Journal articles on the topic 'Bubble form of breakdown'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Bubble form of breakdown.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Moise, Pradeep, and Joseph Mathew. "Bubble and conical forms of vortex breakdown in swirling jets." Journal of Fluid Mechanics 873 (June 24, 2019): 322–57. http://dx.doi.org/10.1017/jfm.2019.401.
Full textSOTIROPOULOS, FOTIS, DONALD R. WEBSTER, and TAHIRIH C. LACKEY. "Experiments on Lagrangian transport in steady vortex-breakdown bubbles in a confined swirling flow." Journal of Fluid Mechanics 466 (September 10, 2002): 215–48. http://dx.doi.org/10.1017/s0022112002001271.
Full textJasikova, Darina, Petr Schovanec, Michal Kotek, and Vaclav Kopecky. "Comparison of cavitation bubbles evolution in viscous media." EPJ Web of Conferences 180 (2018): 02038. http://dx.doi.org/10.1051/epjconf/201818002038.
Full textSchovanec, Petr, Darina Jasikova, Michal Kotek, Karel Havlicek, Magda Nechanicka, Jakub Eichler, Jiri Cech, and Petra Subrtova. "Sterilization of Biofilm in Foam Using a Single Cavitation Bubble." MATEC Web of Conferences 328 (2020): 05003. http://dx.doi.org/10.1051/matecconf/202032805003.
Full textАмромин, Э. Л. "О происхождении цепочек каверн во вращающемся потоке между цилиндрами." Журнал технической физики 91, no. 11 (2021): 1645. http://dx.doi.org/10.21883/jtf.2021.11.51523.119-21.
Full textAmromin E.L. "On the origin of chains of cavities in the rotating flow between cylinders." Technical Physics 67, no. 14 (2022): 2184. http://dx.doi.org/10.21883/tp.2022.14.55216.119-21.
Full textBILLANT, PAUL, JEAN-MARC CHOMAZ, and PATRICK HUERRE. "Experimental study of vortex breakdown in swirling jets." Journal of Fluid Mechanics 376 (December 10, 1998): 183–219. http://dx.doi.org/10.1017/s0022112098002870.
Full textGould, John. "Build me up to break me down: frothed spawn in the sandpaper frog, Lechriodus fletcheri, is formed by female parents and later broken down by their offspring." Australian Journal of Zoology 67, no. 3 (2019): 153. http://dx.doi.org/10.1071/zo20038.
Full textFalbo, Paolo, and Rosanna Grassi. "Market Dynamics When Agents Anticipate Correlation Breakdown." Discrete Dynamics in Nature and Society 2011 (2011): 1–33. http://dx.doi.org/10.1155/2011/959847.
Full textRajamanickam, Kuppuraj, and Saptarshi Basu. "Insights into the dynamics of conical breakdown modes in coaxial swirling flow field." Journal of Fluid Mechanics 853 (August 22, 2018): 72–110. http://dx.doi.org/10.1017/jfm.2018.549.
Full textSOTIROPOULOS, FOTIS, and YIANNIS VENTIKOS. "The three-dimensional structure of confined swirling flows with vortex breakdown." Journal of Fluid Mechanics 426 (January 10, 2001): 155–75. http://dx.doi.org/10.1017/s0022112000002342.
Full textSERRE, E., and P. BONTOUX. "Vortex breakdown in a three-dimensional swirling flow." Journal of Fluid Mechanics 459 (May 25, 2002): 347–70. http://dx.doi.org/10.1017/s0022112002007875.
Full textMeliga, Philippe, François Gallaire, and Jean-Marc Chomaz. "A weakly nonlinear mechanism for mode selection in swirling jets." Journal of Fluid Mechanics 699 (April 16, 2012): 216–62. http://dx.doi.org/10.1017/jfm.2012.93.
Full textRovig, J. "THE EVOLUTION OF STABLE FOAM AS A DRILLING MEDIUM." APPEA Journal 36, no. 1 (1996): 557. http://dx.doi.org/10.1071/aj95033.
Full textCOULL, JOHN D., and HOWARD P. HODSON. "Unsteady boundary-layer transition in low-pressure turbines." Journal of Fluid Mechanics 681 (July 1, 2011): 370–410. http://dx.doi.org/10.1017/jfm.2011.204.
Full textSarkar, S., and Peter R. Voke. "Large-Eddy Simulation of Unsteady Surface Pressure Over a Low-Pressure Turbine Blade due to Interactions of Passing Wakes and Inflexional Boundary Layer." Journal of Turbomachinery 128, no. 2 (February 1, 2005): 221–31. http://dx.doi.org/10.1115/1.2137741.
Full textBodstein, Gustavo C. R., Albert R. George, and C. Y. Hui. "The three-dimensional interaction of a streamwise vortex with a large-chord lifting surface: theory and experiment." Journal of Fluid Mechanics 322 (September 10, 1996): 51–79. http://dx.doi.org/10.1017/s0022112096002704.
Full textAlthaus, W., E. Krause, J. Hofhaus, and M. Weimer. "Vortex breakdown: Transition between bubble- and spiral-type breakdown." Meccanica 29, no. 4 (December 1994): 373–82. http://dx.doi.org/10.1007/bf00987572.
Full textQadri, Ubaid Ali, Dhiren Mistry, and Matthew P. Juniper. "Structural sensitivity of spiral vortex breakdown." Journal of Fluid Mechanics 720 (February 27, 2013): 558–81. http://dx.doi.org/10.1017/jfm.2013.34.
Full textRusak, Zvi. "Axisymmetric swirling flow around a vortex breakdown point." Journal of Fluid Mechanics 323 (September 25, 1996): 79–105. http://dx.doi.org/10.1017/s0022112096000857.
Full textGuo, Xu, Ying Sun, Chen-Lei Liu, Lin Jing, Yuan-Tao Zhang, Xiao-Long Wang, and Igor Timoshkin. "The guiding effect of artificially injected gas bubble on the underwater pulsed spark discharge and its electrical and acoustic parameters after breakdown." Physics of Plasmas 29, no. 11 (November 2022): 113504. http://dx.doi.org/10.1063/5.0122080.
Full textHummel, Mathias, Christoph Garth, Bernd Hamann, Hans Hagen, and Kenneth I. Joy. "Illustrative Visualization of a Vortex Breakdown Bubble." Computer Graphics Forum 30, no. 1 (February 24, 2011): 235–36. http://dx.doi.org/10.1111/j.1467-8659.2010.01850.x.
Full textKoide, Teruaki, and Hide S. Koyama. "Vortex Breakdown in a Differentially Rotating Cylindrical Container." Journal of Fluids Engineering 127, no. 2 (March 1, 2005): 358–66. http://dx.doi.org/10.1115/1.1852482.
Full textPérez-Torró, Rafael, and Jae Wook Kim. "A large-eddy simulation on a deep-stalled aerofoil with a wavy leading edge." Journal of Fluid Mechanics 813 (January 17, 2017): 23–52. http://dx.doi.org/10.1017/jfm.2016.841.
Full textNaumov, Igor V., and Irina Yu Podolskaya. "Topology of vortex breakdown in closed polygonal containers." Journal of Fluid Mechanics 820 (May 5, 2017): 263–83. http://dx.doi.org/10.1017/jfm.2017.211.
Full textNath, A., and A. Khare. "Measurement of charged particles and cavitation bubble expansion velocities in laser induced breakdown in water." Laser and Particle Beams 26, no. 3 (August 8, 2008): 425–32. http://dx.doi.org/10.1017/s0263034608000438.
Full textNault, Isaac, Sorin M. Mitran, Georgy Sankin, and Pei Zhong. "Multiscale model of cavitation bubble formation and breakdown." Journal of the Acoustical Society of America 136, no. 4 (October 2014): 2192. http://dx.doi.org/10.1121/1.4899947.
Full textSpall, Robert E. "Transition from spiral‐ to bubble‐type vortex breakdown." Physics of Fluids 8, no. 5 (May 1996): 1330–32. http://dx.doi.org/10.1063/1.868902.
Full textAlthaus, W., E. Krause, J. Hofhaus, and M. Weiner. "Bubble- and spiral-type breakdown of slender vortices." Experimental Thermal and Fluid Science 11, no. 3 (October 1995): 276–84. http://dx.doi.org/10.1016/0894-1777(95)00050-v.
Full textMeunier, P., and K. Hourigan. "Mixing in a vortex breakdown flow." Journal of Fluid Mechanics 731 (August 14, 2013): 195–222. http://dx.doi.org/10.1017/jfm.2013.226.
Full textMununga, L., D. Lo Jacono, J. N. Sørensen, T. Leweke, M. C. Thompson, and K. Hourigan. "Control of confined vortex breakdown with partial rotating lids." Journal of Fluid Mechanics 738 (November 29, 2013): 5–33. http://dx.doi.org/10.1017/jfm.2013.596.
Full textNath, A., and A. Khare. "Transient evolution of multiple bubbles in laser induced breakdown in water." Laser and Particle Beams 29, no. 1 (December 22, 2010): 1–9. http://dx.doi.org/10.1017/s0263034610000662.
Full textBRØNS, M., M. C. THOMPSON, and K. HOURIGAN. "Dye visualization near a three-dimensional stagnation point: application to the vortex breakdown bubble." Journal of Fluid Mechanics 622 (March 10, 2009): 177–94. http://dx.doi.org/10.1017/s0022112008005107.
Full textHara, M., Zhen-chao Wang, and H. Saito. "Thermal bubble breakdown in liquid nitrogen under nonuniform fields." IEEE Transactions on Dielectrics and Electrical Insulation 1, no. 4 (1994): 709–15. http://dx.doi.org/10.1109/94.311714.
Full textVassenden, F., and T. Holt. "Experimental Foundation for Relative Permeability Modeling of Foam." SPE Reservoir Evaluation & Engineering 3, no. 02 (April 1, 2000): 179–85. http://dx.doi.org/10.2118/62506-pa.
Full textTsai, Feng Chin, and Rong Fung Huang. "Topological Flow Structures of Annular Swirling Jets." Journal of Mechanics 17, no. 3 (September 2001): 131–38. http://dx.doi.org/10.1017/s1727719100004494.
Full textSUEMATSU, Yoshikazu, Tadaya ITO, and Toshiyuki HAYASE. "Vortex breakdown phenomena in a circular pipe (4th report, Mechanism of axisymmetric bubble type breakdown)." Transactions of the Japan Society of Mechanical Engineers Series B 51, no. 471 (1985): 3488–96. http://dx.doi.org/10.1299/kikaib.51.3488.
Full textSUEMATSU, Yoshikazu, Tadaya ITO, and Toshiyuki HAYASE. "Vortex Breakdown Phenomena in a Circular Pipe : 4th Report, Mechanism of Axisymmetric Bubble Type Breakdown." Bulletin of JSME 29, no. 253 (1986): 2086–94. http://dx.doi.org/10.1299/jsme1958.29.2086.
Full textBRØNS, MORTEN, WEN ZHONG SHEN, JENS NØRKÆR SØRENSEN, and WEI JUN ZHU. "The influence of imperfections on the flow structure of steady vortex breakdown bubbles." Journal of Fluid Mechanics 578 (April 26, 2007): 453–66. http://dx.doi.org/10.1017/s0022112007005101.
Full textMuthiah, Gopalsamy, and Arnab Samanta. "Transient energy growth of a swirling jet with vortex breakdown." Journal of Fluid Mechanics 856 (October 2, 2018): 288–322. http://dx.doi.org/10.1017/jfm.2018.712.
Full textZong Siguang, 宗思光, 王江安 Wang Jiang′an, and 王辉华 Wang Huihua. "Image measure of characters of cavitation bubble by optical breakdown." Acta Optica Sinica 29, no. 8 (2009): 2197–202. http://dx.doi.org/10.3788/aos20092908.2197.
Full textPaterson, Oliver, Bofu Wang, and Xuerui Mao. "Coherent Structures in the Breakdown Bubble of a Vortex Flow." AIAA Journal 56, no. 5 (May 2018): 1812–17. http://dx.doi.org/10.2514/1.j055329.
Full textBruggeman, P. J., C. A. Leys, and J. A. Vierendeels. "Electrical breakdown of a bubble in a water-filled capillary." Journal of Applied Physics 99, no. 11 (June 2006): 116101. http://dx.doi.org/10.1063/1.2199748.
Full textGerhold, J. "Evaluation of bubble breakdown limit in LHe below 4.2 K." IEEE Transactions on Electrical Insulation 26, no. 4 (1991): 679–84. http://dx.doi.org/10.1109/14.83689.
Full textKATO, Kazuhiko, Hirotaka DAN, Ryosuke ADACHI, and Yasuaki MATSUDAIRA. "Propagation of Chain-Reacting Bubble Collapse Generating at Cavitation Breakdown." Transactions of the Japan Society of Mechanical Engineers Series B 72, no. 714 (2006): 353–60. http://dx.doi.org/10.1299/kikaib.72.353.
Full textSchovanec, Petr, Darina Jasikova, Michal Kotek, and Vaclav Kopecky. "Evolution and implosion of cavitation bubbles towards solid surface." EPJ Web of Conferences 269 (2022): 01054. http://dx.doi.org/10.1051/epjconf/202226901054.
Full textKatterbauer, Klemens, Alberto F. Marsala, Virginie Schoepf, and Eric Donzier. "A novel artificial intelligence automatic detection framework to increase reliability of PLT gas bubble sensing." Journal of Petroleum Exploration and Production Technology 11, no. 3 (February 13, 2021): 1263–73. http://dx.doi.org/10.1007/s13202-021-01098-1.
Full textMüller, Miloš, Jan Hujer, and Petra Dančová. "Dynamic behaviour of cavitation bubble close to a flexible wall." EPJ Web of Conferences 264 (2022): 01024. http://dx.doi.org/10.1051/epjconf/202226401024.
Full textDiGiuseppe, Stephen, Malgorzata Bienkowska-Haba, and Martin Sapp. "Human Papillomavirus Entry: Hiding in a Bubble." Journal of Virology 90, no. 18 (July 13, 2016): 8032–35. http://dx.doi.org/10.1128/jvi.01065-16.
Full textCARDONE, F., and R. MIGNANI. "PIEZONUCLEAR REACTIONS AND LORENTZ INVARIANCE BREAKDOWN." International Journal of Modern Physics E 15, no. 04 (June 2006): 911–24. http://dx.doi.org/10.1142/s0218301306004600.
Full text