabilistic test reference years (pTRYs) across the whole UK for now and future climates. In addition, a new pTRY method has been proposed in order to overcome an unexpected shortcoming of traditional pTRYs in representing typical maximum and minimum temperatures. These current and future weather data will be of interest to various disciplines including those interested in low carbon design, renewable energy and climate resilience.
APA, Harvard, Vancouver, ISO, and other styles
25

Ounis, Safieddine, Niccolò Aste, Federico M. Butera, Claudio Del Pero, Fabrizio Leonforte, and Rajendra S. Adhikari. "Optimal Balance between Heating, Cooling and Environmental Impacts: A Method for Appropriate Assessment of Building Envelope’s U-Value." Energies 15, no. 10 (May 13, 2022): 3570. http://dx.doi.org/10.3390/en15103570.

Full text
Abstract:
In Europe, the recent application of regulations oriented to zero-energy buildings and climate neutrality in 2050 has led to a reduction in energy consumption for heating and cooling in the construction sector. The thermal insulation of the building envelope plays a key role in this process and the requirements about the maximum allowable thermal transmittance are defined by country-specific guidelines. Typically, high insulation values provide low energy consumption for heating; however, they may also entail a risk of overheating in summer period and thus negatively affect the overall performance of the building. In addition, the embodied energy and related emissions caused by the manufacturing and transportation processes of thermal insulation cannot be further neglected in the evaluation of the best optimal solution. Therefore, this paper aims to evaluate the influence in terms of embodied and operational energy of various walls’ thermal insulation thicknesses on residential buildings in Europe. To this end, the EnergyPlus engine was used for the energy simulation within the Ladybug and Honeybee tools, by parametrically conducting multiple iterations; 53 variations of external wall U-value, considering high- and low-thermal-mass scenarios, were simulated for 100 representative cities of the European context, using a typical multifamily building as a reference. The results demonstrate that massive walls generally perform better than lightweight structures and the best solution in terms of energy varies according to each climate. Accordingly, the wall’s thermal transmittance for the samples of Oslo, Bordeaux, Rome and Almeria representative of the Continental, oceanic temperate, Mediterranean, and hot, semi-arid climates were, respectively: 0.12, 0.26, 0.42, and 0.64 W/m2K. The optimal solutions are graphically reported on the map of Europe according to specific climatic features, providing a guidance for new constructions and building retrofit.
APA, Harvard, Vancouver, ISO, and other styles
26

Catalina, Tiberiu, Daniel Bortis, Andreea Vartires, and Cătălin Lungu. "Glazed balconies impact on energy consumption of multi-story buildings." E3S Web of Conferences 111 (2019): 06079. http://dx.doi.org/10.1051/e3sconf/201911106079.

Full text
Abstract:
Through this research we have studied the influence of the closure of the balconies on the temperature and humidity. Three residential apartments with enclosed balconies are monitored simultaneously over two periods: a colder one in March and a warmer one in May providing an overview of the thermal performance of a balcony relative to the interior. The results of the balcony#1 simulations made with the Trnsys 17 software show a good energy saving in the cold period, but higher cooling consumption in warm weather.The total energy demand difference between closed and open balconies is about 840 kWh. The simulation also showed us the close connection between the temperature in the balcony and the solar radiation that both grow and decrease simultaneously. At the end of the two campaigns, we came to the conclusion that a closed and thermally rehabilitated balcony is the best solution, being proven to have a winter advantage, the difference between the outdoor temperature and the balcony temperature being around 15 °C, but a summer disadvantage when temperatures in the balcony greatly increase and may exceed 50 °C, with the risk of overheating the balcony.
APA, Harvard, Vancouver, ISO, and other styles
27

Szkordilisz, Flóra, and Márton Kiss. "Potential of Vegetation in Improving Indoor Thermal Comfort and Natural Ventilation." Applied Mechanics and Materials 824 (January 2016): 278–87. http://dx.doi.org/10.4028/www.scientific.net/amm.824.278.

Full text
Abstract:
According to the EPBD (2010) whilst improving the thermal performance of buildings good or at least tolerable thermal comfort conditions must be provided. But better thermal insulation and more airtight buildings increase the risk of summer overheating which makes mechanical cooling inevitable. This idea has been verified by the tendency of the last decade, when people were willing to install and use more frequently air conditioning devices during the summer heatwaves – increasing their energy consumption and electricity bills at the same time. We cannot neglect the importance of studies triggering an efficient way to minimise the cooling load of residential buildings by obstructing solar radiation. The usage of plants in front of transparent surfaces of the façade can avoid indoor overheating. Deciduous plants obstruct buildings’ solar access so that the microclimate around the building is improved too. The use of Green Infrastructure in different levels of planning processes, which would provide sustainable solutions for urban management, is also prescribed in the EU Biodiversity Strategy 2020. Of course in order to investigate the actual effect of trees on indoor thermal comfort we should take into consideration a list of other factors: such as orientation the type and thermal properties of the windows / transparent structures used, and the thermal transmittance values and heat storage capacity of the building. If we have taken into consideration the mentioned factors during simulation we can prove the effectiveness of vegetation for each case. Simulations are made on the base of transparency measurements carried out during the summer of 2014. The shading efficiency of trees is a species-specific attribute because of the varying crown structure and leaf density. Our analyses aimed at the quantification of the transmissivity of characteristic individuals of three frequently planted species (Celtis occidentalis, Sophora japonica, Tilia cordata). The measured data were the amount of transmitted shortwave radiation, compared with a measurement point under unobstructed sunlight. In preliminary studies we have shown that depending on species – a tree in front of the façade can decrease the solar gain on internal horizontal surface up to ~18-30 per cents. As the tree obstructs the solar access of the wall and that of transparent surfaces, a difference in indoor comfort is to be observed too.
APA, Harvard, Vancouver, ISO, and other styles
28

Zeneli, Myrto, Alessandro Bellucci, Gianfranco Sabbatella, Maria Fotopoulou, Vasilis Apostolopoulos, Panagiotis Stamatopoulos, Daniele M. Trucchi, Aristeidis Nikolopoulos, and Dimitrios Rakopoulos. "Thermal Assessment of Dielectric Microspacer Technology Using an Advanced Three-Dimensional Simulation Model." Sustainability 15, no. 3 (January 17, 2023): 1786. http://dx.doi.org/10.3390/su15031786.

Full text
Abstract:
Dielectric microspacers (DMS) are a novel micro-technology that can be used to achieve a fixed micron/sub-micron gap distance between two separated surfaces, such as the emitter (cathode) and the PV cell (anode) of a near-field thermophotovoltaic converter (TPV). One of the system’s challenges is the flow of undesirable excess thermal energy from the cathode to the anode that might cause the PV cell to overheat. This work investigates the possibility of integrating this technology into a hybrid thermionic-photovoltaic (TIPV) converter operating at ultra-high temperatures (>1000 °C) without any risk of collector’s overheating, which might lead to its mechanical failure. A steady-state 3-D CFD model was developed in Fluent v17.1 solver to assess the system’s thermal behavior when the two electrodes were separated by a distance of 8–10 μm. The heat transfer through conduction across the system components and the net photon/electron flux between the two electrodes were simulated. Different cathode temperatures within the range of 1500–2500 K and various DMS shapes (capillary, cylindrical), patterns (e.g., ring-shaped) and sizes were studied. Results show that thermal performance is not affected by the DMS pattern, even for thermal conductivities of 80 W/(m·K), whereas the possibility of mechanical failure is considerable for Tcathode > 2000 K.
APA, Harvard, Vancouver, ISO, and other styles
29

Ozoliņš, A., A. Jakovičs, and S. Gendelis. "Impact of Different Building Materials on Summer Comfort in Low-Energy Buildings." Latvian Journal of Physics and Technical Sciences 52, no. 3 (June 1, 2015): 44–57. http://dx.doi.org/10.1515/lpts-2015-0017.

Full text
Abstract:
Abstract The aim of the current paper is to analyse thermal comfort and overheating risks in the low-energy buildings in a summer season under Latvian climate conditions both experimentally and numerically. An interior temperature and relative humidity are analysed under free-floating conditions. Two cases are analysed: in one case, the solar influence through the window is taken into account; in the other this influence is omitted. Three different building solutions are observed: two building structures which mainly consist of the mineral wool and wooden materials and one structure from aerated clay bricks and mineral wool. The experiments have been implemented in test stands in Riga, Latvia. The numerical simulations based on measurements obtained from test stands have been performed using software WUFI Plus. The results show that the wooden constructions have high overheating risks.
APA, Harvard, Vancouver, ISO, and other styles
30

Heshmat Mohajer, Hamed Reza, Lan Ding, Dionysia Kolokotsa, and Mattheos Santamouris. "On the Thermal Environmental Quality of Typical Urban Settlement Configurations." Buildings 13, no. 1 (December 28, 2022): 76. http://dx.doi.org/10.3390/buildings13010076.

Full text
Abstract:
Urban overheating and energy imbalances are severe environmental concerns. The role of urban sprawl patterns in the formation of Heat Island has recently absorbed the researchers’ interest. The research focuses on metropolitan areas with a range of urban typologies. However, there still is a knowledge gap in how UHI responds to different urban typologies. The interaction between urban configurations and heat island characteristics is explored in Sydney. A combination of terrestrial surveys and modelling techniques was implemented, and results were extracted based on simulation results. The Urban Taskforce Australia suggested the applied categorization methods that follow Stewart and Oke’s Local Climate Zones (LCZs) scheme. We assessed eleven urban designs on ambient air temperature, wind characteristics, heat intensity, and outdoor thermal comfort over three summer days. We correlated results to density and the built-up ratio in all configurations and found that the maximum configurational impact on the heat island reached 2.33 °C. Configurations with a built-up ratio between 0.37 to 0.5 present a sharp downward trend in the average wind speed value and indicate a minimum with a built-up ratio of 0.63. Wind maps present an increase in layouts with built-up ratios of 0.23 to 0.37, whereas they decreased with built-up ratios of higher than 0.43. The average temperature decrease in high-rise compact configurations was 1.12 °C per hour. This record is substantially higher than its open counterparts. The study showed the importance of urban configuration on thermal environmental quality. In addition, implementing appropriate urban design parameters is vital to mitigate heat islands and improve environmental thermal comfort in urban areas.
APA, Harvard, Vancouver, ISO, and other styles
31

Shikder, Shariful, Monjur Mourshed, and Andrew Price. "Summertime Impact of Climate Change on Multi-Occupancy British Dwellings." Open House International 37, no. 4 (December 1, 2012): 50–60. http://dx.doi.org/10.1108/ohi-04-2012-b0006.

Full text
Abstract:
Recent climate change projections estimate that the average summertime temperature in the southern part of Great Britain may increase by up to 5.4°C by the end of the century. The general consensus is that projected increases in temperature will render British dwellings vulnerable to summer overheating and by the middle of this century it may become difficult to maintain a comfortable indoor environment, if adaptation measures are not well integrated in the design and operation of new dwellings, which are likely to remain in use beyond the 2050s. The challenge is to reduce overheating risks by integrating building and user adaptation measures, to avoid energy intensive mechanical cooling. Developing guidelines and updating building regulations for adaptation, therefore, requires an understanding of the baseline scenario; i.e. the performance of existing buildings in future climates. This paper aims to investigate the performance of new-build multi-occupancy British dwellings for human thermal comfort in the present-day and projected future climates in four regional cities: Birmingham, Edinburgh, London and Manchester. Evaluations are carried out by a series of dynamic thermal simulations using widely adopted threshold temperature for overheating, as well as adaptive thermal comfort standards. This study thus offers a unique perspective on regional variations of performance and provides a clearer snapshot because of the use of more appropriate adaptive comfort standards in the evaluations. Finally, the paper sheds light on possible personal and building adaptation measures to alleviate overheating risks.
APA, Harvard, Vancouver, ISO, and other styles
32

Petrou, Giorgos, Anna Mavrogianni, Phil Symonds, Anastasia Mylona, Dane Virk, Rokia Raslan, and Mike Davies. "Can the choice of building performance simulation tool significantly alter the level of predicted indoor overheating risk in London flats?" Building Services Engineering Research and Technology 40, no. 1 (August 2, 2018): 30–46. http://dx.doi.org/10.1177/0143624418792340.

Full text
Abstract:
The accurate prediction of building indoor overheating risk is critical in order to mitigate its possible consequences on occupant health and wellbeing. The Chartered Institution of Building Services Engineers issued Technical Memorandum 59 (TM59) with the aim of achieving consistency in the modelling processes followed for the prediction of overheating risk in new dwellings. However, as each tool’s prediction may depend on its inherent assumptions, an inter-model comparison procedure was used to assess whether the choice of building performance simulation tool influences the overheating assessment. The predictions of two popular tools, IES VE and EnergyPlus, were compared for nine variations of a naturally ventilated, purpose built, London flat archetype, modelled under the default algorithm options. EnergyPlus predicted a high overheating risk according to TM59 criteria in seven out of the nine model variants, contrary to the low risk of all the IES VE variants. Analysis of heat transfer processes revealed that wind-driven ventilation and surface convection algorithms were the main sources of the observed discrepancies. The choice of simulation tool could thus influence the overheating risk assessment in flats, while the observed discrepancies in the simulation of air and heat transfer could have implications on other modelling applications. Practical application:Technical Memorandum 59 issued by the Chartered Institution of Building Services Engineers may be widely adopted within the industry to assist the prediction of overheating risk in new dwellings. This work suggests that the choice of building performance simulation tool can greatly influence the predicted overheating risk. Furthermore, the differences identified in the modelling of heat transfer processes could also impact other modelling applications. Following these results, the need for detailed empirical validation studies of naturally ventilated homes has been highlighted.
APA, Harvard, Vancouver, ISO, and other styles
33

Yuan, Yue, Jisoo Shim, Seungkeon Lee, Doosam Song, and Joowook Kim. "Prediction for Overheating Risk Based on Deep Learning in a Zero Energy Building." Sustainability 12, no. 21 (October 29, 2020): 8974. http://dx.doi.org/10.3390/su12218974.

Full text
Abstract:
The Passive House standard has become the standard for many countries in the construction of the Zero Energy Building (ZEB). Korea also adopted the standard and has achieved great success in building energy savings. However, some issues remain with ZEBs in Korea. Among them, this study aims to discuss overheating issues. Field measurements were carried out to analyze the overheating risk for a library built as a ZEB. A data-driven overheating risk prediction model was developed to analyze the overheating risk, requiring only a small amount of data and extending the analysis throughout the year. The main factors causing overheating during both the cooling season and the intermediate seasons are also analyzed in detail. The overheating frequency exceeded 60% of days in July and August, the midsummer season in Korea. Overheating also occurred during the intermediate seasons when air conditioners were off, such as in May and October in Korea. Overheating during the cooling season was caused mainly by unexpected increases in occupancy rate, while overheating in the mid-term was mainly due to an increase in solar irradiation. This is because domestic ZEB standards define the reinforcement of insulation and airtight performance, but there are no standards for solar insolation through windows or for internal heat generation. The results of this study suggest that a fixed performance standard for ZEBs that does not reflect the climate or cultural characteristics of the region in which a ZEB is built may not result in energy savings at the operational stage and may not guarantee the thermal comfort of occupants.
APA, Harvard, Vancouver, ISO, and other styles
34

Tian, Zhiyong, and Bozena Dorota Hrynyszyn. "Overheating risk of a typical Norwegian residential building retrofitted to higher energy standards under future climate conditions." E3S Web of Conferences 172 (2020): 02007. http://dx.doi.org/10.1051/e3sconf/202017202007.

Full text
Abstract:
Heat waves had attacked Norway in 2018 and 2019. Residents in Norway experienced a very uncomfortable indoor environment in the summer of 2018 and 2019. Few publications on the overheating risk of a typical Norwegian residential building under future climate change conditions were found. The typical Norwegian residential building retrofitted according to the minimum Norwegian energy requirements in the Norwegian Building Act of 2010 (Pbl2010/TEK17) and the international EnerPHit Standard was modelled in this study. Overheating risk of the typical residential building was simulated by Energy Plus engine via Ladybug and Honeybee plugins based on the Grasshopper. Overheating hours of the studied rooms under present-day, the 2050s and the 2080s weather conditions were shown. Too good airtightness does increase the overheating risk of the building when retrofitted to higher energy standards. It was found in this study that better insulation does reduce the overheating hours of the bedrooms slightly. This may be caused by low g-value of the windows based on recommendation according to the EnerPHit Standard. Overheating should be paid more attention in term of the expected future climate conditions. These results can provide some references to the buildings retrofitted to high-performance buildings.
APA, Harvard, Vancouver, ISO, and other styles
35

Scanferla, Marco, and Violeta Motuzienė. "Energy Efficient Glazed Office Building Envelope Solutions for Different European Climates." Mokslas - Lietuvos ateitis 9, no. 4 (September 11, 2017): 470–81. http://dx.doi.org/10.3846/mla.2017.1070.

Full text
Abstract:
The aim of this study is to show the critical aspects of a completely glazed high rise office building from an energy efficiency point of view in different European climates. The achievable consumptions and the most influential parameters such as glazing U-value, VT/SHGC and shading and their optimal values were investigated. The study has been carried out for a theoretical office building in Italy and Lithuania, representatively of a southern and northern EU climate. The building chosen is representative of all the glazed-simple shape buildings and the analysis of the entirety of the building enables a clear and im-mediate outcome of global consumptions. Number of DesignBuilder simulations were performed and the annual consumptions are summed with the primary energy criteria. Results show the critical aspects of 100% WWR buildings: in the coldest climate the main problem is the huge surface of relatively high glass U-value compared with standard walls, while in the warmer one the main efforts need to be done to avoid the summer overheating caused by incoming solar radiation. Finally, it is shown that it is difficult to lower the overall primary energy consumptions below 130 and 140 kWh/m2a for North-Italy and Lithuania locations respectively. The analysis is focused only in the envelope parameter, thus it is not included renewable energy systems, which can generate higher energy efficiencies.
APA, Harvard, Vancouver, ISO, and other styles
36

Dartevelle, Olivier, Sergio Altomonte, Gabrielle Masy, Erwin Mlecnik, and Geoffrey van Moeseke. "Indoor Summer Thermal Comfort in a Changing Climate: The Case of a Nearly Zero Energy House in Wallonia (Belgium)." Energies 15, no. 7 (March 25, 2022): 2410. http://dx.doi.org/10.3390/en15072410.

Full text
Abstract:
While the potential impact of climate change mitigation measures is well documented in building sciences literature, there are only relatively sparse studies focusing on the efficiency of adaptation strategies. This paper aims to contribute to this topic by evaluating the extent to which the design of a typical nearly Zero Energy Buildling (nZEB) house in Wallonia (Belgium), and its current operation, could provide summer thermal comfort in a changing climate. Based on calibrated whole building energy simulations, and on the integration of future climate data directly derived from a high-resolution climate model, this study evaluates the potential evolution of overheating risks in the living room and in the main bedroom of the house. Discussing the compliance with existing overheating criteria, the study shows that the passive strategies currently deployed in the house might not be sufficient to guarantee summer thermal comfort especially in the bedroom, and that other strategies might be necessary in the future to limit the use of active cooling systems and curb their environmental impacts. This study concludes that considering the potential of these strategies to guarantee summer thermal comfort in a changing climate should be a priority for the design of nZEB houses (and their related policies) also in temperate oceanic climates.
APA, Harvard, Vancouver, ISO, and other styles
37

Roberts, Ben M., David Allinson, Susie Diamond, Ben Abel, Claire Das Bhaumik, Narguess Khatami, and Kevin J. Lomas. "Predictions of summertime overheating: Comparison of dynamic thermal models and measurements in synthetically occupied test houses." Building Services Engineering Research and Technology 40, no. 4 (May 15, 2019): 512–52. http://dx.doi.org/10.1177/0143624419847349.

Full text
Abstract:
Summertime overheating in UK dwellings is seen as a risk to occupants' health and well-being. Dynamic thermal simulation programs are widely used to assess the overheating risk in new homes, but how accurate are the predictions? Results from two different dynamic thermal simulation programs used by four different experienced modellers are compared with measurements from a pair of traditional, semi-detached test houses. The synthetic occupancy in the test houses replicated curtain operation and the CIBSE TM59 internal heat gain profiles and internal door opening profiles. In one house, the windows were always closed and in the other they operated following the TM59 protocol. Sensors monitored the internal temperatures in five rooms and the local weather during a 21-day period in the summer of 2017. Model evaluation took place in two phases: blind and open. In the blind phase, modellers received information about the houses, the occupancy profiles and the weather conditions. In the open phase, modellers received the test house temperature measurements and, with the other modellers, adjusted their models to try and improve predictions. The data provided to modellers is openly available as supplementary information to this paper. In both phases, during warm weather, the models consistently predicted higher peak temperatures and larger diurnal swings than were measured. The models' predicted hours of overheating were compared with the measured hours using the CIBSE static threshold of 26℃ for bedrooms and the BSEN15251 Category II threshold for living rooms. The models developed in each phase were also used to predict the annual hours of overheating using the CIBSE TM59 procedure. The inter-model variation was quantified as the Simulation Resolution. For these houses, the blind phase models produced Simulation Resolution values of approximately 3% ± 3 percentage points for TM59 Criterion A and 1% ± 1 percentage point for TM59 Criterion B. The Simulation Resolution concept offers a valuable aid to modellers when assessing the compliance of dwellings with the TM59 overheating criteria. Further work to produce Simulation Resolution values for different dwelling archetypes and weather conditions is recommended. Practical application: Overheating in UK homes is a serious and growing risk to health and well-being. Dynamic thermal models are used to predict overheating risk in existing and proposed dwellings. Comparisons between predicted temperatures and temperatures measured in two test houses shed light on the accuracy of predictions for existing homes. CIBSE Technical Memorandum TM59 provides a strategy for predicting overheating risk in proposed dwellings. There are, however, differences between models' predictions. The concept of Simulation Resolution is introduced to quantify this inter-model variability. It provides modellers with a firm basis on which to determine whether TM59 overheating predictions are robust.
APA, Harvard, Vancouver, ISO, and other styles
38

Mitchell, Rachel, and Sukumar Natarajan. "Overheating risk in Passivhaus dwellings." Building Services Engineering Research and Technology 40, no. 4 (April 8, 2019): 446–69. http://dx.doi.org/10.1177/0143624419842006.

Full text
Abstract:
Highly insulated and airtight homes designed to reduce energy consumption are perceived as having a greater summer overheating risk than less insulated homes. If true, dwellings built to the well-known low-energy Passivhaus (PH) standard could be at greatest risk due to the use of superinsulation, especially as the climate warms. Existing studies are inconclusive and even contradictory, mainly due to small sample sizes. Hence, this paper presents the first large-scale overheating risk analysis of UK Passivhaus dwellings using high-resolution internal temperature data from 82 homes across the UK. Both the Passivhaus and the recently published Chartered Institution of Building Services Engineers TM59 criteria are analysed. Results show that the whole-dwelling Passivhaus standard, which uses a fixed temperature threshold, is met more frequently (83%) than when applied on a room-by-room basis (e.g. only 60% of bedrooms in houses meet the standard). TM59-1A, which uses an adaptive temperature threshold, is easier to meet with 100% of flats and 82% of houses in compliance. However, 55% of bedrooms assessed under TM59-1B fail, with little difference between flats and houses. This is a remarkable finding given that the summers under consideration were either typically mild or cooler than average, and that sleep impairment can significantly affect both physical and mental health. These results suggest that highly insulated dwellings such as Passivhaus should consider overheating in individual rooms, rather than at whole-dwelling level. Analysis should be undertaken throughout the year with particular attention to bedrooms, using either the good-practice PH-5% exceedance threshold which maps well to TM59-1B, or TM59-1B itself. Practical application: Overheating risk in new dwellings is an industry concern. Having the correct tools to predict this risk at design stage is important to help design comfortable and healthy dwellings for both today's climate and future, hotter climates. Comparing two different tools and their methodologies using in-use data is critical to gain confidence in their application at the design stage and to further understand overheating risk, including which dwelling types and rooms are more vulnerable to overheating.
APA, Harvard, Vancouver, ISO, and other styles
39

Ibrahim, Azlizawati, and Sofie LJ Pelsmakers. "Low-energy housing retrofit in North England: Overheating risks and possible mitigation strategies." Building Services Engineering Research and Technology 39, no. 2 (January 22, 2018): 161–72. http://dx.doi.org/10.1177/0143624418754386.

Full text
Abstract:
In the drive to reduce space-heating demand and associated CO2 emissions as well as tackle fuel poverty, dwelling overheating and summer-time occupant thermal discomfort might be the unintended consequences of low-energy building retrofits. This paper presents the findings of a steady-state modelled low-energy retrofit dwelling in northern England and its potential current and future climate overheating risks using UK Climate Projections 2009 (UKCP09) scenarios (2050 and 2080 High Emission Scenarios). Predictive findings highlight that retrofitting to low-energy standards increases overheating risk over time, unless passive prevention measures are included in the retrofit design. In addition, the steady-state nature of the model might not fully capture the occupants’ exposure to actual future overheating risks. Among the most effective individual passive overheating mitigation strategies are temporary internal shading, permanent external shading and night-time ventilation. Most effective is a combination of these adaptation measures, so that predictive overheating is minimised in a future changing climate, reducing the uptake of active cooling in retrofitted dwellings. Practical application: Much research focuses on building overheating risks in the warmer South-east of England. However, this paper highlights how dwelling retrofit in north England (Sheffield) also can lead to increased dwelling overheating risk, unless passive design measures are included in the retrofit design. Among the most effective individual passive overheating mitigation strategies are solar shading devices and increased night-time ventilation, though ideally different measures are combined. Using future climate scenarios highlights that retrofits designed today might not be able to provide occupant thermal comfort in a future warming world.
APA, Harvard, Vancouver, ISO, and other styles
40

Kamenský, Martin, Martin Lopušniak, and Dušan Katunský. "Analysis of Summer Overheating in Elementary School Building." Advanced Materials Research 899 (February 2014): 269–72. http://dx.doi.org/10.4028/www.scientific.net/amr.899.269.

Full text
Abstract:
In elementary school buildings, a risk of summer overheating occurs due to large windows which secure and high quality of daylight. It leads to large solar gains. The article analyzes an effect of sun-shading design interacting with ventilation modes for the internal air temperature. Analysis was done with simulation calculation. Results show that the maximum temperature does not fall below θai = 28°C in any case of all alternatives and combinations. In this case, cooling is necessary.
APA, Harvard, Vancouver, ISO, and other styles
41

Yu, Yang, Yu Shao, Bolun Zhao, Jiahui Yu, Haibo Guo, and Yang Chen. "Study on Summer Overheating of Residential Buildings in the Severe Cold Region of China in View of Climate Change." Buildings 13, no. 1 (January 15, 2023): 244. http://dx.doi.org/10.3390/buildings13010244.

Full text
Abstract:
Due to global warming, the overheating risk in the severe cold region of China has attracted attention, but so far, no studies have examined summer overheating in this region. This paper aims to reveal the overheating risk in recent and future climates in the severe cold region of China. An 18-storey residential building in the severe cold region of China was monitored from May to September 2021 to validate the simulation data of the indoor temperature. Weather files of the typical meteorological year (TMY) from 2007 to 2020, observations in 2021, and forecasts for the climate in different carbon emission scenarios (2030, 2060) were used to simulate the indoor temperature and assess the overheating risk. The results revealed the severity of the overheating risk; the overheating hours in the south-facing bedroom were recorded as 884 h (24.07%) with the TMY weather data and 1043 h (28.40%) in 2030 and 1719 h (46.81%) in 2060 under the RCP8.5 carbon emission scenario. Thus, the low carbon emissions policy may significantly alleviate overheating. Moreover, to cope with climate change, it is suggested that the Chinese local design standards should consider the summer overheating risk and make the necessary adjustments.
APA, Harvard, Vancouver, ISO, and other styles
42

Gupta, Rajat, Matthew Gregg, Hu Du, and Katie Williams. "Evaluative application of UKCP09‐based downscaled future weather years to simulate overheating risk in typical English homes." Structural Survey 31, no. 4 (August 23, 2013): 231–52. http://dx.doi.org/10.1108/ss-01-2013-0005.

Full text
Abstract:
PurposeTo critically compare three future weather year (FWY) downscaling approaches, based on the 2009 UK Climate Projections, used for climate change impact and adaptation analysis in building simulation software.Design/methodology/approachThe validity of these FWYs is assessed through dynamic building simulation modelling to project future overheating risk in typical English homes in 2050s and 2080s.FindingsThe modelling results show that the variation in overheating projections is far too significant to consider the tested FWY data sets equally suitable for the task.Research and practical implicationsIt is recommended that future research should consider harmonisation of the downscaling approaches so as to generate a unified data set of FWYs to be used for a given location and climate projection. If FWY are to be used in practice, live projects will need viable and reliable FWY on which to base their adaptation decisions. The difference between the data sets tested could potentially lead to different adaptation priorities specifically with regard to time series and adaptation phasing through the life of a building.Originality/valueThe paper investigates the different results derived from FWY application to building simulation. The outcome and implications are important considerations for research and practice involved in FWY data use in building simulation intended for climate change adaptation modelling.
APA, Harvard, Vancouver, ISO, and other styles
43

Goncalves, V., and T. Rakha. "The role of complex airflow simulation tools for overheatingassessment of passive houses." Journal of Physics: Conference Series 2069, no. 1 (November 1, 2021): 012170. http://dx.doi.org/10.1088/1742-6596/2069/1/012170.

Full text
Abstract:
Abstract Passive Houses are characterized mainly by construction concepts that greatly reduce energy usage during the winter, but that can lead to significant overheating during the hotter summer days. Since in the Passive House concept thermal comfort during the summer mainly relies on natural ventilation to provide indoor cooling, the importance of airflow modeling tools for overheating prediction needs to be investigated. This research analyzes the effect of simplifications commonly made in airflow modeling techniques on the overheating assessment of Passive Houses by collecting measured data and calibrating a thermal model with a Passive House case study. Utilizing the calibrated model, a standalone Building Energy Model (BEM), BEM coupled with an Airflow Network Model (AFN), and BEM coupled with an AFN supported by the wind pressure coefficient values obtained from Computational Fluid Dynamics (CFD) simulation were created. The outcome of each modeling approach was then compared against each other. Results showed that the default infiltration and natural ventilation input values commonly utilized in literature, when compared to those obtained from either the AFN or AFN+CFD, are significantly overestimating the natural ventilation potential of Passive House buildings, resulting in a lower number of overheating hours (39.9% decrease) and inaccurate overheating evaluation outcomes. Therefore, the paper concludes that the use of at least an AFN is necessary when estimating the overheating hours of Passive Houses.
APA, Harvard, Vancouver, ISO, and other styles
44

Badura, André, Birgit Mueller, and Ivo Martinac. "Managing climate-change-induced overheating in non-residential buildings." E3S Web of Conferences 172 (2020): 02009. http://dx.doi.org/10.1051/e3sconf/202017202009.

Full text
Abstract:
Large and rapid climatic changes can be uncomfortable and sometimes hazardous to humans. Buildings protect people from external climatic conditions, and also mitigate the impacts of external climate extremes through their design and construction, as well as with the help of dedicated building service and other technical systems. Active space conditioning accounts for more than 30 per cent of the overall final energy use in Germany. In the life cycle of a building, the construction phase (planning and construction) is the phase with the shortest duration. However, the quality applied during this phase has a significant impact on the resources required, as well as the overall building performance during the much longer operational phase. Once built, buildings are often unable to adapt to boundary conditions that were not considered in the original building design. Consequently, changing outdoor climate conditions can result in an uncomfortable indoor climate over the lifetime of a building. The aim of this study was to determine the effectiveness of flexible solutions for reducing winter heating loads and to reducing/avoiding summer cooling loads in nonresidential buildings in Germany. Various external shading scenarios for non-residential buildings were analysed using the IDA ICE indoor climate and energy simulation tool. Key simulation parameters included the orientation and location of the building, as well as the envelope structure. We investigated the impacts of solar shading on heat storage in the building mass and indoor climate and how different types of envelopes affect overall energy use. The result shows that the use of an adaptive building envelope allows a higher reduction of the total energy demand by 7 % to 15 % compared to an increase in insulation thickness only.
APA, Harvard, Vancouver, ISO, and other styles
45

Dong, Yu, Rong Wang, Jing Xue, Jingran Shao, and Haibo Guo. "Assessment of Summer Overheating in Concrete Block and Cross Laminated Timber Office Buildings in the Severe Cold and Cold Regions of China." Buildings 11, no. 8 (July 29, 2021): 330. http://dx.doi.org/10.3390/buildings11080330.

Full text
Abstract:
The aims of the paper were to clarify whether office buildings in the severe cold and cold regions are overheating, especially those with natural ventilation, and whether potential overheating is related to the building materials. The severe cold and cold regions of China were considered to be cool regions during summer. However, with global warming, improvements in the thermal performance of the building envelope and the urban heat island effect, office buildings in these regions are showing different degrees of overheating during summer. Two office building materials commonly used in this area, cross laminated timber (CLT) and concrete block, were simulated in this study. With reference to the overheating standard, the degree of overheating in six cities in the severe cold and cold regions was quantitatively analysed and the extent of overheating for the two building materials was compared. Finally, the influence of thermal insulation on building overheating is discussed, and some suggestions are put forward to improve the relevant national regulations in China. The results show that office buildings in the severe cold and cold regions experience overheating during summer, and CLT buildings are more prone to overheating than concrete buildings during summer. This is attributable to the different thermal mass of the materials. Thick insulation does increase the risk of building overheating, and the effect on concrete buildings is more pronounced. Concrete buildings with an insulation layer can experience overheating for 27–71 h more than buildings without an insulation layer. Insulation on CLT buildings only results in an increase of 11–37 h. When considering the current situation with summer overheating in the severe cold and cold regions, relevant codes should also be modified and improved accordingly to guide building design, so as to achieve low-carbon and energy-saving goals.
APA, Harvard, Vancouver, ISO, and other styles
46

Li, Xiaoyi, Jonathon Taylor, and Phil Symonds. "Indoor overheating and mitigation of converted lofts in London, UK." Building Services Engineering Research and Technology 40, no. 4 (April 3, 2019): 409–25. http://dx.doi.org/10.1177/0143624419842044.

Full text
Abstract:
In the UK, there has been an increase in the number of loft conversions, driven by demands for increased floor areas of dwellings to accommodate more individuals or increase property values. While rooms directly underneath roofs are known to have increased overheating risks, there is little research available that quantifies this risk, and how to mitigate it cost-effectively. This paper seeks to evaluate overheating risks in loft conversions, using integrated environmental solutions virtual environment to dynamically simulate indoor temperatures in a semi-detached dwelling in London, UK, under current and future (2050s and 2080s medium and high emissions) climate scenarios. Adaptive overheating risk and energy consumption are calculated with and without passive overheating adaptations that reduce solar gains, increase ventilation, or add thermal insulation. Marginal abatement cost curves (MACC) are then used to select the most cost-effective adaptations based on installation and ongoing energy consumption costs. Results estimate 11,340–12,210 more summertime Category I overheating degree-hours for the loft than conventional bedrooms in the dwelling under the current climate; total category I loft overheating degree-hours may increase to 20,319 by 2080. While external shutters and night-purge ventilation were the most effective at reducing overheating degree-hours (96% and 89%, respectively), the most cost-effective solutions considering capital and ongoing costs are ventilation strategies, including night-time purge ventilation, advance ventilation and cross ventilation. Passive adaptations are not capable of eliminating overheating entirely, and by the 2080s active cooling is likely to be required to maintain comfortable indoor conditions in lofts. Practical application: Converted lofts – present in 5.8% of English and 10.8% of London dwellings – are at significantly elevated risk of high indoor temperatures relative to conventional rooms. Passive adaptations such as ventilation and shading can effectively mitigate loft overheating until around 2080, after which active measures become necessary. When capital and ongoing costs are considered, the most cost-effective heat mitigating adaptations are night and advance ventilation and internal curtains/blinds. Heat mitigating adaptations for converted lofts should become mandatory, and such spaces should not be occupied by the vulnerable or elderly during hot weather.
APA, Harvard, Vancouver, ISO, and other styles
47

Grudzińska, Magdalena. "Overheating assessment in flats with glazed balconies in warm-summer humid continental climate." Building Services Engineering Research and Technology 42, no. 5 (April 12, 2021): 583–602. http://dx.doi.org/10.1177/01436244211008690.

Full text
Abstract:
Greenhouse systems in the form of glazed balconies may be accomplished both in the newly designed buildings and in the existing ones, raising their energy standard in a quick and inexpensive way. However, basic parameters influencing the efficiency of the systems are often chosen intuitively, not allowing to fully benefit from the sunspaces or causing overheating of the rooms and discomfort for the users. These issues are common drawbacks of passive systems and may become especially important in the aspect of anthropogenic climate changes, including temperature rise and summer heatwaves. The paper presents results of a long-term summer temperature monitoring in flats with glazed balconies of different construction. They were located in prefabricated multi-family buildings, in residential districts of Lublin and Zamość. The cities are situated in the south-eastern part of Poland, belonging to the warm-summer humid continental climate area. The monitoring enabled overheating assessment according to the concept of adaptive comfort and connecting it with the sunspace construction and the inhabitants’ behaviour. These issues are new aspects in the research area, and the work is a part of extensive studies including monitoring and dynamic simulations of dwellings with passive greenhouse systems in Poland. Practical application: Glazed balconies raise the energy standard of buildings in a quick and inexpensive way, but it is important to consider their function not only during the heating season but also in the summer. Recording of temperatures enabled the monitoring of thermal conditions in the flats and the overheating assessment. It is possible to keep the internal temperature in the rooms within the desired range thanks to the sunspace ventilation and occupants’ behaviour.
APA, Harvard, Vancouver, ISO, and other styles
48

Tian, Zhiyong, Shicong Zhang, Jie Deng, and Bozena Dorota Hrynyszyn. "Evaluation on Overheating Risk of a Typical Norwegian Residential Building under Future Extreme Weather Conditions." Energies 13, no. 3 (February 4, 2020): 658. http://dx.doi.org/10.3390/en13030658.

Full text
Abstract:
As the temperature in the summer period in Norway has been always moderate, little study on the indoor comfort of typical Norwegian residential buildings in summer seasons can be found. Heat waves have attacked Norway in recent years, including in 2018 and 2019. Zero energy buildings, even neighborhoods, have been a hot research topic in Norway. There is overheating risk in typical Norwegian residential buildings without cooling devices installed under these uncommon weather conditions, like the hot summers in 2018 and 2019. Three weather scenarios consisting of present-day weather data, 2050 weather data, and 2080 weather data are investigated in this study. The overheating risk of a typical Norwegian residential building is evaluated under these three weather scenarios. 72 scenarios are simulated in this study, including different orientations, window-to-wall ratios, and infiltration rates. Two different overheating evaluation criteria and guidelines, the Passive House Planning Package (PHPP) and the CIBSE TM 59, are compared in this study.
APA, Harvard, Vancouver, ISO, and other styles
49

Wadi, Ameer, Mahmoud Alhayek, Ulrich Pont, and Ardeshir Mahdavi. "Overheating risk and cooling demand in residential buildings: performance prediction and improvement using a prescriptive approach." MATEC Web of Conferences 282 (2019): 02019. http://dx.doi.org/10.1051/matecconf/201928202019.

Full text
Abstract:
Depending on general climatic trends and specific (urban) microclimatic conditions, the reliable estimation of the overheating risk in buildings has become increasingly important. As such, detailed simulation of the related phenomena can provide useful information. However, deployment of detailed simulation involves a number of challenges, including time and effort expenditures not accounted for in typical building delivery processes. In this context, careful application of prescriptive methods may provide – at least for a specific class of applications – a reasonable alternative. The present contribution explores this possibility via a specific case study involving a large sample of residential buildings in Gaza, Palestine. This sample includes some fifty multi-unit apartment buildings representing the bulk of residential building stock in Gaza. These buildings were assessed via both numeric simulation and regression-based methods, assuming the latter can provide the basis for development and validation of a prescriptive approach. Toward this end, a number of independent variables were considered and the level of their association with the computed values of the designated building performance indicators was observed. Comparison of the regression-based and simulation-based methods revealed a reasonable level of agreement. This suggests that the proposed prescriptive method may provide an attractive alternative to highly detailed simulation.
APA, Harvard, Vancouver, ISO, and other styles
50

Nemethova, Ema, Werner Stutterecker, and Thomas Schoberer. "Thermal Comfort and Energy Consumption Using Different Radiant Heating/Cooling Systems in a Modern Office Building." Slovak Journal of Civil Engineering 25, no. 2 (June 27, 2017): 33–38. http://dx.doi.org/10.1515/sjce-2017-0010.

Full text
Abstract:
Abstract The aim of the study is to evaluate the potential of enhancing thermal comfort and energy consumption created by three different radiant systems in the newly-built Energetikum office building. A representative office, Simulation room 1/1, was selected from 6 areas equipped with portable sensor groups for the indoor environment monitoring. The presented data obtained from 3 reference weeks; the heating, transition and cooling periods indicate overheating, particularly during the heating and transition period. The values of the indoor air temperature during the heating and transition period could not meet the normative criteria according to standard EN 15251:2007 (cat. II.) for 15-30% of the time intervals evaluated. Consequently, a simulation model of the selected office was created and points to the possibilities of improving the control system, which can lead to an elimination of the problem with overheating. Three different radiant systems - floor heating/ cooling, a thermally active ceiling, and a near-surface thermally active ceiling were implemented in the model. A comparison of their effects on thermal comfort and energy consumption is presented in the paper.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography