Academic literature on the topic 'Building Energy Exchange'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Building Energy Exchange.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Building Energy Exchange"

1

Colucci, Chiara, Luca Mauri, and Andrea Vallati. "About the shortwave multiple reflections in an urban street canyon building related to three different European climates." MATEC Web of Conferences 240 (2018): 05004. http://dx.doi.org/10.1051/matecconf/201824005004.

Full text
Abstract:
Energy exchanges between buildings is affected by urban fabric. As a matter of fact, heat exchange between adjacent buildings is due to convective and radiative heat flows. The main parameters which influence these heat exchange mechanisms are due to climate conditions such as air temperatures/humidity, wind speed/direction and solar irradiance. Most building energy simulations are done on an independent single building with typical meteorological year (TMY). These TMY meteorological data cannot represent the state of the urban microclimate and rather ignores the microclimate influence on buildings adjacent to street canyons. However, solar radiation shading and reflection of the environment within the street canyons are important factors affecting the energy consumption of buildings. In this work, a building energy simulation tool is used to study the impact of multiple shortwave inter-reflections in an urban environment. A street canyon model validated in a previous work was modeled in TRNSYS in order to simulate the effects of the urban radiative trapping. An urban canyon with aspect ratio H/W=1 was chosen, with South-North orientation, with transparent/opaque surfaces ratio Atr/Aop=0.5 and 4 values (0.2, 0.4, 0.6, 0.8) of reflectance factor of the envelope surfaces. The goal is to characterize how solar absorption influence the urban energy requirements. The analysis was conducted for 3 cities in different climatic zones: Rome, Palermo and Krakow.
APA, Harvard, Vancouver, ISO, and other styles
2

Alhammad, Mohammed, Matt Eames, and Raffaele Vinai. "Enhancing Building Energy Efficiency through Building Information Modeling (BIM) and Building Energy Modeling (BEM) Integration: A Systematic Review." Buildings 14, no. 3 (2024): 581. http://dx.doi.org/10.3390/buildings14030581.

Full text
Abstract:
With the ever-increasing population and historic highest energy demand, the energy efficiency of buildings is becoming crucial. Architectural firms are moving from traditional Computer-Aided Design (CAD) to BIM. However, nearly 40% of the energy consumption is due to buildings. Therefore, there is a need to integrate BIM with Building Energy Modeling (BEM), which presents an innovative opportunity to demonstrate the potential of BIM to minimize energy consumption by integrating building information software with data from existing energy-efficient building automation systems (EBAS). BEM is a form of computational analysis that can be used in conjunction with BIM or Computer-Aided Engineering (CAE) systems. In this paper, an attempt has been made to explore the existing literature on BIM and BEM and identify the effect of the integration of BEM in BIM in the design phase of the project. A recent survey from the last ten years (2012 to 2023) was carried out on Google Scholar, Web of Science, Science Direct, and Scopus databases. Inclusion/exclusion criteria were applied, and papers were scrutinized. From the results, it can be observed that the convergence of BIM and BEM is found to be useful in practical applications; however, projects with short life cycles might not be suitable for this solution. Challenges exist in the interoperability tools which have restrictions on data exchange. Binary translation is found to be the most suitable candidate for data exchange. The analysis further showed that the most used program for integrating BIM/BEM is Green Building Studio developed by Autodesk to improve construction and operational efficiencies.
APA, Harvard, Vancouver, ISO, and other styles
3

Su, Siyuan. "Application of building equipment intelligent management and control system in renewable energy thermal energy modelling." Thermal Science 27, no. 2 Part A (2023): 1075–82. http://dx.doi.org/10.2298/tsci2302075s.

Full text
Abstract:
In order to solve the dynamic characteristics of fuel cell thermal energy in building equipment intelligent control system, this paper proposes the application research of building equipment intelligent control system in renewable energy thermal energy modelling. A cold water proton exchange membrane fuel cell cogeneration scheme was proposed. The heat produced by the installation is carried out by the cooling system, and the heat is exchanged between the heat exchanger and the hot water always heated in the heat exchanger. At the same time, a water tank is used to store hot water for heat recovery. Based on MATLsimulation coupling software platform, the simulation model of fuel cell cogeneration system was es?tablished, including reactor model, power system model, heat exchanger model, etc. The simulation model of fuel cell cogeneration system was built up, including the reactor model, power system model, and so on. The experimental results show that the system can achieve good response performance and anti-disturbance by using fuzzy PID controller to control and simulate the system. At the same time, the simulation results show that the optimal efficiency of the system in the power load is about 83%. In conclusion, it can meet the modern family?s thermal power demands and improve the power consumption.
APA, Harvard, Vancouver, ISO, and other styles
4

Дешко, В. І., І. Ю. Білоус, В. О. Виноградов-Салтиков, І. О. Суходуб та О. І. Яценко. "ЕКСПЕРИМЕНТАЛЬНЕ ДОСЛІДЖЕННЯ ЯКОСТІ ПОВІТРЯ ТА ПОВІТРООБМІНУ В ЗАКЛАДАХ ОСВІТИ ТА ЖИТЛОВИХ БУДІВЛЯХ". Bulletin of the Kyiv National University of Technologies and Design. Technical Science Series 148, № 4 (2021): 25–37. http://dx.doi.org/10.30857/1813-6796.2020.4.2.

Full text
Abstract:
Apply integrated approaches for the air exchange rate determination based on CO 2 concentration in educational and residential buildings of Ukraine. Methods. Taking into account variability of building's visitors and occupants operational and behavioral features experimental and calculated determination of the air exchange rate are considered. Results. Recommendations for providing comfort conditions in terms of air quality in the considered objects premises, recommendations on the premises operating conditions, ventilation schedule. Scientific novelty. The comprehensive approach to in-depth analysis of energy consumption has been developed, procedures for assessing the air quality and the level of air exchange in buildings have been improved taking into account the variability of operating conditions. The practical significance. Experimental studies of changes in CO 2 concentration were conducted in three schools, in higher education institution and in residential building. The research results allowed to establish the actual level of CO 2 concentration and air change rate under different operational and behavioral conditions in buildings during working hours, subject to comfortable conditions, and during non-use hours. The research results also help to determine the dynamics of changes in the studied factor over time under the building performance indicators influence. The obtained results allow to provide recommendations on ensuring the quality of indoor air exchange and on providing comfort working, studying and living conditions. The use of experimental and calculated air exchange rate values for various premises would allow to avoid in mathematical modeling the overestimation of the level of buildings energy consumption, which arises when standard air change rate values is using. So the obtained results allow to approximate more accurately the mathematical modeling results of buildings energy efficiency to the actual conditions and help to choose the optimal schedule for the building engineering networks managing considering comfort conditions with intermittent operation.
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Yi-Tong, Shuang You, Xiao-Xu Hou, and Zheng Yi. "Estimation of shallow geothermal potential to meet heating demand in a building scale." Thermal Science 27, no. 1 Part B (2023): 607–14. http://dx.doi.org/10.2298/tsci2301607w.

Full text
Abstract:
The heat exchanger can use shallow geothermal energy to provide regional heating and cooling demand in winter and summer. In this paper, a large-scale public building is taken as the example, and the energy system in the building is taken as the research object. Firstly, through the collection of geothermal drilling geographic information and geothermal data, the geothermal reserves and geothermal recoverable resources are evaluated. Secondly, the cooling and heating demand of the building is calculated by using HVAC simulation software. Then, the heat transfer capacity of a single pile is evaluated and the layout scheme of the underground heat exchange pile foundation of the building is given. The actual heating effect of the heat exchange pile foundation system is explored, and the heat transfer characteristics of heat exchange pile foundation under different working conditions are compared and analyzed. Finally, reasonable suggestions for the arrangement of heat exchange pile foundation are given.
APA, Harvard, Vancouver, ISO, and other styles
6

Voss, Karsten, Eike Musall, and Markus Lichtmeß. "From Low-Energy to Net Zero-Energy Buildings: Status and Perspectives." Journal of Green Building 6, no. 1 (2011): 46–57. http://dx.doi.org/10.3992/jgb.6.1.46.

Full text
Abstract:
“Net Zero-Energy Building” has become a popular catchphrase to describe the synergy between energy-efficient building and renewable energy utilisation to achieve a balanced energy budget over an annual cycle. Taking into account the energy exchange with a grid overcomes the limitations of energy-autonomous buildings with the need for seasonal energy storage on-site. Although the expression, “Net Zero-Energy Building,” appears in many energy policy documents, a harmonised definition or a standardised balancing method is still lacking. This paper reports on the background and the various effects influencing the energy balance approach. After discussing the national energy code framework in Germany, a harmonised terminology and balancing procedure is proposed. The procedure takes not only the energy balance but also energy efficiency and load matching into account.
APA, Harvard, Vancouver, ISO, and other styles
7

Gómez Melgar, Sergio, Miguel Ángel Martínez Bohórquez, and José Manuel Andújar Márquez. "uhuMEBr: Energy Refurbishment of Existing Buildings in Subtropical Climates to Become Minimum Energy Buildings." Energies 13, no. 5 (2020): 1204. http://dx.doi.org/10.3390/en13051204.

Full text
Abstract:
Today, most countries in the world have mandatory regulations, more or less strict, regarding energy efficiency in buildings. However, a large percentage of the buildings already built were constructed under lax or non-existing regulations in this regard. Therefore, many countries are facing the energy refurbishment of their existing buildings to reduce their carbon footprint. Depending on ambient weather conditions where a building settles, its operation with respect to the achievement of maximum energy efficiency should usually be different. This happens in subtropical climates when, during the year and depending on the season, the building needs to conserve heat, evacuate it or even make an exchange with the outside to take advantage of favorable environmental conditions. This paper presents a complete methodology for conducting building energy efficiency refurbishments in subtropical climates in order to convert them into minimum energy buildings. The proposed methodology is illustrated by a case study in a dwelling that includes all the stages, from the analysis of the existing dwelling to the refurbishment works, showing the final results and the subsequent dwelling operation.
APA, Harvard, Vancouver, ISO, and other styles
8

BONDARENKO, A., Eu L. YURCHENKO, O. O. KOVAL, and O. A. TYMOSHENKO. "IMPROVEMENT OF METHODOLOGICAL BASIS OF DETERMINATION OF TIGHTNESS OF BUILDING COVER." Ukrainian Journal of Civil Engineering and Architecture, no. 3 (September 6, 2022): 27–34. http://dx.doi.org/10.30838/j.bpsacea.2312.050722.27.861.

Full text
Abstract:
Tightness and energy efficiency are among the most important parameters of buildings. The airtightness of the building ensures a reduction in energy consumption for heating, especially for buildings with a large heating volume. Currently, Ukraine does not have a regulatory framework for determining the tightness of buildings. The article analyzes the international standard for determining the airtightness of buildings ISO 9972:2015 Thermal characteristics of buildings − Determination of air permeability of buildings − Method of fan injection. On the basis of the international standard, the methodical bases for determining the tightness of the building envelope have been improved, and the methodology for determining the tightness of the building envelope has been adapted for Ukraine. The article presents the methods of measuring the tightness of the building, the rules for preparing the building for measurements, as well as the calculation of air permeability parameters. This technique contains the principle of determining the parameters of tightness in the conditions of fan injection. The hermeticity of the building, or its air permeability, is expressed by the amount of air leakage in cubic meters per hour per square meter of the area of ​​the outer shell of the building when the building is affected by a pressure drop of the internal air of 50 Pa. During the test, the fan creates a pressure drop of 50Pa. A differential manometer is used to record the pressure difference between the pressure in the room and the external pressure. Using the formulas given in the article, the volume flow of air through the enclosing structures is calculated, and the air leakage rate is also calculated. Based on the determined parameters, the air exchange rate n50 and the air exchange rate q50 at the created pressure drop ∆p were calculated. The method of determining the energy efficiency class based on the n50 parameter has been improved. Based on the results of the calculations, we have the opportunity to determine the energy efficiency class based on the determined air exchange ratio.
APA, Harvard, Vancouver, ISO, and other styles
9

Brunoro, Silvia. "Passive Envelope Measures for Improving Energy Efficiency in the Energy Retrofit of Buildings in Italy." Buildings 14, no. 7 (2024): 2128. http://dx.doi.org/10.3390/buildings14072128.

Full text
Abstract:
The Italian territory is characterized by a big increase in energetic demand, especially for cooling, mainly related to climate change but also to the poor quality of a consistent construction sector, such as the suburban 1960–1980 building stock. At the same time, the cost of fuel and electricity due to the recent war events forces us to find alternative solutions to save energy in buildings. This study proposes building envelope passive design strategies to improve the energy efficiency of residential buildings in the Mediterranean climate, which is typical of the Italian territory. The main purpose is to provide an overview of potential passive measures to improve the energetic quality of construction in response to the above-mentioned issues and consequently to the increasing restrictions of energy regulations (passive buildings and NzeB). A categorization of passive measures is provided by exploring three different passive behaviors: heat reduction, heat gain, and heat protection. Specific energy-efficient measures for building retrofit are investigated according to this classification, including solar greenhouses, natural ventilation techniques, and radiative, convective, and conductive heat transfer through opaque and transparent envelopes. As the building envelope is mainly responsible for heating exchange and accounts for 50% of the overall energy balance, it is concluded that the “ad hoc” design of building envelopes can significantly improve the overall thermal performance of residential buildings.
APA, Harvard, Vancouver, ISO, and other styles
10

Deshko, V., I. Bilous, I. Sukhodub, and O. Yatsenko. "ANALYSIS OF THE INFLUENCE OF AIR EXCHANGE DISTRIBUTION BETWEEN ROOMS ON THE APARTMENT ENERGY CONSUMPTION." POWER ENGINEERING: economics, technique, ecology, no. 1 (October 11, 2021): 39–50. http://dx.doi.org/10.20535/1813-5420.1.2021.242133.

Full text
Abstract:

 
 
 
 Modern results of Ukrainian buildings energy analysis show that 30-50% of the energy for heating goes to heat the supply air, and that is the largest share in the building energy balance. In terms of energy consumption, efficiency of the air exchange mode largely depends on occupancy schedule and air distribution in time and space. The application of air exchange schedule approach makes more sense in case when individual heating control is carried out. Therefore, during occupied hours, the comfortable ventilation level can be ensured, and, during unoccupied hours, it can be reduced to a minimum. According to the results of the study, the use of intermittent air exchange mode in the studied apartment on weekdays, leads to decrease in energy consumption compared to constant air exchange at the level of upper values of the ventilation schedule. In terms of energy efficiency, the use of the constant air change rate from ASHRAE Std 62 is the most efficient approach. In terms of indoor air quality and concentration of CO2 and VOCs, the scheduled air exchange approach with increased air change rates (from EN 16798) during occupied hours is more efficient. Therefore, the use of required and experimental air change rate values to create the hourly schedules allows to define more precisely a building energy consumption and to choose an optimal operation schedule for building engineering systems to provide thermal comfort and indoor air quality during occupied hours.
 
 
 
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography