Academic literature on the topic 'Building’s Energy'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Building’s Energy.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Building’s Energy"
Wang, Hong Wei, Ying Liu, Bao Ling Wang, and Ling Yan Yu. "Survey and Analysis of Energy System’s Energy Consumption Focused on Typical Industrial Buildings in Shenyang." Advanced Materials Research 512-515 (May 2012): 2914–17. http://dx.doi.org/10.4028/www.scientific.net/amr.512-515.2914.
Full textMillán-Martínez, Marlón, Germán Osma-Pinto, and Julián Jaramillo-Ibarra. "Estimating a Building’s Energy Performance using a Composite Indicator: A Case Study." TecnoLógicas 25, no. 54 (August 3, 2022): e2352. http://dx.doi.org/10.22430/22565337.2352.
Full textGu, Jiefan, Peng Xu, and Ying Ji. "A Fast Method for Calculating the Impact of Occupancy on Commercial Building Energy Consumption." Buildings 13, no. 2 (February 19, 2023): 567. http://dx.doi.org/10.3390/buildings13020567.
Full textFedorczak-Cisak, Małgorzata, Elżbieta Radziszewska-Zielina, Bożena Orlik-Kożdoń, Tomasz Steidl, and Tadeusz Tatara. "Analysis of the Thermal Retrofitting Potential of the External Walls of Podhale’s Historical Timber Buildings in the Aspect of the Non-Deterioration of Their Technical Condition." Energies 13, no. 18 (September 4, 2020): 4610. http://dx.doi.org/10.3390/en13184610.
Full textRehman, Hassam ur, Jan Diriken, Ala Hasan, Stijn Verbeke, and Francesco Reda. "Energy and Emission Implications of Electric Vehicles Integration with Nearly and Net Zero Energy Buildings." Energies 14, no. 21 (October 25, 2021): 6990. http://dx.doi.org/10.3390/en14216990.
Full textKovács, Tünde, Zoltán Nyikes, and Lucia Figuli. "Application of High Energy Absorbing Materials for Blast Protection." Acta Materialia Transilvanica 1, no. 2 (October 1, 2018): 93–96. http://dx.doi.org/10.2478/amt-2018-0034.
Full textYin, Hang. "Building Management System to support building renovation." Boolean: Snapshots of Doctoral Research at University College Cork, no. 2010 (January 1, 2010): 164–69. http://dx.doi.org/10.33178/boolean.2010.37.
Full textCha, Gi Wook, Won Hwa Hong, and Jin Ho Kim. "A Study on CO2 Emissions in End-of-Life Phase of Residential Buildings in Korea: Demolition, Transportation and Disposal of Building Materials." Key Engineering Materials 730 (February 2017): 457–62. http://dx.doi.org/10.4028/www.scientific.net/kem.730.457.
Full textJoseph, Benedicto, Tatiana Pogrebnaya, and Baraka Kichonge. "Semitransparent Building-Integrated Photovoltaic: Review on Energy Performance, Challenges, and Future Potential." International Journal of Photoenergy 2019 (October 20, 2019): 1–17. http://dx.doi.org/10.1155/2019/5214150.
Full textRahman, Md Samin, and Md Humayun Kabir. "Social Internet of Things (SIoT) Enabled System Model for Smart Integration of Building‟s Energy, Water and Safety Management: Dhaka City, Bangladesh Perspective." AIUB Journal of Science and Engineering (AJSE) 18, no. 1 (May 31, 2019): 19–26. http://dx.doi.org/10.53799/ajse.v18i1.18.
Full textDissertations / Theses on the topic "Building’s Energy"
Engman, Reed Martina. "Plan for evaluation of Austin Energy Green Building’s Multifamily Rating Program." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-95143.
Full textCarlander, Jakob. "On the Effect of Occupant Behavior and Internal Heat Gains on the Building’s Energy Demand : A case study of an office building and a retirement home." Licentiate thesis, Högskolan i Gävle, Energisystem och byggnadsteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-35507.
Full textRunt 12% av utsläppen av växthusgaser och 40% av den totala energianvändningen i EU kommer från byggnader. Brukarbeteende, konstruktion och HVAC-system har signifikant påverkan på en byggnads energianvändning. Om en byggnad ska bli så energieffektiv som möjligt är det viktigt att förstå hur dessa parametrar hör ihop. Denna studie motiveras av behovet att minska energianvändning i byggnader för att nå målen för energianvändning och utsläpp av växthusgaser. I denna avhandling användes mätningar av inomhusklimat och elanvändning, tillsammans med tidsdagböcker, för att skapa indata till en energisimuleringsmodell av ett ålderdomshem. En parameterstudie genomfördes för att simulera hur energibehovet påverkades av ändringar i fem olika parametrar i en kontorsbyggnad. Två olika indikatorer för energieffektivitet användes också, för att se hur olika indikatorer påverkar hur en byggnads energieffektivitet uppfattas. Hög grad av vädring och låg elanvändning hade störst påverkan av energibehovet i ålderdomshemmet, och i kontorsbyggnaden påverkades det totala energibehovet mest av elanvändningen. Modellen av ålderdomshemmet där data insamlad på plats användes hade 24% högre värmebehov än modellen som använde standardiserade brukarindata. Det totala energibehovet för värme och kyla i kontorsbyggnaden kunde sänkas med 12-31% genom att sänka elanvändningen med 30% jämfört med standardiserad brukarindata. Det viktigaste för att få ner det totala energibehovet i kontorsbyggnader verkar vara att sänka elanvändningen. Att använda dagens standardvärden för brukarindata överensstämmer inte väl med att använda data insamlad på plats för ett ålderdomshem. Det är därför viktigt att vidareutveckla standardiserad brukarindata. Indikatorn kWh/m2 verkar främja byggnader med låg beläggning. Detta skulle kunna leda till att byggnader utnyttjas på ett ineffektivt sätt. Indikatorn kWh/m2 skulle därför behöva ersättas eller kombineras med en indikator som även tar byggnadens beläggning i beaktande.
Arnaiz, Remiro Lierni. "Modelling and assessment of energy performance with IDA ICE for a 1960's Mid-Sweden multi-family apartment block house." Thesis, Högskolan i Gävle, Energisystem, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-24530.
Full textAquino, Eddie Villanueva. "PREDICTING BUILDING ENERGY PERFORMANCE: LEVERAGING BIM CONTENT FOR ENERGY EFFICIENT BUILDINGS." DigitalCommons@CalPoly, 2013. https://digitalcommons.calpoly.edu/theses/1077.
Full textMELO, LUCIANA MONTICELLI DE. "BUILDINGS ENERGY EFFICIENCY–BUILDING OPTIMIZATION USING GENETIC ALGORITHMS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2009. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=31949@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE EXCELENCIA ACADEMICA
O crescente consumo de energia é preocupante, principalmente pelo uso de sistemas de condicionamento de ar e de iluminação artificial. Nas edificações modernas, os projetos arquitetônicos vêm negligenciando os fatores que proporcionam o conforto ambiental. Baseando-se nos conceitos da arquitetura sustentável, esta dissertação propõe e modela um sistema que otimiza os parâmetros da edificação que influenciarão no consumo de energia elétrica, nos custos com a construção e na emissão de poluentes pela edificação. Propõe-se um modelo de algoritmos genéticos que, juntamente com um programa de simulação de energia, EnergyPlus, constitui o modelo evolucionário desenvolvido neste trabalho. Este modelo otimiza parâmetros como: dimensionamento de aberturas e de pédireito; orientação da edificação; condicionamento do ar; disposição de árvores no entorno da edificação; etc . O modelo evolucionário tem sua ação e eficácia testados em estudo de casos - edificações desenhadas por projetista -, em que se alteram: espessura das paredes, altura de pé direito, largura de janelas, orientação quanto ao Norte geográfico, localização de elementos sombreantes (árvores), uso ou não de bloqueadores solares. Estes fatores influenciarão no conforto térmico da edificação e, consequentemente, no consumo elétrico dos sistemas de condicionamento de ar e de iluminação artificial, que por sua vez, influenciam os parâmetros que se pretende otimizar. Os resultados obtidos mostram que as otimizações feitas pelo modelo evolucionário foram efetivas, minimizando o consumo de energia pelos sistemas de condicionamento de ar e de iluminação artificial em comparação com os resultados obtidos com as edificações originais fornecidas pelo projetista.
The continuous rising on energy consumption is a concerning issue, especially regarding the use of air conditioning systems and artificial lighting. In modern buildings, architectural designs are neglecting the factors that provide environmental comfort in a natural way. Based on concepts of sustainable architecture, this work proposes and models a system that optimizes the parameters of a building that influence the consumption of electricity, the costs with the building itself, and the emission of pollutants by these buildings. For this purpose a genetic algorithm model is proposed, which works together with an energy simulation program called EnergyPlus, both comprising the evolutionary model developed in this work. This model is able to optimize parameters like: dimensions of windows and ceiling height; orientation of a building; air conditioning; location of trees around a building; etc. The evolutionary model has its efficiency tested in case studies - buildings originally designed by a designer -, and the following specifications provided by the designer have been changed by the evolutionary model: wall thickness, ceiling height, windows width, building orientation, location of elements that perform shading function (trees), the use (or not) of sun blockers. These factors influence the building s heat comfort and therefore the energy consumption of air conditioning systems and artificial lighting which, in turn, influence the parameters that are meant to be optimized. The results show that the optimizations made by the evolutionary model were effective, minimizing the energy consumption for air conditioning systems and artificial light in comparison with the results obtained with the original buildings provided by the designer.
Wong, Chun-hung Samuel. "Opportunities for building energy conservation in Hong Kong (residential buildings) /." Hong Kong : University of Hong Kong, 1997. http://sunzi.lib.hku.hk/hkuto/record.jsp?B1873439X.
Full textGOIA, FRANCESCO. "Dynamic Building Envelope Components and nearly Zero Energy Buildings." Doctoral thesis, Politecnico di Torino, 2013. http://hdl.handle.net/11583/2534506.
Full textSjögren, Jan-Ulric. "Energy performance of multifamily buildings : building characteristic and user influence." Licentiate thesis, Umeå University, Department of Applied Physics and Electronics, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-35598.
Full textToday many professional property holders use different types of software for monthly energy analyses. The data is however often limited to energy and water use, that is paid for by the property holder. In year 2001, financed by the Swedish Energy Agency, the first steps were taken to create a national web based data base, eNyckeln. A property holder may then enter consumption data together with about 50 other building specific parameters to this data base in order to enable benchmarking and energy performance evaluations. Due to EU-regulations and the increasing awareness of energy and environmental issues there is a large interest in evaluating the energy performance and also to identify effective energy retrofits. The used energy performance indicator is still only the annual energy use for heating per square meter of area to let, kWh/m2,year, despite the fact that monthly data often are available. The main problem with this indicator, which is the stipulated measure, is that it reflects a lot of user influence and that only a part of the total energy use is considered. The main focus of this thesis is to explore the possibilities, based on the national data base, to extract additional energy information about multi family buildings (MFB) using monthly data in combination with different assumed consumption pattern but also to identify potential for energy savings. For the latter a multivariate method was used to identify relations between the energy use and building specific parameters. The analysis gave clear indications that the available area, the area to let, is not appropriate for normalization purposes since the remaining heated area can be significant. Due to this fact, the analysis was mainly limited to qualitative conclusions. As measure of the buildings energy characteristic, the total heat loss coefficient, Ktot,(W/ºK) is determined and the robustness for the estimate of Ktot to different assumptions of user behaviour is investigated. The result shows that the value of Ktot is fairly insensitive to different indoor temperature, use of domestic hot water and household electricity. With the addition of m2 it can of course be used for benchmarking. Using the mentioned measure of the buildings energy characteristic for validating the energy performance has a clear advantage compared to the traditional kWh/m2, since the user behaviour is of minor importance. As a result of this an improved analysis of the energy performance will be obtained. A guarantee for new buildings energy performance based on this method is therefore a challenge for the building sector to develop.
Wong, Chun-hung Samuel, and 黃俊雄. "Opportunities for building energy conservation in Hong Kong (residential buildings)." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1997. http://hub.hku.hk/bib/B31253891.
Full textSmith, Jonathan Y. (Jonathan York) 1979. "Building energy calculator : a design tool for energy analysis of residential buildings in Developing countries." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/27128.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (p. 99-100).
Buildings are one of the world's largest consumers of energy, yet measures to reduce energy consumption are often ignored during the building design process. In developing countries, enormous numbers of new residential buildings are being constructed each year, and many of these buildings perform very poorly in terms of energy efficiency. One of the major barriers to better building designs is the lack of tools to aid architects during the preliminary design stages. In order to address the need for feedback about building energy use early in the design process, a model was developed and implemented as a software design tool using the C++ programming language. The new program requires a limited amount of input from the user and runs simulations to predict heating and cooling loads for residential buildings. The user interface was created with the architect in mind, and it results in direct graphical comparisons of the energy requirements for different building designs. The simulations run hour by hour for the entire year using measured weather data. They typically complete in less than two seconds, allowing for very fast comparisons of different scenarios. A set of simulations was run to perform a comparison between the new program and an existing tool called Energy-10. Overall, the loads predicted by the two programs were in good agreement.
by Jonathan Y. Smith.
S.M.
Books on the topic "Building’s Energy"
Bohne, Dirk. Building Services and Energy Efficient Buildings. Wiesbaden: Springer Fachmedien Wiesbaden, 2023. http://dx.doi.org/10.1007/978-3-658-41273-9.
Full textTymkow, Paul, Savvas Tassou, Maria Kolokotroni, and Hussam Jouhara. Building Services Design for Energy-Efficient Buildings. Second edition. | New York : Routledge, 2020.: Routledge, 2020. http://dx.doi.org/10.1201/9781351261166.
Full textOuden, C. Building 2000: Volume 2 Office Buildings, Public Buildings, Hotels and Holiday Complexes. Dordrecht: Springer Netherlands, 1992.
Find full textUnited States. Environmental Protection Agency. Office of Air and Radiation. Global Change Division., ed. Energy Star Buildings Manual: Energy Star Buildings Program. Washington, DC (401 M St., SW, Washington 20460): U.S. Environmental Protection Agency, Global Change Division, 1995.
Find full textUnited States. Environmental Protection Agency. Office of Air and Radiation. Global Change Division., ed. Energy Star Buildings Manual: Energy Star Buildings Program. Washington, DC (401 M St., SW, Washington 20460): U.S. Environmental Protection Agency, Global Change Division, 1995.
Find full textLoper, Joe. Building on success: Policies to reduce energy waste in buildings. Washington, DC: Alliance to Save Energy, 2005.
Find full textAchim, Grube Hans, and Gleiniger Andrea, eds. Bauten für die Energie =: Energy buildings : Bewag/Vattenfall. Sulgen: Niggli, 2007.
Find full textCommission, California Energy, ed. 2005 Building energy efficiency standards for residential and nonresidential buildings. Sacramento, Calif: California Energy Commission, 2004.
Find full textLavikka, Rita, Hassam Ur Rehman, Francesco Reda, and Abdul Samad Kazi, eds. Positive Energy Buildings. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-87702-6.
Full textLaurenzi, Margarethe P. Building energy efficiency: Why green buildings are key to Asia's future. Edited by Asia Business Council. [Hong Kong: Asia Business Council], 2007.
Find full textBook chapters on the topic "Building’s Energy"
Antón, D., Amin Al-Habaibeh, and T. Queiroz. "Learning from the Past for a Sustainable Future: Environmental Monitoring and 3D Modelling to Assess the Thermal Performance of Heritage Buildings." In Springer Proceedings in Energy, 31–40. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30960-1_4.
Full textStandal, Karina, Harold L. Wilhite, and Solvår Wågø. "Household Energy Practices in Low-Energy Buildings: A Qualitative Study of Klosterenga Ecological Housing Cooperative." In Consumption, Sustainability and Everyday Life, 57–84. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-11069-6_3.
Full textMounter, William, Huda Dawood, and Nashwan Dawood. "The Impact of Data Segmentation in Predicting Monthly Building Energy Use with Support Vector Regression." In Springer Proceedings in Energy, 69–76. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63916-7_9.
Full textMiletić, Nikola, Bojana Zeković, Nataša Ćuković Ignjatović, and Dušan Ignjatović. "Challenges and Potentials of Green Roof Retrofit: A Case Study." In The Urban Book Series, 843–52. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-29515-7_75.
Full textKurnitski, Jarek. "Nearly Zero-Energy Building’s (nZEB) Definitions and Assessment Boundaries." In Cost Optimal and Nearly Zero-Energy Buildings (nZEB), 7–30. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5610-9_2.
Full textHossain, Md Faruque. "Transformation of Building’s Biowaste into Electricity Energy to Mitigate the Global Energy Vulnerability." In Sustainable Design for Global Equilibrium, 57–73. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94818-4_4.
Full textMansourimajoumerd, Parinaz, Hassan Bazazzadeh, Mohammadjavad Mahdavinejad, and Sepideh Nik Nia. "Energy Efficiency and Building’s Envelope: An Integrated Approach to High-Performance Architecture." In Urban and Transit Planning, 25–33. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-20995-6_3.
Full textPiraiarasi, C., Saravana Kannan Thangavelu, and Mhd Faizal Bin Mansur. "Optimization of Building’s Wall Using Phase Change Material (PCM) Toward Energy Performance Improvement." In Lecture Notes in Civil Engineering, 207–21. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9585-1_13.
Full textNasif, Mohammad Shakir. "Air-to-Air Fixed Plate Energy Recovery Heat Exchangers for Building’s HVAC Systems." In Sustainable Thermal Power Resources Through Future Engineering, 63–71. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2968-5_5.
Full textAntonini, Ernesto. "Building’s Operational Versus Embodied Energy: Needs and Barriers for a More Reliable Environmental Impact Balance." In PoliTO Springer Series, 275–90. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-59328-5_14.
Full textConference papers on the topic "Building’s Energy"
Sankey, Maxim L., Sheldon M. Jeter, Trevor D. Wolf, Donald P. Alexander, Gregory M. Spiro, and Ben Mason. "Continuous Monitoring, Modeling, and Evaluation of Actual Building Energy Systems." In ASME 2014 8th International Conference on Energy Sustainability collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/es2014-6610.
Full textHenze, Gregor P., Thoi H. Le, and Anthony R. Florita. "Sensitivity Analysis of Optimal Building Thermal Mass Control." In ASME 2005 International Solar Energy Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/isec2005-76201.
Full textTaneja, Om. "Analytical, Performance and Prescriptive Measures for Life Cycle Assessment of Sustainability or Energy Efficiency Projects." In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-40420.
Full textLapinskienė, Vilūnė, Violeta Motuzienė, Rasa Džiugaitė-Tumėnienė, and Rūta Mikučionienė. "Impact of Internal Heat Gains on Building’s Energy Performance." In Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.265.
Full textMosey, Grant, and Brian Deal. "The Building Genome Project: Indentify faults in building energy performance." In AIA/ACSA Intersections Conference. ACSA Press, 2017. http://dx.doi.org/10.35483/acsa.aia.inter.17.2.
Full textCalderone, Anthony Domenic, Mir-Akbar Hessami, and Stefan Brey. "Use of Solar Desiccant Air-Conditioning Systems in Commercial Buildings." In ASME 2005 International Solar Energy Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/isec2005-76107.
Full textGardner, John, Kevin Heglund, Kevin Van Den Wymelenberg, and Craig Rieger. "Understanding Flow of Energy in Buildings Using Modal Analysis Methodology." In ASME 2013 7th International Conference on Energy Sustainability collocated with the ASME 2013 Heat Transfer Summer Conference and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/es2013-18390.
Full textZhang, Jian, Heejin Cho, and Pedro Mago. "Optimal Design of Integrated Distributed Energy Systems for Off-Grid Buildings in Different U.S. Regions." In ASME 2021 15th International Conference on Energy Sustainability collocated with the ASME 2021 Heat Transfer Summer Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/es2021-60503.
Full textZhou, Guo, Moncef Krarti, and Gregor P. Henze. "Parametric Analysis of Active and Passive Building Thermal Storage Utilization." In ASME 2004 International Solar Energy Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/isec2004-65087.
Full textPlatell, Peter, and Dennis A. Dudzik. "Zero Energy Houses: Geoexchange, Solar CHP, and Low Energy Building Approach." In ASME 2007 Energy Sustainability Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/es2007-36076.
Full textReports on the topic "Building’s Energy"
Pfluger, Rainer, and Alexander Rieser, eds. Conservation compatible energy retrofit technologies: Part IV: Documentation and assessment of energy and cost-efficient HVAC-systems and strategies with high conservation compatibility. IEA SHC Task 59, October 2021. http://dx.doi.org/10.18777/ieashc-task59-2021-0007.
Full textBjelland, David, and Bozena Dorota Hrynyszyn. Energy retrofitting of non-residential buildings with effects on the indoor environment: a study of university buildings at NTNU in Trondheim, Norway. Department of the Built Environment, 2023. http://dx.doi.org/10.54337/aau541564763.
Full textZygmunt, Marcin, and Dariusz Gawin. Residents' thermal comfort and energy performance of a single-family house in Poland: a parametric study. Department of the Built Environment, 2023. http://dx.doi.org/10.54337/aau541595604.
Full textHerrera, Daniel, Franziska Haas, Alexandra Troi, Gustaf Leijonhufvud, Tor Broström, Alexander Rieser, Jørgen Rose, Walter Hüttler, and Susanne Kuchar. Case Studies Assessment Report. IEA SHC Task 59, October 2021. http://dx.doi.org/10.18777/ieashc-task59-2021-0001.
Full textBroström, Tor, Alessia Buda, Daniel Herrera, Franziska Haas, Alexandra Troi, Dagmar Exner, Sara Mauri, Ernst Jan de Place Hansen, Valentina Marincioni, and Nathalie Vernimme. Planning energy retrofits of historic buildings. Edited by Gustaf Leijonhufvud. IEA SHC Task 59, October 2021. http://dx.doi.org/10.18777/ieashc-task59-2021-0003.
Full textAldubyan, Mohammad, Moncef Krarti, and Eric Williams. Evaluating Energy Demand and Energy Efficiency Programs in Saudi Residential Buildings. King Abdullah Petroleum Studies and Research Center, February 2021. http://dx.doi.org/10.30573/ks--2020-mp05.
Full textJones, D. W. Energy Efficiency, Building Productivity and the Commercial Buildings Market. Office of Scientific and Technical Information (OSTI), May 2002. http://dx.doi.org/10.2172/814265.
Full textBorodinecs, Anatolijs, Aleksandrs Zajacs, and Arturs Palcikovskis. Modular retrofitting approach for residential buildings. Department of the Built Environment, 2023. http://dx.doi.org/10.54337/aau541598583.
Full textMoncef, Krati, and Mohammad Aldubyan. Cost-Effectiveness of Energy Efficiency and Renewable Energy Technologies for Reducing Peak Demand. King Abdullah Petroleum Studies and Research Center, December 2021. http://dx.doi.org/10.30573/ks--2021-dp20.
Full textSchalcher, Hans-Rudolf. Thematic synthesis “Buildings and Settlements” of the NRP “Energy”. Swiss National Science Foundation (SNSF), October 2019. http://dx.doi.org/10.46446/publication_nrp70_nrp71.2019.3.en.
Full text