To see the other types of publications on this topic, follow the link: BSOA.

Journal articles on the topic 'BSOA'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'BSOA.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Mentel, Th F., E. Kleist, S. Andres, M. Dal Maso, T. Hohaus, A. Kiendler-Scharr, Y. Rudich, et al. "Secondary aerosol formation from stress-induced biogenic emissions and possible climate feedbacks." Atmospheric Chemistry and Physics 13, no. 17 (September 3, 2013): 8755–70. http://dx.doi.org/10.5194/acp-13-8755-2013.

Full text
Abstract:
Abstract. Atmospheric aerosols impact climate by scattering and absorbing solar radiation and by acting as ice and cloud condensation nuclei. Biogenic secondary organic aerosols (BSOAs) comprise an important component of atmospheric aerosols. Biogenic volatile organic compounds (BVOCs) emitted by vegetation are the source of BSOAs. Pathogens and insect attacks, heat waves and droughts can induce stress to plants that may impact their BVOC emissions, and hence the yield and type of formed BSOAs, and possibly their climatic effects. This raises questions of whether stress-induced changes in BSOA formation may attenuate or amplify effects of climate change. In this study we assess the potential impact of stress-induced BVOC emissions on BSOA formation for tree species typical for mixed deciduous and Boreal Eurasian forests. We studied the photochemical BSOA formation for plants infested by aphids in a laboratory setup under well-controlled conditions and applied in addition heat and drought stress. The results indicate that stress conditions substantially modify BSOA formation and yield. Stress-induced emissions of sesquiterpenes, methyl salicylate, and C17-BVOCs increase BSOA yields. Mixtures including these compounds exhibit BSOA yields between 17 and 33%, significantly higher than mixtures containing mainly monoterpenes (4–6% yield). Green leaf volatiles suppress SOA formation, presumably by scavenging OH, similar to isoprene. By classifying emission types, stressors and BSOA formation potential, we discuss possible climatic feedbacks regarding aerosol effects. We conclude that stress situations for plants due to climate change should be considered in climate–vegetation feedback mechanisms.
APA, Harvard, Vancouver, ISO, and other styles
2

Lee, Alex K. Y., Jonathan P. D. Abbatt, W. Richard Leaitch, Shao-Meng Li, Steve J. Sjostedt, Jeremy J. B. Wentzell, John Liggio, and Anne Marie Macdonald. "Substantial secondary organic aerosol formation in a coniferous forest: observations of both day- and nighttime chemistry." Atmospheric Chemistry and Physics 16, no. 11 (June 3, 2016): 6721–33. http://dx.doi.org/10.5194/acp-16-6721-2016.

Full text
Abstract:
Abstract. Substantial biogenic secondary organic aerosol (BSOA) formation was investigated in a coniferous forest mountain region in Whistler, British Columbia. A largely biogenic aerosol growth episode was observed, providing a unique opportunity to investigate BSOA formation chemistry in a forested environment with limited influence from anthropogenic emissions. Positive matrix factorization of aerosol mass spectrometry (AMS) measurement identified two types of BSOA (BSOA-1 and BSOA-2), which were primarily generated by gas-phase oxidation of monoterpenes and perhaps sesquiterpenes. The temporal variations of BSOA-1 and BSOA-2 can be explained by gas–particle partitioning in response to ambient temperature and the relative importance of different oxidation mechanisms between day and night. While BSOA-1 arises from gas-phase ozonolysis and nitrate radical chemistry at night, BSOA-2 is likely less volatile than BSOA-1 and consists of products formed via gas-phase oxidation by OH radical and ozone during the day. Organic nitrates produced through nitrate radical chemistry can account for 22–33 % of BSOA-1 mass at night. The mass spectra of BSOA-1 and BSOA-2 have higher values of the mass fraction of m/z 91 (f91) compared to the background organic aerosol. Using f91 to evaluate BSOA formation pathways in this unpolluted, forested region, heterogeneous oxidation of BSOA-1 is a minor production pathway of BSOA-2.
APA, Harvard, Vancouver, ISO, and other styles
3

Lee, A. K. Y., J. P. D. Abbatt, W. R. Leaitch, S. M. Li, S. J. Sjostedt, J. J. B. Wentzell, J. Liggio, and A. M. Macdonald. "Substantial secondary organic aerosol formation in a coniferous forest: observations of both day and night time chemistry." Atmospheric Chemistry and Physics Discussions 15, no. 20 (October 16, 2015): 28005–35. http://dx.doi.org/10.5194/acpd-15-28005-2015.

Full text
Abstract:
Abstract. Substantial biogenic secondary organic aerosol (BSOA) formation was investigated in a coniferous forest mountain region at Whistler, British Columbia. A largely biogenic aerosol growth episode was observed, providing a unique opportunity to investigate BSOA formation chemistry in a forested environment with limited influence from anthropogenic emissions. Positive matrix factorization of aerosol mass spectrometry (AMS) measurement identified two types of BSOA (BSOA-1 and BSOA-2), which were primarily generated by gas-phase oxidation of monoterpenes and perhaps sesquiterpenes. The temporal variations of BSOA-1 and BSOA-2 can be explained by gas-particle partitioning in response to ambient temperature and the relative importance of different oxidation mechanisms between day and night. While BSOA-1 will arise from gas-phase ozonolysis and nitrate radical chemistry at night, BSOA-2 is less volatile than BSOA-1 and consists of products formed via gas-phase oxidation by the OH radical and ozone during the day. Organic nitrates produced through nitrate radical chemistry can account for 22–33 % of BSOA-1 mass at night. The mass spectra of BSOA-1 and BSOA-2 have higher values of the mass fraction of m/z 91 (f91) compared to the background organic aerosol, and so f91 is used as an indicator of BSOA formation pathways. A comparison between laboratory studies in the literature and our field observations highlights the potential importance of gas-phase formation chemistry of BSOA-2 type materials that may not be captured in smog chamber experiments, perhaps due to the wall loss of gas-phase intermediate products.
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Yu-Qing, Duo-Hong Chen, Xiang Ding, Jun Li, Tao Zhang, Jun-Qi Wang, Qian Cheng, et al. "Impact of anthropogenic emissions on biogenic secondary organic aerosol: observation in the Pearl River Delta, southern China." Atmospheric Chemistry and Physics 19, no. 22 (November 28, 2019): 14403–15. http://dx.doi.org/10.5194/acp-19-14403-2019.

Full text
Abstract:
Abstract. Secondary organic aerosol (SOA) formation from biogenic precursors is affected by anthropogenic emissions, which are not well understood in polluted areas. In this study, we accomplished a year-round campaign at nine sites in polluted areas located in the Pearl River Delta (PRD) region during 2015. We measured typical biogenic SOA (BSOA) tracers from isoprene, monoterpenes, and β-caryophyllene, as well as major gaseous and particulate pollutants and investigated the impact of anthropogenic pollutants on BSOA formation. The concentrations of BSOA tracers were in the range of 45.4 to 109 ng m−3 with the majority composed of products from monoterpenes (SOAM, 47.2±9.29 ng m−3), isoprene (SOAI, 23.1±10.8 ng m−3), and β-caryophyllene (SOAC, 3.85±1.75 ng m−3). We found that atmospheric oxidants, Ox (O3 plus NO2), and sulfate correlated well with later-generation SOAM tracers, but this was not the case for first-generation SOAM products. This suggested that high Ox and sulfate levels could promote the formation of later-generation SOAM products, which probably led to the relatively aged SOAM that we observed in the PRD. For the SOAI tracers, both 2-methylglyceric acid (NO/NO2-channel product) and the ratio of 2-methylglyceric acid to 2-methyltetrols (HO2-channel products) exhibit NOx dependence, indicating the significant impact of NOx on SOAI formation pathways. The SOAC tracer was elevated in winter at all sites and was positively correlated with levoglucosan, Ox, and sulfate. Thus, the unexpected increase in SOAC in wintertime might be highly associated with the enhancement of biomass burning, O3 chemistry, and the sulfate component in the PRD. The BSOAs that were estimated using the SOA tracer approach showed the highest concentration in fall and the lowest concentration in spring with an annual average concentration of 1.68±0.40 µg m−3. SOAM dominated the BSOA mass all year round. We also found that BSOA correlated well with sulfate and Ox. This implied a significant effect from anthropogenic pollutants on BSOA formation and highlighted that we could reduce BSOA by controlling the anthropogenic emissions of sulfate and Ox precursors in polluted regions.
APA, Harvard, Vancouver, ISO, and other styles
5

Zhao, D. F., A. Buchholz, B. Kortner, P. Schlag, F. Rubach, H. Fuchs, A. Kiendler-Scharr, et al. "Cloud condensation nuclei activity, droplet growth kinetics and hygroscopicity of biogenic and anthropogenic Secondary Organic Aerosol (SOA)." Atmospheric Chemistry and Physics Discussions 15, no. 14 (July 21, 2015): 19903–45. http://dx.doi.org/10.5194/acpd-15-19903-2015.

Full text
Abstract:
Abstract. Interaction of biogenic volatile organic compounds (VOC) with anthropogenic VOC affects the physicochemical properties of secondary organic aerosol (SOA). We investigated cloud droplet activation (CCN activity), droplet growth kinetics, and hygroscopicity of mixed anthropogenic and biogenic SOA (ABSOA) compared to pure biogenic SOA (BSOA) and pure anthropogenic SOA (ASOA). Selected monoterpenes and aromatics were used as representative precursors of BSOA and ASOA, respectively. We found that BSOA, ASOA, and ABSOA had similar CCN activity despite the higher oxygen to carbon ratio (O/C) of ASOA compared to BSOA and ABSOA. For individual reaction systems, CCN activity increased with the degree of oxidation. Yet, when considering all different types of SOA together, the hygroscopicity parameter, κCCN, did not correlate with O/C. Droplet growth kinetics of BSOA, ASOA, and ABSOA was comparable to that of (NH4)2SO4, which indicates that there was no delay in the water uptake for these SOA in supersaturated conditions. In contrast to CCN activity, the hygroscopicity parameter from hygroscopic tandem differential mobility analyzer (HTDMA) measurement, κHTDMA, of ASOA was distinctively higher (0.09–0.10) than that of BSOA (0.03–0.06), which was attributed to the higher degree of oxidation of ASOA. The ASOA components in mixed ABSOA enhanced aerosol hygroscopicity. Changing the ASOA fraction by adding BVOC to ASOA or vice versa AVOC to BSOA changed the hygroscopicity of aerosol, in line with the change in the degree of oxidation of aerosol. However, the hygroscopicity of ABSOA cannot be described by a simple linear combination of pure BSOA and ASOA systems. This indicates that additional processes, possibly oligomerization, affected the hygroscopicity. Closure analysis of CCN and HTDMA data showed κHTDMA was lower than κCCN by 30–70 %. Better closure was achieved for ASOA compared to BSOA. This discrepancy can be attributed to several reasons. ASOA seemed to have higher solubility in subsaturated conditions and/or higher surface tension at the activation point than that of BSOA.
APA, Harvard, Vancouver, ISO, and other styles
6

Zhao, D. F., A. Buchholz, B. Kortner, P. Schlag, F. Rubach, H. Fuchs, A. Kiendler-Scharr, et al. "Cloud condensation nuclei activity, droplet growth kinetics, and hygroscopicity of biogenic and anthropogenic secondary organic aerosol (SOA)." Atmospheric Chemistry and Physics 16, no. 2 (February 1, 2016): 1105–21. http://dx.doi.org/10.5194/acp-16-1105-2016.

Full text
Abstract:
Abstract. Interaction of biogenic volatile organic compounds (VOCs) with Anthropogenic VOC (AVOC) affects the physicochemical properties of secondary organic aerosol (SOA). We investigated cloud droplet activation (CCN activity), droplet growth kinetics, and hygroscopicity of mixed anthropogenic and biogenic SOA (ABSOA) compared to pure biogenic SOA (BSOA) and pure anthropogenic SOA (ASOA). Selected monoterpenes and aromatics were used as representative precursors of BSOA and ASOA, respectively.We found that BSOA, ASOA, and ABSOA had similar CCN activity despite the higher oxygen to carbon ratio (O/C) of ASOA compared to BSOA and ABSOA. For individual reaction systems, CCN activity increased with the degree of oxidation. Yet, when considering all different types of SOA together, the hygroscopicity parameter, κCCN, did not correlate with O/C. Droplet growth kinetics of BSOA, ASOA, and ABSOA were comparable to that of (NH4)2SO4, which indicates that there was no delay in the water uptake for these SOA in supersaturated conditions.In contrast to CCN activity, the hygroscopicity parameter from a hygroscopic tandem differential mobility analyzer (HTDMA) measurement, κHTDMA, of ASOA was distinctively higher (0.09–0.10) than that of BSOA (0.03–0.06), which was attributed to the higher degree of oxidation of ASOA. The ASOA components in mixed ABSOA enhanced aerosol hygroscopicity. Changing the ASOA fraction by adding biogenic VOC (BVOC) to ASOA or vice versa (AVOC to BSOA) changed the hygroscopicity of aerosol, in line with the change in the degree of oxidation of aerosol. However, the hygroscopicity of ABSOA cannot be described by a simple linear combination of pure BSOA and ASOA systems. This indicates that additional processes, possibly oligomerization, affected the hygroscopicity.Closure analysis of CCN and HTDMA data showed κHTDMA was lower than κCCN by 30–70 %. Better closure was achieved for ASOA compared to BSOA. This discrepancy can be attributed to several reasons. ASOA seemed to have higher solubility in subsaturated conditions and/or higher surface tension at the activation point than that of BSOA.
APA, Harvard, Vancouver, ISO, and other styles
7

Deng, Yange, Hikari Yai, Hiroaki Fujinari, Kaori Kawana, Tomoki Nakayama, and Michihiro Mochida. "Diurnal variation and size dependence of the hygroscopicity of organic aerosol at a forest site in Wakayama, Japan: their relationship to CCN concentrations." Atmospheric Chemistry and Physics 19, no. 9 (May 6, 2019): 5889–903. http://dx.doi.org/10.5194/acp-19-5889-2019.

Full text
Abstract:
Abstract. Formation of biogenic secondary organic aerosol (BSOA) and its subsequent evolution can modify the hygroscopicity of the organic aerosol component (OA) in the forest atmosphere, and affect the concentrations of cloud condensation nuclei (CCN) there. In this study, size-resolved aerosol hygroscopic growth at 85 % relative humidity and size-resolved aerosol composition were measured using a hygroscopic tandem differential mobility analyzer and an aerosol mass spectrometer, respectively, at a forest site in Wakayama, Japan, in August and September 2015. The hygroscopicity parameter of OA (κorg) presented daily minima in the afternoon hours, and it also showed an increase with the increase in particle dry diameter. The magnitudes of the diurnal variations in κorg for particles with dry diameters of 100 and 300 nm were on average 0.091 and 0.096, respectively, and the difference in κorg between particles with dry diameters of 100 and 300 nm was on average 0.056. The relative contributions of the estimated fresh BSOA and regional OA to total OA could explain 40 % of the observed diurnal variations and size dependence of κorg. The hygroscopicity parameter of fresh BSOA was estimated to range from 0.089 to 0.12 for particles with dry diameters from 100 to 300 nm. Compared with the use of time- and size-resolved κorg, the use of time- and size-averaged κorg leads to under- and over-estimation of the fractional contribution of OA to CCN number concentrations in the range from −5.0 % to 26 %. This indicates that the diurnal variations and size dependence of κorg strongly affect the overall contribution of OA to CCN concentrations. The fractional contribution of fresh BSOA to CCN number concentrations could reach 0.28 during the period of intensive BSOA formation. The aging of the fresh BSOA, if it occurs, increases the estimated contribution of BSOA to CCN number concentrations by 52 %–84 %.
APA, Harvard, Vancouver, ISO, and other styles
8

Hong, Youwei, Xinbei Xu, Dan Liao, Taotao Liu, Xiaoting Ji, Ke Xu, Chunyang Liao, Ting Wang, Chunshui Lin, and Jinsheng Chen. "Measurement report: Effects of anthropogenic emissions and environmental factors on the formation of biogenic secondary organic aerosol (BSOA) in a coastal city of southeastern China." Atmospheric Chemistry and Physics 22, no. 11 (June 16, 2022): 7827–41. http://dx.doi.org/10.5194/acp-22-7827-2022.

Full text
Abstract:
Abstract. To better understand the formation of biogenic secondary organic aerosol (BSOA), aerosol samples with a 4 h time resolution were collected during summer and winter in the southeast of China, along with online measurements of trace gases, aerosol chemical compositions, and meteorological parameters. The samples were analyzed by gas chromatography–mass spectrometry for PM2.5-bound secondary organic aerosol (SOA) tracers, including isoprene (SOAI), α/β-pinene (SOAM), β-caryophyllene (SOAC), and toluene (ASOA). The average concentrations of total SOA tracers in winter and summer were 38.8 and 111.9 ng m−3, respectively, with the predominance of SOAM (70.1 % and 45.8 %), followed by SOAI (14.0 % and 45.6 %), ASOA (11.0 % and 6.2 %) and SOAC (4.9 % and 2.3 %). Compared to those in winter, the majority of BSOA tracers in summer showed significant positive correlations with Ox (O3+NO2) (r = 0.443–0.808), HONO (r = 0.299–0.601), ultraviolet (UV) (r = 0.382–0.588) and temperature (T) (r = 0.529–0.852), indicating the influence of photochemical oxidation under relatively clean conditions. However, in winter, BSOA tracers were significantly correlated with PM2.5 (r = 0.407–0.867), NO3- (r = 0.416–0.884), SO42- (r = 0.419–0.813), and NH3 (r = 0.440–0.757), attributed to the contributions of anthropogenic emissions. Major BSOA tracers in both seasons were linearly correlated with aerosol acidity (pH) (r = 0.421–0.752), liquid water content (LWC) (r = 0.403–0.876) and SO42- (r = 0.419–0.813). The results indicated that acid-catalyzed reactive uptake onto sulfate aerosol particles enhanced the formation of BSOA. In summer, the clean air mass originated from the ocean, and chlorine depletion was observed. We also found that concentrations of the total SOA tracers were correlated with HCl (R2=0.545) and chlorine ions (r = 0.280–0.639) in PM2.5, reflecting the contribution of Cl-initiated volatile organic compound (VOC) oxidations to the formation of SOA. In winter, the northeast dominant wind direction brought continental polluted air mass to the monitoring site, affecting the transformation of BSOA tracers. This implied that anthropogenic emissions, atmospheric oxidation capacity and halogen chemistry have significant effects on the formation of BSOA in the southeast coastal area.
APA, Harvard, Vancouver, ISO, and other styles
9

Fang, Wenzheng, Lei Gong, and Liusi Sheng. "Online analysis of secondary organic aerosols from OH-initiated photooxidation and ozonolysis of α-pinene, β-pinene, Δ3-carene and d-limonene by thermal desorption–photoionisation aerosol mass spectrometry." Environmental Chemistry 14, no. 2 (2017): 75. http://dx.doi.org/10.1071/en16128.

Full text
Abstract:
Environmental contextSecondary organic aerosol, formed by oxidation of volatile precursors such as monoterpenes, is a major contributor to the total atmospheric organic aerosol. We focus on the online mass spectrometric analysis of the aerosol generated by oxidation products of four major monoterpenes in an environmental chamber. Numerous important monoterpene oxidation products were clearly observed and provided a direct comparison of the formation of biogenic secondary organic aerosols. AbstractWe present here thermal desorption–tunable vacuum ultraviolet time-of-flight photoionisation aerosol mass spectrometry (TD-VUV-TOF-PIAMS) for online analysis of biogenic secondary organic aerosols (BSOAs) formed from OH-initiated photooxidation and dark ozonolysis of α-pinene, β-pinene, Δ3-carene and d-limonene in smog chamber experiments. The ‘soft’ ionisation at near-threshold photon energies (≤10.5eV) used in this study permits direct measurement of the fairly clean mass spectra, facilitating molecular identification. The online BSOA mass spectra compared well with previous offline measurements and most of the important monoterpene oxidation products were clearly found in the online mass spectra. Oxidation products such as monoterpene-derived acids (e.g. pinic acid, pinonic acid, 3-caronic acid, limononic acid, limonalic acid), ketones (e.g. norpinone, limonaketone), aldehydes (e.g. caronaldehyde, norcaronaldehyde, limononaldehyde) and multifunctional organics (e.g. hydroxypinonaldehydes, hydroxy-3-caronic aldehydes, hydroxylimononic acid) were tentatively identified. The online TD-VUV-TOF-PIAMS mass spectra showed that the OH-initiated photooxidation and ozonolysis of the same monoterpenes produced some similar BSOA products; for example, 3-caric acid, 3-caronic acid, 3-norcaronic acid, 3-norcaralic acid, caronaldehyde and norcaronaldehyde were observed in both photooxidation and ozonolysis of Δ3-carene. However, they could be formed through different pathways. Some of the same products and isomers (e.g. 10-oxopinonic acid, pinonic acid, norpinic acid, hydroxyl pinonaldehyde, norpinonic acid, norpinone) were formed during the photooxidation and ozonolysis of α-pinene and β-pinene. However, several different BSOA products were generated in these photooxidation and ozonolysis reactions due to their different parent structures. The OH–monoterpene reaction generated higher-molecular-weight products than O3–monoterpene owing to multiple OH additions to the unsaturated carbon bond. The online observation of key BSOA products provided a direct comparison of BSOA formation among different monoterpenes and insights into the formation pathways in the OH-initiated photooxidation and ozonolysis of monoterpenes.
APA, Harvard, Vancouver, ISO, and other styles
10

Li, J. J., G. H. Wang, J. J. Cao, X. M. Wang, and R. J. Zhang. "Observation of biogenic secondary organic aerosols in the atmosphere of a mountain site in central China: temperature and relative humidity effects." Atmospheric Chemistry and Physics 13, no. 22 (November 28, 2013): 11535–49. http://dx.doi.org/10.5194/acp-13-11535-2013.

Full text
Abstract:
Abstract. Secondary organic aerosols (SOA) derived from isoprene, pinene and caryophyllene were determined for PM10 and size-segregated (9-stages) aerosols collected at the summit (2060 m a.s.l.) of Mt. Hua, central China during the summer of 2009. Estimated concentrations of isoprene, α-/β-pinene and β-caryophyllene derived secondary organic carbon (SOC) are 81 ± 53, 29 ± 14 and 98 ± 53 ng m−3, accounting for 2.7 ± 1.0%, 0.8 ± 0.2% and 2.1 ± 1.0% of OC, respectively. Concentrations of biogenic (BSOA, the isoprene/pinene/caryophyllene oxidation products) and anthropogenic (ASOA, mainly aromatic acids) SOA positively correlated with temperature (R=0.57–0.90). However, a decreasing trend of BSOA concentration with an increase in relative humidity (RH) was observed during the sampling period, although a clear trend between ASOA and RH was not found. Based on the AIM Model calculation, we found that during the sampling period an increase in RH resulted in a decrease in the aerosol acidity and thus reduced the effect of acid-catalysis on BSOA formation. There was no significant correlation observed for the BSOA products and anthropogenic parameters (e.g. EC, SO42− and NO4−). Size distribution measurements showed that most of the determined BSOA are formed in the aerosol phase and enriched in the fine mode (<2.1 μm) except for cis-pinonic acid, which is formed in the gas phase and subsequently partitioned into aerosol phase and thus presents a bimodal pattern with a small peak in the fine mode and a large peak in the coarse mode (>2.1 μm).
APA, Harvard, Vancouver, ISO, and other styles
11

Adewolu, Babatunde Olusegun, and Akshay Kumar Saha. "Optimal Setting of Thyristor Controlled Series Compensator with Brain Storm Optimization Algorithms for Available Transfer Capability Enhancement." International Journal of Engineering Research in Africa 58 (January 11, 2022): 225–46. http://dx.doi.org/10.4028/www.scientific.net/jera.58.225.

Full text
Abstract:
Applications of Flexible AC Transmission Systems (FACTS) devices for enhancement of Available Transfer Capability (ATC) is gaining attention due to economic and technical limits of the conventional methods involving physical network expansions. FACTS allocation which is sine-qua-non to its performance is a major problem and it is being addressed in recent time with heuristic algorithms. Brain Storm Optimization Algorithms (BSOA) is a new heuristic and predicting optimization algorithms which revolutionizes human brainstorming process. BSOA is engaged for the optimum setting of FACTS devices for enhancement of ATC of a deregulated electrical power system network in this study. ATC enhancement, bus voltage deviation minimization and real power loss regulation are formulated into multi-objective problems for FACTS allocation purposes. Thyristor Controlled Series Capacitor (TCSC) is considered for simulation and analyses because of its fitness for active power control among other usefulness. ATC values are obtained for both normal and N-1-line outage contingency cases and these values are enhanced for different bilateral and multilateral power transactions. IEEE 30 Bus system is used for demonstration of the effectiveness of this approach in a Matlab software environment. Obtained enhanced ATC values for different transactions during normal evaluation cases are then compared with enhanced ATC values obtained with Particle Swarm Optimization (PSO) set TCSC technique under same trading. BSO behaved much like PSO throughout the achievements of other set objectives but performed better in ATC enhancement with 27.12 MW and 5.24 MW increase above enhanced ATC values achieved by the latter. The comparative of set objectives values relative to that obtained with PSO methods depict suitability and advantages of BSOA technique.
APA, Harvard, Vancouver, ISO, and other styles
12

Nguyen, VietHung, and V.T. Pham. "Gear fault monitoring based on unsupervised feature dimensional reduction and optimized LSSVM-BSOA machine learning model." Journal of Mechanical Engineering and Sciences 16, no. 1 (March 23, 2022): 8653–61. http://dx.doi.org/10.15282/jmes.16.1.2022.01.0684.

Full text
Abstract:
In the trend of Industry 4.0 development, the big data of system operation is significant for analyzing, predicting, or identifying any possible problem. This study proposes a new diagnosis technique for identifying the vibration signal, which combines the feature dimensional reduction method and optimized classifier. Firstly, an auto-encoder feature dimensional reduction (AE-FDR) method is constructed with the bottleneck hidden layer to extract the low-dimensional feature. Secondly, a supervised classifier is formed to carry out fine-turning and classification. The least square-support vector machine (LSSVM) classifier is used as basic with an optimized parameter exploited by the backtracking search optimisation algorithm (BSOA). This LSSVM-BSOA is used to identify the gear fault based on the original vibration data. The proposed AE-FDR-LSSVM-BSOA diagnosis technique shows good ability for identifying the gear fault. A helical gear is experimented with three fault status for evaluate this method. The diagnosis result achieves a high accuracy of 93.3%.
APA, Harvard, Vancouver, ISO, and other styles
13

Makkonen, R., A. Asmi, H. Korhonen, H. Kokkola, S. Järvenoja, P. Räisänen, K. E. J. Lehtinen, et al. "Sensitivity of aerosol concentrations and cloud properties to nucleation and secondary organic distribution in ECHAM5-HAM global circulation model." Atmospheric Chemistry and Physics 9, no. 5 (March 9, 2009): 1747–66. http://dx.doi.org/10.5194/acp-9-1747-2009.

Full text
Abstract:
Abstract. The global aerosol-climate model ECHAM5-HAM was modified to improve the representation of new particle formation in the boundary layer. Activation-type nucleation mechanism was introduced to produce observed nucleation rates in the lower troposphere. A simple and computationally efficient model for biogenic secondary organic aerosol (BSOA) formation was implemented. Here we study the sensitivity of the aerosol and cloud droplet number concentrations (CDNC) to these additions. Activation-type nucleation significantly increases aerosol number concentrations in the boundary layer. Increased particle number concentrations have a significant effect also on cloud droplet number concentrations and therefore on cloud properties. We performed calculations with activation nucleation coefficient values of 2×10−7s−1, 2×10−6s−1 and 2×10−5s−1 to evaluate the sensitivity to this parameter. For BSOA we have used yields of 0.025, 0.07 and 0.15 to estimate the amount of monoterpene oxidation products available for condensation. The hybrid BSOA formation scheme induces large regional changes to size distribution of organic carbon, and therefore affects particle optical properties and cloud droplet number concentrations locally. Although activation-type nucleation improves modeled aerosol number concentrations in the boundary layer, the use of a global activation coefficient generally leads to overestimation of aerosol number. Overestimation can also arise from underestimation of primary emissions.
APA, Harvard, Vancouver, ISO, and other styles
14

Cholakian, Arineh, Matthias Beekmann, Isabelle Coll, Giancarlo Ciarelli, and Augustin Colette. "Biogenic secondary organic aerosol sensitivity to organic aerosol simulation schemes in climate projections." Atmospheric Chemistry and Physics 19, no. 20 (October 25, 2019): 13209–26. http://dx.doi.org/10.5194/acp-19-13209-2019.

Full text
Abstract:
Abstract. Organic aerosol (OA) can have important impacts on air quality and human health because of its large contribution to atmospheric fine aerosol and its chemical composition, including many toxic compounds. Simulation of this type of aerosol is difficult, since there are many unknowns in its nature and mechanism and processes involved in its formation. These uncertainties become even more important in the context of a changing climate because different mechanisms, and their representation in atmospheric models, imply different sensitivities to changes in climate variables. In this work, the effects caused by using different schemes to simulate OA are explored. Three schemes are used in this work: (1) a molecular scheme; (2) a standard volatility basis set (VBS) scheme with anthropogenic aging; and (3) a modified VBS scheme containing functionalization, fragmentation and formation of nonvolatile secondary organic aerosol (SOA) for all semi-volatile organic compounds (SVOCs). Five years of historic and five years of future simulations were performed using the RCP8.5 climatic scenario. The years were chosen in a way to maximize the differences between future and historic simulations. The study focuses on biogenic SOA (BSOA), since the contribution of this fraction of BSOA among OA is major in both historic and future scenarios (40 % to 78 % for different schemes in historic simulations). Simulated OA and BSOA concentrations with different schemes are different, with the molecular scheme showing the highest concentrations among the three schemes. The comparisons show that for the European area, the modified VBS scheme shows the highest relative change between future and historic simulations, while the molecular scheme shows the lowest (a factor of 2 lower). These changes are largest over the summer period for BSOA because the higher temperatures increase terpene and isoprene emissions, the major precursors of BSOA. This increase is partially offset by a temperature-induced shift of SVOCs to the gas phase. This shift is indeed scheme dependent, and it is shown that it is the least pronounced for the modified VBS scheme including a full suite of aerosol aging processes, comprising also formation of nonvolatile aerosol. For the Mediterranean Sea, without BVOC emissions, the OA changes are less pronounced and, at least on an annual average, more similar between different schemes. Our results warrant further developments in organic aerosol schemes used for air quality modeling to reduce their uncertainty, including sensitivity to climate variables (temperature).
APA, Harvard, Vancouver, ISO, and other styles
15

Li, J. J., G. H. Wang, J. J. Cao, X. M. Wang, and R. J. Zhang. "Observation of biogenic secondary organic aerosols in the atmosphere of a mountain site in central China: temperature and relative humidity effects." Atmospheric Chemistry and Physics Discussions 13, no. 7 (July 4, 2013): 17643–74. http://dx.doi.org/10.5194/acpd-13-17643-2013.

Full text
Abstract:
Abstract. Secondary organic aerosols (SOA) derived from isoprene, pinene and caryophyllene were determined for PM10 and size-segregated (9-stage) aerosols collected at the summit (2060 m, a.s.l.) of Mt. Hua, central China during the summer of 2009. Concentrations of estimated isoprene, α-/β-pinene and β-caryophyllene derived SOC are 81± 53, 29 ± 14 and 98 ± 53 ng m−3, accounting for 2.7± 1.0%, 0.8 ± 0.2% and 2.1 ± 1.0% of OC, respectively. Concentrations of biogenic (BSOA, the isoprene/pinene/caryophyllene oxidation products) and anthropogenic (ASOA, mainly aromatic acids) SOA positively correlated with temperature (R=0.57–0.90). However, a decreasing trend of BSOA concentration with an increase in relative humidity (RH) was observed during the sampling period, although a clear trend between ASOA and RH was not found. Based on the AIM Model calculation, we found that during the sampling period an increase in RH resulted in a decrease in the aerosol acidity and thus reduced the effect of acid-catalysis on BSOA formation. Size distribution measurement showed that most of the determined isoprene derived SOA may form in aerosol phase and enriched in the fine mode (<2.1μm). 3-Hydroxyglutaric acid, 3-methyl-1,2,3-butanetricarboxylic acid and β-caryophyllinic acid are only presented in fine particles. However, cis-pinonic acid presents a large peak in the coarse mode (>2.1 μm) due to its highly volatile nature.
APA, Harvard, Vancouver, ISO, and other styles
16

Ye, Jianhuai, Jonathan P. D. Abbatt, and Arthur W. H. Chan. "Novel pathway of SO<sub>2</sub> oxidation in the atmosphere: reactions with monoterpene ozonolysis intermediates and secondary organic aerosol." Atmospheric Chemistry and Physics 18, no. 8 (April 24, 2018): 5549–65. http://dx.doi.org/10.5194/acp-18-5549-2018.

Full text
Abstract:
Abstract. Ozonolysis of monoterpenes is an important source of atmospheric biogenic secondary organic aerosol (BSOA). While enhanced BSOA formation has been associated with sulfate-rich conditions, the underlying mechanisms remain poorly understood. In this work, the interactions between SO2 and reactive intermediates from monoterpene ozonolysis were investigated under different humidity conditions (10 % vs. 50 %). Chamber experiments were conducted with ozonolysis of α-pinene or limonene in the presence of SO2. Limonene SOA formation was enhanced in the presence of SO2, while no significant changes in SOA yields were observed during α-pinene ozonolysis. Under dry conditions, SO2 primarily reacted with stabilized Criegee intermediates (sCIs) produced from ozonolysis, but at 50 % RH heterogeneous uptake of SO2 onto organic aerosol was found to be the dominant sink of SO2, likely owing to reactions between SO2 and organic peroxides. This SO2 loss mechanism to organic peroxides in SOA has not previously been identified in experimental chamber studies. Organosulfates were detected and identified using an electrospray ionization–ion mobility spectrometry–high-resolution time-of-flight mass spectrometer (ESI-IMS-TOF) when SO2 was present in the experiments. Our results demonstrate the synergistic effects between BSOA formation and SO2 oxidation through sCI chemistry and SO2 uptake onto organic aerosol and illustrate the importance of considering the chemistry of organic and sulfur-containing compounds holistically to properly account for their reactive sinks.
APA, Harvard, Vancouver, ISO, and other styles
17

Cholakian, Arineh, Augustin Colette, Isabelle Coll, Giancarlo Ciarelli, and Matthias Beekmann. "Future climatic drivers and their effect on PM<sub>10</sub> components in Europe and the Mediterranean Sea." Atmospheric Chemistry and Physics 19, no. 7 (April 5, 2019): 4459–84. http://dx.doi.org/10.5194/acp-19-4459-2019.

Full text
Abstract:
Abstract. Multiple CMIP5 (Coupled Model Intercomparison Project phase 5) future scenarios run with the CHIMERE chemistry transport model (CTM) are compared to historic simulations in order to study some of the drivers governing air pollution. Here, the focus is on regional climate, anthropogenic emissions and long-range transport. Two major subdomains are explored – the European region and the Mediterranean Basin – with both areas showing high sensitivity to climate change. The Mediterranean area is explored in the context of the ChArMEx (the Chemistry Aerosol Mediterranean Experiment) project, which examines the current and future meteorological and chemical conditions of the Mediterranean area. This climate impact study covers the period from 2031 to 2100 and considers possible future scenarios in comparison with 1976 to 2005 historic simulations using three Representative Concentration Pathways (RCPs; RCP2.6, RCP4.5 and RCP8.5). A detailed analysis of total PM10 (particulate matter with a diameter smaller that 10 µm) concentrations is carried out, including the evolution of PM10 and changes to its composition. The individual effects of meteorological conditions on PM10 components are explored in these scenarios in an effort to pinpoint the meteorological parameter(s) governing each component. The anthropogenic emission impact study covers the period from 2046 to 2055 using current legislation (CLE) and maximum feasible reduction (MFR) anthropogenic emissions for the year 2050 compared with historic simulations covering the period from 1996 to 2005 and utilizing CLE2010 emissions data. Long-range transport is explored by changing the boundary conditions in the chemistry transport model over the same period as the emission impact studies. Finally, a cumulative effect analysis of these drivers is performed, and the impact of each driver on PM10 and its components is estimated. The results show that regional climate change causes a decrease in the PM10 concentrations in our scenarios (in both the European and Mediterranean subdomains), as a result of a decrease in nitrate, sulfate, ammonium and dust atmospheric concentrations in most scenarios. On the contrary, BSOA (biogenic secondary organic aerosol) displays an important increase in all scenarios, showing more pronounced concentrations for the European subdomain compared with the Mediterranean region. Regarding the relationship of different meteorological parameters to concentrations of different species, nitrate and BSOA show a strong temperature dependence, whereas sulfate is most strongly correlated with relative humidity. The temperature-dependent behavior of BSOA changes when looking at the Mediterranean subdomain, where it displays more dependence on wind speed, due to the transported nature of BSOA existing in this subdomain. A cumulative look at all drivers shows that anthropogenic emission changes overshadow changes caused by climate and long-range transport for both of the subdomains explored, with the exception of dust particles for which long-range transport changes are more influential, especially in the Mediterranean Basin. For certain species (such as sulfates and BSOA), in most of the subdomains explored, the changes caused by anthropogenic emissions are (to a certain extent) reduced by the boundary conditions and regional climate changes.
APA, Harvard, Vancouver, ISO, and other styles
18

Jose, Jithina, and T. Sasipraba. "Estimation of Higher Heating Value for MSW Using DSVM and BSOA." Intelligent Automation & Soft Computing 36, no. 1 (2023): 573–88. http://dx.doi.org/10.32604/iasc.2023.030479.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Makkonen, R., A. Asmi, H. Korhonen, H. Kokkola, S. Järvenoja, P. Räisänen, K. E. J. Lehtinen, et al. "Sensitivity of aerosol concentrations and cloud properties to nucleation and secondary organic distribution in ECHAM5-HAM global circulation model." Atmospheric Chemistry and Physics Discussions 8, no. 3 (June 6, 2008): 10955–98. http://dx.doi.org/10.5194/acpd-8-10955-2008.

Full text
Abstract:
Abstract. The global aerosol-climate model ECHAM5-HAM was modified to improve the representation of new particle formation in the boundary layer. Activation-type nucleation mechanism was introduced to produce observed nucleation rates in lower troposphere. A simple and computationally efficient model for biogenic secondary organic aerosol (BSOA) formation was implemented. We studied the sensitivity of aerosol and cloud droplet number concentrations (CDNC) to these additions. Activation-type nucleation significantly increases aerosol number concentrations in the boundary layer. Increased particle number concentrations have a significant effect also on cloud droplet number concentrations and therefore on cloud properties. We performed calculations with activation nucleation coefficient values of 2×10-7 s−1, 2×10-6 s-1 and 2×10-5 s−1 to evaluate the sensitivity to this parameter. For BSOA we have used yields of 0.025, 0.07 and 0.15 to estimate the amount of monoterpene oxidation products available for condensation. The dynamic SOA scheme induces large regional changes to size distribution of organic carbon, and therefore affects particle optical properties and cloud droplet number concentrations locally. Comparison with satellite observation shows that activation-type nucleation significantly decreases the differences between observed and modeled values of cloud top CDNC.
APA, Harvard, Vancouver, ISO, and other styles
20

Lemaire, V., I. Coll, F. Couvidat, C. Mouchel-Vallon, C. Seigneur, and G. Siour. "Oligomer formation in the troposphere: from experimental knowledge to 3-D modeling." Geoscientific Model Development Discussions 8, no. 10 (October 28, 2015): 9229–79. http://dx.doi.org/10.5194/gmdd-8-9229-2015.

Full text
Abstract:
Abstract. The organic fraction of atmospheric aerosols has proven to be a critical element of air quality and climate issues. However, its composition and the aging processes it undergoes remain insufficiently understood. This work builds on laboratory knowledge to simulate the formation of oligomers from biogenic secondary organic aerosol (BSOA) in the troposphere at the continental scale. We compare the results of two different modeling approaches, a 1st-order kinetic process and a pH-dependent parameterization, both implemented in the CHIMERE air quality model (AQM), to simulate the spatial and temporal distribution of oligomerized SOA over western Europe. Our results show that there is a strong dependence of the results on the selected modeling approach: while the irreversible kinetic process leads to the oligomerization of about 50 % of the total BSOA mass, the pH-dependent approach shows a broader range of impacts, with a strong dependency on environmental parameters (pH and nature of aerosol) and the possibility for the process to be reversible. In parallel, we investigated the sensitivity of each modeling approach to the representation of SOA precursor solubility (Henry's law constant values). Finally, the pros and cons of each approach for the representation of SOA aging are discussed and recommendations are provided to improve current representations of oligomer formation in AQMs.
APA, Harvard, Vancouver, ISO, and other styles
21

Bahreini, Roya, Ravan Ahmadov, Stu A. McKeen, Kennedy T. Vu, Justin H. Dingle, Eric C. Apel, Donald R. Blake, et al. "Sources and characteristics of summertime organic aerosol in the Colorado Front Range: perspective from measurements and WRF-Chem modeling." Atmospheric Chemistry and Physics 18, no. 11 (June 14, 2018): 8293–312. http://dx.doi.org/10.5194/acp-18-8293-2018.

Full text
Abstract:
Abstract. The evolution of organic aerosols (OAs) and their precursors in the boundary layer (BL) of the Colorado Front Range during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ, July–August 2014) was analyzed by in situ measurements and chemical transport modeling. Measurements indicated significant production of secondary OA (SOA), with enhancement ratio of OA with respect to carbon monoxide (CO) reaching 0.085±0.003 µg m−3 ppbv−1. At background mixing ratios of CO, up to ∼ 1.8 µg m−3 background OA was observed, suggesting significant non-combustion contribution to OA in the Front Range. The mean concentration of OA in plumes with a high influence of oil and natural gas (O&amp;G) emissions was ∼ 40 % higher than in urban-influenced plumes. Positive matrix factorization (PMF) confirmed a dominant contribution of secondary, oxygenated OA (OOA) in the boundary layer instead of fresh, hydrocarbon-like OA (HOA). Combinations of primary OA (POA) volatility assumptions, aging of semi-volatile species, and different emission estimates from the O&amp;G sector were used in the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) simulation scenarios. The assumption of semi-volatile POA resulted in greater than a factor of 10 lower POA concentrations compared to PMF-resolved HOA. Including top-down modified O&amp;G emissions resulted in substantially better agreements in modeled ethane, toluene, hydroxyl radical, and ozone compared to measurements in the high-O&amp;G-influenced plumes. By including emissions from the O&amp;G sector using the top-down approach, it was estimated that the O&amp;G sector contributed to < 5 % of total OA, but up to 38 % of anthropogenic SOA (aSOA) in the region. The best agreement between the measured and simulated median OA was achieved by limiting the extent of biogenic hydrocarbon aging and consequently biogenic SOA (bSOA) production. Despite a lower production of bSOA in this scenario, contribution of bSOA to total SOA remained high at 40–54 %. Future studies aiming at a better emissions characterization of POA and intermediate-volatility organic compounds (IVOCs) from the O&amp;G sector are valuable.
APA, Harvard, Vancouver, ISO, and other styles
22

Bergström, R., H. A. C. Denier van der Gon, A. S. H. Prévôt, K. E. Yttri, and D. Simpson. "Modelling of organic aerosols over Europe (2002–2007) using a volatility basis set (VBS) framework with application of different assumptions regarding the formation of secondary organic aerosol." Atmospheric Chemistry and Physics Discussions 12, no. 2 (February 20, 2012): 5425–85. http://dx.doi.org/10.5194/acpd-12-5425-2012.

Full text
Abstract:
Abstract. A new organic aerosol (OA) module has been implemented into the EMEP chemical transport model. Four different volatility basis set (VBS) schemes have been tested in long-term simulations for Europe, covering the six years 2002–2007. Different assumptions regarding partitioning of primary OA (POA) and aging of POA and secondary OA (SOA), have been explored. Model results are compared to filter measurements, AMS-data and source-apportionment studies, as well as to other model studies. The present study indicates that many different sources contribute significantly to OA in Europe. Fossil POA and oxidised POA, biogenic and anthropogenic SOA (BSOA and ASOA), residential burning of biomass fuels and wildfire emissions may all contribute more than 10% each over substantial parts of Europe. Simple VBS based OA models can give reasonably good results for summer OA but more observational studies are needed to constrain the VBS parameterisations and to help improve emission inventories. The volatility distribution of primary emissions is an important issue for further work. This study shows smaller contributions from BSOA to OA in Europe than earlier work, but relatively greater ASOA. BVOC emissions are highly uncertain and need further validation. We can not reproduce winter levels of OA in Europe, and there are many indications that the present emission inventories substantially underestimate emissions from residential wood burning in large parts of Europe.
APA, Harvard, Vancouver, ISO, and other styles
23

Heald, Colette L., and Jeffrey A. Geddes. "The impact of historical land use change from 1850 to 2000 on secondary particulate matter and ozone." Atmospheric Chemistry and Physics 16, no. 23 (December 5, 2016): 14997–5010. http://dx.doi.org/10.5194/acp-16-14997-2016.

Full text
Abstract:
Abstract. Anthropogenic land use change (LUC) since preindustrial (1850) has altered the vegetation distribution and density around the world. We use a global model (GEOS-Chem) to assess the attendant changes in surface air quality and the direct radiative forcing (DRF). We focus our analysis on secondary particulate matter and tropospheric ozone formation. The general trend of expansion of managed ecosystems (croplands and pasturelands) at the expense of natural ecosystems has led to an 11 % decline in global mean biogenic volatile organic compound emissions. Concomitant growth in agricultural activity has more than doubled ammonia emissions and increased emissions of nitrogen oxides from soils by more than 50 %. Conversion to croplands has also led to a widespread increase in ozone dry deposition velocity. Together these changes in biosphere–atmosphere exchange have led to a 14 % global mean increase in biogenic secondary organic aerosol (BSOA) surface concentrations, a doubling of surface aerosol nitrate concentrations, and local changes in surface ozone of up to 8.5 ppb. We assess a global mean LUC-DRF of +0.017, −0.071, and −0.01 W m−2 for BSOA, nitrate, and tropospheric ozone, respectively. We conclude that the DRF and the perturbations in surface air quality associated with LUC (and the associated changes in agricultural emissions) are substantial and should be considered alongside changes in anthropogenic emissions and climate feedbacks in chemistry–climate studies.
APA, Harvard, Vancouver, ISO, and other styles
24

Lemaire, Vincent, Isabelle Coll, Florian Couvidat, Camille Mouchel-Vallon, Christian Seigneur, and Guillaume Siour. "Oligomer formation in the troposphere: from experimental knowledge to 3-D modeling." Geoscientific Model Development 9, no. 4 (April 11, 2016): 1361–82. http://dx.doi.org/10.5194/gmd-9-1361-2016.

Full text
Abstract:
Abstract. The organic fraction of atmospheric aerosols has proven to be a critical element of air quality and climate issues. However, its composition and the aging processes it undergoes remain insufficiently understood. This work builds on laboratory knowledge to simulate the formation of oligomers from biogenic secondary organic aerosol (BSOA) in the troposphere at the continental scale. We compare the results of two different modeling approaches, a first-order kinetic process and a pH-dependent parameterization, both implemented in the CHIMERE air quality model (AQM) (www.lmd.polytechnique.fr/chimere), to simulate the spatial and temporal distribution of oligomerized secondary organic aerosol (SOA) over western Europe. We also included a comparison of organic carbon (OC) concentrations at two EMEP (European Monitoring and Evaluation Programme) stations. Our results show that there is a strong dependence of the results on the selected modeling approach: while the irreversible kinetic process leads to the oligomerization of about 50 % of the total BSOA mass, the pH-dependent approach shows a broader range of impacts, with a strong dependency on environmental parameters (pH and nature of aerosol) and the possibility for the process to be reversible. In parallel, we investigated the sensitivity of each modeling approach to the representation of SOA precursor solubility (Henry's law constant values). Finally, the pros and cons of each approach for the representation of SOA aging are discussed and recommendations are provided to improve current representations of oligomer formation in AQMs.
APA, Harvard, Vancouver, ISO, and other styles
25

Hemalatha, P., and K. Dhanalakshmi. "Unity Attractors Inspired Programmable Cellular Automata and Barnacles Swarm Optimization-Based Energy Efficient Data Communication for Securing IoT." International Journal on Recent and Innovation Trends in Computing and Communication 10, no. 10 (October 31, 2022): 25–31. http://dx.doi.org/10.17762/ijritcc.v10i10.5731.

Full text
Abstract:
Wireless Sensor Networks (WSNs) is the innovative technology that covers wide range of application that possesses high potential merits such as long-term operation, unmonitored network access, data transmission, and low implementation cost. In this context, Internet of Things (IoT) have evolved as an exciting paradigm with the rapid advancement of cellular mobile networks, near field communications and cloud computing. WSNs potentially interacts with the IoT devices based on the sensing features of web devices and communication technologies in sensors. At this juncture, IoT need to facilitate huge amount of data aggregation with security and disseminate it to the reliable path to make it reach the required base station. In this paper, Unity Attractors Inspired Programmable Cellular Automata and Barnacles Swarm Optimization-Based Energy Efficient Data Communication Mechanism (UAIPCA-BSO) is proposed for Securing data and estimate the optimal path through which it can be forwarded in the IoT environment. In specific, Unity Attractors Inspired Programmable Cellular Automata is adopted for guaranteeing security during the data transmission process. It also aids in determining the optimal path of data transmission based on the merits of Barnacles Swarm Optimization Algorithm (BSOA), such that data is made to reach the base station at the required destination in time. The simulation results of UAIPCA-BSO confirmed minimized end-to-end delay , accuracy and time taken for malicious node detection, compared to the baseline approaches used for comparison.
APA, Harvard, Vancouver, ISO, and other styles
26

Deshmukh, Dhananjay Kumar, M. Mozammel Haque, Yongwon Kim, and Kimitaka Kawamura. "Organic tracers of fine aerosol particles in central Alaska: summertime composition and sources." Atmospheric Chemistry and Physics 19, no. 22 (November 21, 2019): 14009–29. http://dx.doi.org/10.5194/acp-19-14009-2019.

Full text
Abstract:
Abstract. PM2.5 aerosols were collected at Fairbanks (64.51∘ N and 147.51∘ W) in central Alaska during the summer of 2009 and analyzed for organic tracer compounds using a gas chromatograph–mass spectrometer. The organic compounds were grouped into 14 classes based on their functional groups and sources. Concentrations of the total organics measured ranged from 113 to 1664 ng m−3 (avg 535 ng m−3). Anhydrosugars (avg 186 ng m−3) and n-alkanoic acids (avg 185 ng m−3) were 2 major classes among the 14 compound classes. The similar temporal trends and strong positive correlations among anhydrosugars and n-alkanoic acids demonstrated that biomass burning (BB) is the major source of organic aerosols (OAs) in central Alaska. The dominance of higher molecular weight n-alkanoic acids over lower molecular weight homologs and their carbon preference index (5.6–9.8) confirmed that they were mostly emitted from plant waxes during BB in central Alaska. The mass concentration ratios of levoglucosan to mannosan denoted that softwood is the main biomass burned. The rainfall event distinctly enhanced the levels of mannitol and arabitol due to the growth of fungi and active discharge of fungal spores in the subarctic region. Molecular compositions of biogenic secondary organic aerosol (BSOA) tracers inferred that isoprene is a crucial precursor of BSOA over central Alaska. Our results suggest forest fires and plant emissions to be the crucial factors controlling the levels and molecular composition of OAs in central Alaska. We propose that PM2.5 laden with OAs derived in central Alaska may significantly impact the air quality and climate in the Arctic via long-range atmospheric transport.
APA, Harvard, Vancouver, ISO, and other styles
27

Ashworth, K., G. Folberth, C. N. Hewitt, and O. Wild. "Impacts of near-future cultivation of biofuel feedstocks on atmospheric composition and local air quality." Atmospheric Chemistry and Physics 12, no. 2 (January 19, 2012): 919–39. http://dx.doi.org/10.5194/acp-12-919-2012.

Full text
Abstract:
Abstract. Large-scale production of feedstock crops for biofuels will lead to land use changes. We quantify the effects of realistic land use change scenarios for biofuel feedstock production on isoprene emissions and hence atmospheric composition and chemistry using the HadGEM2 model. Two feedstocks are considered: oil palm for biodiesel in the tropics and short rotation coppice (SRC) in the mid-latitudes. In total, 69 Mha of oil palm and 9 Mha of SRC are planted, each sufficient to replace just over 1% of projected global fossil fuel demand in 2020. Both planting scenarios result in increases in total global annual isoprene emissions of about 1%. In each case, changes in surface concentrations of ozone and biogenic secondary organic aerosol (bSOA) are substantial at the regional scale, with implications for air quality standards. However, the changes in tropospheric burden of ozone and the OH radical, and hence effects on global climate, are negligible. Over SE Asia, one region of oil palm planting, increases in annual mean surface ozone and bSOA concentrations reach over 3 ppbv (+11%) and 0.4 μg m−3 (+10%) respectively for parts of Borneo, with monthly mean increases of up to 6.5 ppbv (+25%) and 0.5 μg m−3 (+12%). Under the SRC scenario, Europe experiences monthly mean changes of over 0.6 ppbv (+1%) and 0.1 μg m−3 (+5%) in June and July, with peak increases of over 2 ppbv (+3%) and 0.5 μg m−3 (+8 %). That appreciable regional atmospheric impacts result from low level planting scenarios demonstrates the need to include changes in emissions of reactive trace gases such as isoprene in life cycle assessments performed on potential biofuel feedstocks.
APA, Harvard, Vancouver, ISO, and other styles
28

Kari, Eetu, Liqing Hao, Arttu Ylisirniö, Angela Buchholz, Ari Leskinen, Pasi Yli-Pirilä, Ilpo Nuutinen, et al. "Potential dual effect of anthropogenic emissions on the formation of biogenic secondary organic aerosol (BSOA)." Atmospheric Chemistry and Physics 19, no. 24 (December 20, 2019): 15651–71. http://dx.doi.org/10.5194/acp-19-15651-2019.

Full text
Abstract:
Abstract. The fraction of gasoline direct-injection (GDI) vehicles comprising the total vehicle pool is projected to increase in the future. However, thorough knowledge about the influence of GDI engines on important atmospheric chemistry processes is missing – namely, their contribution to secondary organic aerosol (SOA) precursor emissions, contribution to SOA formation, and potential role in biogenic–anthropogenic interactions. The objectives of this study were to (1) characterize emissions from modern GDI vehicles and investigate their role in SOA formation chemistry and (2) investigate biogenic–anthropogenic interactions related to SOA formation from a mixture of GDI-vehicle emissions and a model biogenic compound, α-pinene. Specifically, we studied SOA formation from modern GDI-vehicle emissions during the constant-load driving. In this study we show that SOA formation from GDI-vehicle emissions was observed in each experiment. Volatile organic compounds (VOCs) measured with the proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) could account for 19 %–42 % of total SOA mass generated in each experiment. This suggests that there were lower-volatility intermediate VOCs (IVOCs) and semi-volatile organic compounds (SVOCs) in the GDI-vehicle exhaust that likely contributed to SOA production but were not detected with the instrumentation used in this study. This study also demonstrates that two distinct mechanisms caused by anthropogenic emissions suppress α-pinene SOA mass yield. The first suppressing effect was the presence of NOx. This mechanism is consistent with previous reports demonstrating suppression of biogenic SOA formation in the presence of anthropogenic emissions. Our results indicate a possible second suppressing effect, and we suggest that the presence of anthropogenic gas-phase species may have suppressed biogenic SOA formation by alterations to the gas-phase chemistry of α-pinene. This hypothesized change in oxidation pathways led to the formation of α-pinene oxidation products that most likely did not have vapor pressures low enough to partition into the particle phase. Overall, the presence of gasoline-vehicle exhaust caused a more than 50 % suppression in α-pinene SOA mass yield compared to the α-pinene SOA mass yield measured in the absence of any anthropogenic influence.
APA, Harvard, Vancouver, ISO, and other styles
29

Ashworth, K., G. Folberth, C. N. Hewitt, and O. Wild. "Impacts of near-future cultivation of biofuel feedstocks on atmospheric composition and local air quality." Atmospheric Chemistry and Physics Discussions 11, no. 9 (September 5, 2011): 24857–81. http://dx.doi.org/10.5194/acpd-11-24857-2011.

Full text
Abstract:
Abstract. Large-scale production of feedstock crops for biofuels will lead to land-use changes. We quantify the effects of realistic land use change scenarios for biofuel feedstock production on isoprene emissions and hence atmospheric composition and chemistry using the HadGEM2 model. Two feedstocks are considered: oil palm for biodiesel in the tropics and short rotation coppice (SRC) in the mid-latitudes. In total, 69 Mha of oil palm and 92 Mha of SRC are planted, each sufficient to replace just over 1 % of projected global fossil fuel demand in 2020. Both planting scenarios result in increases in total global annual isoprene emissions of about 1 %. In each case, changes in surface concentrations of ozone and biogenic secondary organic aerosol (bSOA) are significant at the regional scale and are detectable even at a global scale with implications for air quality standards. However, the changes in tropospheric burden of ozone and the OH radical, and hence effects on global climate, are negligible. The oil palm plantations and processing plants result in global average annual mean increases in ozone and bSOA of 38 pptv and 2 ng m−3 respectively. Over SE Asia, one region of planting, increases reach over 2 ppbv and 300 ng m−3 for large parts of Borneo. Planting of SRC causes global annual mean changes of 46 pptv and 3 ng m−3. Europe experiences peak monthly mean changes of almost 0.6 ppbv and 90 ng m−3 in June and July. Large areas of Central and Eastern Europe see changes of over 1.5 ppbv and 200 ng m−3 in the summer. That such significant atmospheric impacts from low level planting scenarios are discernible globally clearly demonstrates the need to include changes in emissions of reactive trace gases such as isoprene in life cycle assessments performed on potential biofuel feedstocks.
APA, Harvard, Vancouver, ISO, and other styles
30

Li, Ziyue, Emma L. D'Ambro, Siegfried Schobesberger, Cassandra J. Gaston, Felipe D. Lopez-Hilfiker, Jiumeng Liu, John E. Shilling, Joel A. Thornton, and Christopher D. Cappa. "A robust clustering algorithm for analysis of composition-dependent organic aerosol thermal desorption measurements." Atmospheric Chemistry and Physics 20, no. 4 (March 2, 2020): 2489–512. http://dx.doi.org/10.5194/acp-20-2489-2020.

Full text
Abstract:
Abstract. One of the challenges of understanding atmospheric organic aerosol (OA) particles stems from its complex composition. Mass spectrometry is commonly used to characterize the compositional variability of OA. Clustering of a mass spectral dataset helps identify components that exhibit similar behavior or have similar properties, facilitating understanding of sources and processes that govern compositional variability. Here, we developed an algorithm for clustering mass spectra, the noise-sorted scanning clustering (NSSC), appropriate for application to thermal desorption measurements of collected OA particles from the Filter Inlet for Gases and AEROsols coupled to a chemical ionization mass spectrometer (FIGAERO-CIMS). NSSC, which extends the common density-based special clustering of applications with noise (DBSCAN) algorithm, provides a robust, reproducible analysis of the FIGAERO temperature-dependent mass spectral data. The NSSC allows for the determination of thermal profiles for compositionally distinct clusters of mass spectra, increasing the accessibility and enhancing the interpretation of FIGAERO data. Applications of NSSC to several laboratory biogenic secondary organic aerosol (BSOA) systems demonstrate the ability of NSSC to distinguish different types of thermal behaviors for the components comprising the particles along with the relative mass contributions and chemical properties (e.g., average molecular formula) of each mass spectral cluster. For each of the systems examined, more than 80 % of the total mass is clustered into 9–13 mass spectral clusters. Comparison of the average thermograms of the mass spectral clusters between systems indicates some commonality in terms of the thermal properties of different BSOA, although with some system-specific behavior. Application of NSSC to sets of experiments in which one experimental parameter, such as the concentration of NO, is varied demonstrates the potential for mass spectral clustering to elucidate the chemical factors that drive changes in the thermal properties of OA particles. Further quantitative interpretation of the thermograms of the mass spectral clusters will allow for a more comprehensive understanding of the thermochemical properties of OA particles.
APA, Harvard, Vancouver, ISO, and other styles
31

Brüggemann, Martin, Laurent Poulain, Andreas Held, Torsten Stelzer, Christoph Zuth, Stefanie Richters, Anke Mutzel, et al. "Real-time detection of highly oxidized organosulfates and BSOA marker compounds during the F-BEACh 2014 field study." Atmospheric Chemistry and Physics 17, no. 2 (January 31, 2017): 1453–69. http://dx.doi.org/10.5194/acp-17-1453-2017.

Full text
Abstract:
Abstract. The chemical composition of ambient organic aerosols was analyzed using complementary mass spectrometric techniques during a field study in central Europe in July 2014 (Fichtelgebirge – Biogenic Emission and Aerosol Chemistry, F-BEACh 2014). Among several common biogenic secondary organic aerosol (BSOA) marker compounds, 93 acidic oxygenated hydrocarbons were detected with elevated abundances and were thus attributed to be characteristic for the organic aerosol mass at the site. Monoterpene measurements exhibited median mixing ratios of 1.6 and 0.8 ppbV for in and above canopy levels respectively. Nonetheless, concentrations for early-generation oxidation products were rather low, e.g., pinic acid (c = 4.7 (±2.5) ng m−3). In contrast, high concentrations were found for later-generation photooxidation products such as 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA, c = 13.8 (±9.0) ng m−3) and 3-carboxyheptanedioic acid (c = 10.2 (±6.6) ng m−3), suggesting that aged aerosol masses were present during the campaign period. In agreement, HYSPLIT trajectory calculations indicate that most of the arriving air masses traveled long distances (> 1500 km) over land with high solar radiation. In addition, around 47 % of the detected compounds from filter sample analysis contained sulfur, confirming a rather high anthropogenic impact on biogenic emissions and their oxidation processes. Among the sulfur-containing compounds, several organosulfates, nitrooxy organosulfates, and highly oxidized organosulfates (HOOS) were tentatively identified by high-resolution mass spectrometry. Correlations among HOOS, sulfate, and highly oxidized multifunctional organic compounds (HOMs) support the hypothesis of previous studies that HOOS are formed by reactions of gas-phase HOMs with particulate sulfate. Moreover, periods with high relative humidity indicate that aqueous-phase chemistry might play a major role in HOOS production. However, for dryer periods, coinciding signals for HOOS and gas-phase peroxyradicals (RO2&amp;bullet;) were observed, suggesting RO2&amp;bullet; to be involved in HOOS formation.
APA, Harvard, Vancouver, ISO, and other styles
32

Haque, Md Mozammel, Yanlin Zhang, Srinivas Bikkina, Meehye Lee, and Kimitaka Kawamura. "Regional heterogeneities in the emission of airborne primary sugar compounds and biogenic secondary organic aerosols in the East Asian outflow: evidence for coal combustion as a source of levoglucosan." Atmospheric Chemistry and Physics 22, no. 2 (January 27, 2022): 1373–93. http://dx.doi.org/10.5194/acp-22-1373-2022.

Full text
Abstract:
Abstract. Biomass burning (BB) significantly influences the chemical composition of organic aerosols (OAs) in the East Asian outflow. The source apportionment of BB-derived OA is an influential factor for understanding their regional emissions, which is crucial for reducing uncertainties in their projected climate and health effects. We analyzed here three different classes of atmospheric sugar compounds (anhydrosugars, primary sugars, and sugar alcohols) and two types of biogenic secondary organic aerosol (BSOA) tracers (isoprene- and monoterpene-derived SOA products) from a year-long study that collected total suspended particulate matter (TSP) from an island-based receptor site in Gosan, South Korea. We investigate the seasonal variations in the source emissions of BB-derived OA using mass concentrations of anhydrosugars and radiocarbon (14C-) isotopic composition of organic carbon (OC) and elemental carbon (EC) in ambient aerosols. Levoglucosan (Lev) is the most abundant anhydrosugar, followed by galactosan (Gal), and mannosan (Man). Strong correlations of Lev with Gal and Man, along with their ratios (Lev/Gal is 6.65±2.26; Lev/Man is 15.1±6.76) indicate the contribution from hardwood burning emissions. The seasonal trends revealed that the BB impact is more pronounced in winter and fall, as evidenced by the high concentrations of anhydrosugars. Likewise, significant correlations among three primary sugars (i.e., glucose, fructose, and sucrose) emphasized the contribution of airborne pollen. The primary sugars showed higher concentrations in spring/summer than winter/fall. The fungal spore tracer compounds (i.e., arabitol, mannitol, and erythritol) correlated well with trehalose (i.e., a proxy for soil organic carbon), suggesting the origin from airborne fungal spores and soil microbes in the East Asian outflow. These sugar alcohols peaked in summer, followed by spring/fall and winter. Monoterpene-derived SOA tracers were most abundant compared to isoprene SOA tracers. Both BSOA tracers were dominant in summer, followed by fall, spring, and winter. The source apportionment based on multiple linear regressions and diagnostic mass ratios together revealed that BB emissions mostly contributed from hardwood and crop residue burning. We also found significant positive linear relationships of 14C-based nonfossil- and fossil-derived organic carbon fractions with Lev C, along with the comparable regression slopes, suggesting the importance of BB and coal combustion sources in the East Asian outflow.
APA, Harvard, Vancouver, ISO, and other styles
33

Rindelaub, Joel D., Carlos H. Borca, Matthew A. Hostetler, Jonathan H. Slade, Mark A. Lipton, Lyudmila V. Slipchenko, and Paul B. Shepson. "The acid-catalyzed hydrolysis of an <i>α</i>-pinene-derived organic nitrate: kinetics, products, reaction mechanisms, and atmospheric impact." Atmospheric Chemistry and Physics 16, no. 23 (December 13, 2016): 15425–32. http://dx.doi.org/10.5194/acp-16-15425-2016.

Full text
Abstract:
Abstract. The production of atmospheric organic nitrates (RONO2) has a large impact on air quality and climate due to their contribution to secondary organic aerosol and influence on tropospheric ozone concentrations. Since organic nitrates control the fate of gas phase NOx (NO + NO2), a byproduct of anthropogenic combustion processes, their atmospheric production and reactivity is of great interest. While the atmospheric reactivity of many relevant organic nitrates is still uncertain, one significant reactive pathway, condensed phase hydrolysis, has recently been identified as a potential sink for organic nitrate species. The partitioning of gas phase organic nitrates to aerosol particles and subsequent hydrolysis likely removes the oxidized nitrogen from further atmospheric processing, due to large organic nitrate uptake to aerosols and proposed hydrolysis lifetimes, which may impact long-range transport of NOx, a tropospheric ozone precursor. Despite the atmospheric importance, the hydrolysis rates and reaction mechanisms for atmospherically derived organic nitrates are almost completely unknown, including those derived from α-pinene, a biogenic volatile organic compound (BVOC) that is one of the most significant precursors to biogenic secondary organic aerosol (BSOA). To better understand the chemistry that governs the fate of particle phase organic nitrates, the hydrolysis mechanism and rate constants were elucidated for several organic nitrates, including an α-pinene-derived organic nitrate (APN). A positive trend in hydrolysis rate constants was observed with increasing solution acidity for all organic nitrates studied, with the tertiary APN lifetime ranging from 8.3 min at acidic pH (0.25) to 8.8 h at neutral pH (6.9). Since ambient fine aerosol pH values are observed to be acidic, the reported lifetimes, which are much shorter than that of atmospheric fine aerosol, provide important insight into the fate of particle phase organic nitrates. Along with rate constant data, product identification confirms that a unimolecular specific acid-catalyzed mechanism is responsible for organic nitrate hydrolysis under acidic conditions. The free energies and enthalpies of the isobutyl nitrate hydrolysis intermediates and products were calculated using a hybrid density functional (ωB97X-V) to support the proposed mechanisms. These findings provide valuable information regarding the organic nitrate hydrolysis mechanism and its contribution to the fate of atmospheric NOx, aerosol phase processing, and BSOA composition.
APA, Harvard, Vancouver, ISO, and other styles
34

Pal, Ashish, and Sourangshu Mukhopadhyay. "An alternative approach of developing a frequency encoded optical tri-state multiplexer with broad area semiconductor optical amplifier (BSOA)." Optics & Laser Technology 44, no. 1 (February 2012): 281–84. http://dx.doi.org/10.1016/j.optlastec.2011.07.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Rezaee Jordehi, A. "Brainstorm optimisation algorithm (BSOA): An efficient algorithm for finding optimal location and setting of FACTS devices in electric power systems." International Journal of Electrical Power & Energy Systems 69 (July 2015): 48–57. http://dx.doi.org/10.1016/j.ijepes.2014.12.083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Qin, Momei, Yongtao Hu, Xuesong Wang, Petros Vasilakos, Christopher M. Boyd, Lu Xu, Yu Song, Nga Lee Ng, Athanasios Nenes, and Armistead G. Russell. "Modeling biogenic secondary organic aerosol (BSOA) formation from monoterpene reactions with NO3: A case study of the SOAS campaign using CMAQ." Atmospheric Environment 184 (July 2018): 146–55. http://dx.doi.org/10.1016/j.atmosenv.2018.03.042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Gkatzelis, Georgios I., Ralf Tillmann, Thorsten Hohaus, Markus Müller, Philipp Eichler, Kang-Ming Xu, Patrick Schlag, et al. "Comparison of three aerosol chemical characterization techniques utilizing PTR-ToF-MS: a study on freshly formed and aged biogenic SOA." Atmospheric Measurement Techniques 11, no. 3 (March 15, 2018): 1481–500. http://dx.doi.org/10.5194/amt-11-1481-2018.

Full text
Abstract:
Abstract. An intercomparison of different aerosol chemical characterization techniques has been performed as part of a chamber study of biogenic secondary organic aerosol (BSOA) formation and aging at the atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction chamber). Three different aerosol sampling techniques – the aerosol collection module (ACM), the chemical analysis of aerosol online (CHARON) and the collection thermal-desorption unit (TD) were connected to proton transfer reaction time-of-flight mass spectrometers (PTR-ToF-MSs) to provide chemical characterization of the SOA. The techniques were compared among each other and to results from an aerosol mass spectrometer (AMS) and a scanning mobility particle sizer (SMPS). The experiments investigated SOA formation from the ozonolysis of β-pinene, limonene, a β-pinene–limonene mix and real plant emissions from Pinus sylvestris L. (Scots pine). The SOA was subsequently aged by photo-oxidation, except for limonene SOA, which was aged by NO3 oxidation. Despite significant differences in the aerosol collection and desorption methods of the PTR-based techniques, the determined chemical composition, i.e. the same major contributing signals, was found by all instruments for the different chemical systems studied. These signals could be attributed to known products expected from the oxidation of the examined monoterpenes. The sampling and desorption method of ACM and TD provided additional information on the volatility of individual compounds and showed relatively good agreement. Averaged over all experiments, the total aerosol mass recovery compared to an SMPS varied within 80 ± 10, 51 ± 5 and 27 ± 3 % for CHARON, ACM and TD, respectively. Comparison to the oxygen-to-carbon ratios (O : C) obtained by AMS showed that all PTR-based techniques observed lower O : C ratios, indicating a loss of molecular oxygen either during aerosol sampling or detection. The differences in total mass recovery and O : C between the three instruments resulted predominantly from differences in the field strength (E∕N) in the drift tube reaction ionization chambers of the PTR-ToF-MS instruments and from dissimilarities in the collection/desorption of aerosols. Laboratory case studies showed that PTR-ToF-MS E∕N conditions influenced fragmentation which resulted in water and further neutral fragment losses of the detected molecules. Since ACM and TD were operated in higher E∕N than CHARON, this resulted in higher fragmentation, thus affecting primarily the detected oxygen and carbon content and therefore also the mass recovery. Overall, these techniques have been shown to provide valuable insight on the chemical characteristics of BSOA and can address unknown thermodynamic properties such as partitioning coefficient values and volatility patterns down to a compound-specific level.
APA, Harvard, Vancouver, ISO, and other styles
38

Bergström, R., M. Hallquist, D. Simpson, J. Wildt, and T. F. Mentel. "Biotic stress: a significant contributor to organic aerosol in Europe?" Atmospheric Chemistry and Physics Discussions 14, no. 9 (May 26, 2014): 13603–47. http://dx.doi.org/10.5194/acpd-14-13603-2014.

Full text
Abstract:
Abstract. We have investigated the potential impact on organic aerosol formation from biotic stress-induced emissions (SIE) of organic molecules from forests in Europe (North of Lat. 45° N). Emission estimates for sesquiterpenes (SQT), methyl salicylate (MeSA) and unsaturated C17-compounds, due to different stressors, are based on experiments in the Jülich Plant Atmosphere Chamber (JPAC), combined with estimates of the fraction of stressed trees in Europe based on reported observed tree damage. SIE were introduced in the EMEP MSC-W chemical transport model and secondary organic aerosol (SOA) yields from the SIE were taken from the JPAC experiments. The estimated current-situation SIE in Central and Northern European forests are found to contribute substantially to SOA in large parts of Europe. It is possible that the SIE contributes as much, or more, to organic aerosol than the constitutive biogenic VOC-emissions, at least during some periods. Based on the assumptions in this study, SIE-SOA are estimated to constitute between 50 and 70% of the total biogenic SOA (BSOA) in a current-situation scenario where the biotic stress in Northern and Central European forests causes large SIE of MeSA and SQT. An alternative current-situation scenario with lower SIE, consisting solely of SQT, leads to lower SIE-SOA, between 20 and 40% of the total BSOA. Hypothetical future scenarios with increased SIE, due to higher degrees of biotic stress, show that SOA formation due to SIE can become even larger. Unsaturated C17-BVOCs emitted by spruce infested by the forest honey generating bark louse Cinara pilicornis have a high SOA-forming potential. A model scenario investigating the effect of a regional, episodic infestation of Cinara pilicornis in Baden-Württemberg, corresponding to a year with high production of forest honey, shows that these types of events could lead to very large organic aerosol formation in the infested region. We have used the best available laboratory data on biotic SIE applicable to Northern and Central European forests. Using these data and associated assumptions we have shown that SIE are important for SOA formation but the magnitude of the impact is uncertain and needs to be constrained by further laboratory, field and modelling studies. As an example, the MeSA, which is released as a consequence of various types of biotic stress, is found to have a potentially large impact on SIE-SOA in Europe but e.g. different assumptions regarding the nighttime chemistry of MeSA can change its SOA potential substantially. Thus, further investigations of the atmospheric chemistry of MeSA and observational field studies are needed to clarify the role of this compound in the atmosphere.
APA, Harvard, Vancouver, ISO, and other styles
39

Gonzales Aparicio, Gonzalo W., Gustavo A. Gutiérrez Reynoso, Federico A. Ponce de León, and Denise Chauca Francia. "Estudio hematológico de bovinos criollos y Brown Swiss criados en los Andes de Perú." Revista de Investigaciones Veterinarias del Perú 31, no. 4 (November 24, 2020): e19032. http://dx.doi.org/10.15381/rivep.v31i4.19032.

Full text
Abstract:
Se evaluaron las características hematológicas básicas de un grupo de 184 bovinos criollos (CRIZA) y 128 bovinos Brown Swiss (BSZA) machos y hembras, criados en los Andes de Perú entre 3213 y 4309 msnm, y su comparación con muestras de un grupo de 11 bovinos con “Mal de altura” (BSMA) y con otro grupo de 31 bovinos Brown Swiss criados entre 243 y 1306 msnm (BSZB). El recuento de glóbulos rojos (RGR) fue de 14.95, 8.34, 8.25 y 7.10x106/μl en BSMA, BSZA, CRIZA y BSZB, respectivamente. El hematocrito (Ht) fue de 61.44, 45.83, 42.61 y 34.99% para BSMA, CRIZA, BSZA y BSZB, respectivamente. La hemoglobina (Hb) fue de 16.26, 12.86, 12.22 y 9.65 g/dl en bovinos BSMA, CRIZA, BSZA y BSZB, respectivamente. Los promedios mostraron amplia variación. Tomando como criterio el Ht, se identificaron bovinos BSZA y CRIZA pertenecientes al decil superior formándose dos grupos con valores extremos (BSZAVE y CRIZAVE), los cuales presentaron valores de Ht, RGR y recuento de glóbulos blancos (RGB) inferiores al de bovinos BSMA (p<0.01). Se encontró una correlación general de 0.92 entre Hb y Ht, la misma que varió entre 0.83 en BSMA a 0.94 en BSZB (p<0.05), pero no entre BSZA y CRIZA. Los valores elevados de Ht, RGR y RGB podrían ser considerados como indicadores relacionados con la susceptibilidad de bovinos ante condiciones de hipoxia por altitud.
APA, Harvard, Vancouver, ISO, and other styles
40

Bergström, R., M. Hallquist, D. Simpson, J. Wildt, and T. F. Mentel. "Biotic stress: a significant contributor to organic aerosol in Europe?" Atmospheric Chemistry and Physics 14, no. 24 (December 20, 2014): 13643–60. http://dx.doi.org/10.5194/acp-14-13643-2014.

Full text
Abstract:
Abstract. We have investigated the potential impact on organic aerosol formation from biotic stress-induced emissions (SIE) of organic molecules from forests in Europe (north of lat. 45° N). Emission estimates for sesquiterpenes (SQT), methyl salicylate (MeSA) and unsaturated C17 compounds, due to different stressors, are based on experiments in the Jülich Plant Atmosphere Chamber (JPAC), combined with estimates of the fraction of stressed trees in Europe based on reported observed tree damage. SIE were introduced in the EMEP MSC-W chemical transport model and secondary organic aerosol (SOA) yields from the SIE were taken from the JPAC experiments. Based on estimates of current levels of infestation and the JPAC aerosol yields, the model results suggest that the contribution to SOA in large parts of Europe may be substantial. It is possible that SIE contributes as much, or more, to organic aerosol than the constitutive biogenic VOC emissions, at least during some periods. Based on the assumptions in this study, SIE-SOA are estimated to constitute between 50 and 70 % of the total biogenic SOA (BSOA) in a current-situation scenario where the biotic stress in northern and central European forests causes large SIE of MeSA and SQT. An alternative current-situation scenario with lower SIE, consisting solely of SQT, leads to lower SIE-SOA, between 20 and 40 % of the total BSOA. Hypothetical future scenarios with increased SIE, due to higher degrees of biotic stress, show that SOA formation due to SIE can become even larger. Unsaturated C17 BVOC (biogenic volatile organic compounds) emitted by spruce infested by the forest-honey generating bark louse, Cinara pilicornis, have a high SOA-forming potential. A model scenario investigating the effect of a regional, episodic infestation of Cinara pilicornis in Baden-Württemberg, corresponding to a year with high production of forest honey, shows that these types of events could lead to very large organic aerosol formation in the infested region. We have used the best available laboratory data on biotic SIE applicable to northern and central European forests. Using these data and associated assumptions, we have shown that SIE are potentially important for SOA formation but the magnitude of the impact is uncertain and needs to be constrained by further laboratory, field and modelling studies. As an example, the MeSA, which is released as a consequence of various types of biotic stress, is found to have a potentially large impact on SIE-SOA in Europe, but different assumptions regarding the nighttime chemistry of MeSA can change its SOA potential substantially. Thus, further investigations of the atmospheric chemistry of MeSA and observational field studies are needed to clarify the role of this compound in the atmosphere.
APA, Harvard, Vancouver, ISO, and other styles
41

Silva, Paula Monique Carvalho, Sandra Catia Pereira Uchôa, José Beethoven Figueiredo Barbosa, Victorio Jacob Bastos, José Maria Arcanjo Alves, and Lusiane Chaves Farias. "Efeito do potássio e do calcário na qualidade de mudas de cedro doce (Bombacopsis quinata)." REVISTA AGRO@MBIENTE ON-LINE 7, no. 1 (May 3, 2013): 63. http://dx.doi.org/10.18227/1982-8470ragro.v7i1.842.

Full text
Abstract:
A nutrição adequada da plântula durante a fase de viveiro é determinante para reduzir o tempo de transplantio e pegamento no campo. O cedro doce, embora seja explorado comercialmente, carece de informações científicas acerca do seu processo produtivo, sobretudo na fase de viveiro. Objetivou-se, portanto, com esse estudo, avaliar dois níveis de correção da acidez do substrato com calcário dolomítico (PRNT 100%) e cinco doses de potássio na forma de KCl (0; 5; 10; 15 e 30 mg planta-1 de K2O), aplicadas em cobertura, por meio foliar, para mudas de cedro doce em estágio inicial de desenvolvimento, cultivadas em ambiente protegido. O delineamento experimental foi o inteiramente casualizado, em esquema fatorial 2 x 5, com quatro repetições, perfazendo um total de 400 parcelas experimentais. Cada parcela experimental foi representada por 10 plantas. Após 50 dias de emergência avaliaram-se: altura da parte aérea (ALT), comprimento da raiz (CR), diâmetro do coleto (DC), biomassa fresca e seca da parte aérea e da raiz (BFPA; BSPA; BFRA; BSRA) e os índices: ALT/DC; ALT/BSPA; BSRA/BSPA e Índice de Qualidade de Dickson (IQD). Concluiu-se que os fatores em estudo atuaram na qualidade da muda de modo independente; o efeito da calagem restringiu-se às variáveis relacionadas à raiz; as doses de potássio determinaram incrementos positivos nas variáveis ALT, CR, DC, BFPA, BSPA, BFRA, BSRA e no índice IQD. Nos índices ALT/DC; ALT/ BSPA e BSRA/BSPA os incrementos foram negativos em relação às dosagens potássicas utilizadas. As doses estudadas ficaram aquém da demanda nutricional da muda, indicando que o cedro doce tem elevada demanda por K.
APA, Harvard, Vancouver, ISO, and other styles
42

Karnezi, Eleni, Benjamin N. Murphy, Laurent Poulain, Hartmut Herrmann, Alfred Wiedensohler, Florian Rubach, Astrid Kiendler-Scharr, Thomas F. Mentel, and Spyros N. Pandis. "Simulation of atmospheric organic aerosol using its volatility–oxygen-content distribution during the PEGASOS 2012 campaign." Atmospheric Chemistry and Physics 18, no. 14 (July 27, 2018): 10759–72. http://dx.doi.org/10.5194/acp-18-10759-2018.

Full text
Abstract:
Abstract. A lot of effort has been made to understand and constrain the atmospheric aging of the organic aerosol (OA). Different parameterizations of the organic aerosol formation and evolution in the two-dimensional volatility basis set (2D-VBS) framework are evaluated using ground and airborne measurements collected in the 2012 Pan-European Gas AeroSOls-climate interaction Study (PEGASOS) field campaign in the Po Valley (Italy). A number of chemical aging schemes are examined, taking into account various functionalization and fragmentation pathways for biogenic and anthropogenic OA components. Model predictions and measurements, both at the ground and aloft, indicate a relatively oxidized OA with little average diurnal variation. Total OA concentration and O : C ratios are reproduced within experimental error by a number of chemical aging schemes. Anthropogenic secondary OA (SOA) is predicted to contribute 15–25 % of the total OA, while SOA from intermediate volatility compound oxidation contributes another 20–35 %. Biogenic SOA (bSOA) contributions varied from 15 to 45 % depending on the modeling scheme. Primary OA contributed around 5 % for all schemes and was comparable to the hydrocarbon-like OA (HOA) concentrations derived from the positive matrix factorization of the aerosol mass spectrometer (PMF-AMS) ground measurements. The average OA and O : C diurnal variation and their vertical profiles showed a surprisingly modest sensitivity to the assumed vaporization enthalpy for all aging schemes. This can be explained by the interplay between the partitioning of the semi-volatile compounds and their gas-phase chemical aging reactions.
APA, Harvard, Vancouver, ISO, and other styles
43

Yttri, K. E., D. Simpson, J. K. Nøjgaard, K. Kristensen, J. Genberg, K. Stenström, E. Swietlicki, et al. "Source apportionment of the summer time carbonaceous aerosol at Nordic rural background sites." Atmospheric Chemistry and Physics Discussions 11, no. 6 (June 6, 2011): 16369–416. http://dx.doi.org/10.5194/acpd-11-16369-2011.

Full text
Abstract:
Abstract. In the present study, natural and anthropogenic sources of particulate organic carbon (OCp) and elemental carbon (EC) have been quantified based on weekly filter samples of PM10 collected at four Nordic rural background sites (Birkenes (Norway), Hyytiälä (Finland) Vavihill (Sweden), Lille Valby (Denmark)) during late summer (5 August–2 September 2009). Levels of source specific tracers, i.e. cellulose, levoglucosan, mannitol and the 14C/12C ratio of total carbon (TC), have been used as input for source apportionment of the carbonaceous aerosol, whereas Latin Hypercube Sampling (LHS) was used to statistically treat the multitude of possible combinations resulting from this approach. The carbonaceous aerosol (here: TCp; i.e. particulate TC) was totally dominated by natural sources (69–86 %), with biogenic secondary organic aerosol (BSOA) being the single most important source (48–57 %). Interestingly, primary biological aerosol particles (PBAP) were the second most important source (20–32 %). The anthropogenic contribution was mainly attributed to fossil fuel sources (OCff and ECff (10–24 %), whereas no more than 3–7 % was explained by combustion of biomass (OCbb and ECbb in this late summer campaign i.e. emissions from residential wood burning and/or wild/agricultural fires. Fossil fuel sources totally dominated the ambient EC loading, accounting for 4–12 % of TCp, whereas <1.5 % was attributed to combustion of biomass. The carbonaceous aerosol source apportionment showed only minor variation between the four selected sites. However, Hyytiälä and Birkenes showed greater resemblance to each other, as did Lille Valby and Vavihill, the two latter being somewhat more influenced by anthropogenic sources. Ambient levels of organosulphates and nitrooxy-organosulphates in the Nordic rural background environment are reported for the first time in the present study. The most abundant organosulphate compounds were an organosulphate of isoprene and nitrooxy-organosulphates of α- and β-pinene and limonene.
APA, Harvard, Vancouver, ISO, and other styles
44

Yttri, K. E., D. Simpson, J. K. Nøjgaard, K. Kristensen, J. Genberg, K. Stenström, E. Swietlicki, et al. "Source apportionment of the summer time carbonaceous aerosol at Nordic rural background sites." Atmospheric Chemistry and Physics 11, no. 24 (December 22, 2011): 13339–57. http://dx.doi.org/10.5194/acp-11-13339-2011.

Full text
Abstract:
Abstract. In the present study, natural and anthropogenic sources of particulate organic carbon (OCp) and elemental carbon (EC) have been quantified based on weekly filter samples of PM10 (particles with aerodynamic diameter <10 μm) collected at four Nordic rural background sites [Birkenes (Norway), Hyytiälä (Finland), Vavihill (Sweden), Lille Valby, (Denmark)] during late summer (5 August–2 September 2009). Levels of source specific tracers, i.e. cellulose, levoglucosan, mannitol and the 14C/12C ratio of total carbon (TC), have been used as input for source apportionment of the carbonaceous aerosol, whereas Latin Hypercube Sampling (LHS) was used to statistically treat the multitude of possible combinations resulting from this approach. The carbonaceous aerosol (here: TCp; i.e. particulate TC) was totally dominated by natural sources (69–86%), with biogenic secondary organic aerosol (BSOA) being the single most important source (48–57%). Interestingly, primary biological aerosol particles (PBAP) were the second most important source (20–32%). The anthropogenic contribution was mainly attributed to fossil fuel sources (OCff and ECff) (10–24%), whereas no more than 3–7% was explained by combustion of biomass (OCbb and ECbb) in this late summer campaign i.e. emissions from residential wood burning and/or wild/agricultural fires. Fossil fuel sources totally dominated the ambient EC loading, which accounted for 4–12% of TCp, whereas <1.5% of EC was attributed to combustion of biomass. The carbonaceous aerosol source apportionment showed only minor variation between the four selected sites. However, Hyytiälä and Birkenes showed greater resemblance to each other, as did Lille Valby and Vavihill, the two latter being somewhat more influenced by anthropogenic sources. Ambient levels of organosulphates and nitrooxy-organosulphates in the Nordic rural background environment are reported for the first time in the present study. The most abundant organosulphate compounds were an organosulphate of isoprene and nitrooxy-organosulphates of α- and β-pinene and limonene.
APA, Harvard, Vancouver, ISO, and other styles
45

Zafar, Ameeduzzafar, Syed Sarim Imam, Nabil K. Alruwaili, Mohd Yasir, Omar Awad Alsaidan, Sultan Alshehri, Mohammed M. Ghoneim, Mohammad Khalid, Ali Alquraini, and Salman S. Alharthi. "Formulation and Evaluation of Topical Nano-Lipid-Based Delivery of Butenafine: In Vitro Characterization and Antifungal Activity." Gels 8, no. 2 (February 18, 2022): 133. http://dx.doi.org/10.3390/gels8020133.

Full text
Abstract:
The present research work was designed to prepare butenafine (BN)-loaded bilosomes (BSs) by the thin-film hydration method. BN is a sparingly water-soluble drug having low permeability and bioavailability. BSs are lipid-based nanovesicles used to entrap water-insoluble drugs for enhanced permeation across the skin. BSs were prepared by the thin-film hydration method and optimized by the Box–Behnken design (BBD) using lipid (A), span 60 (B), and sodium deoxycholate (C) as independent variables. The selected formulation (BN-BSo) was converted into the gel using Carbopol 940 as a gelling agent. The prepared optimized gel (BN-BS-og) was further evaluated for the gel characterization, drug release, drug permeation, irritation, and anti-fungal study. The optimized bilosomes (BN-BSo) showed a mean vesicle size of 215 ± 6.5 nm and an entrapment efficiency of 89.2 ± 1.5%. The DSC study showed that BN was completely encapsulated in the BS lipid matrix. BN-BSog showed good viscosity, consistency, spreadability, and pH. A significantly (p < 0.05) high release (81.09 ± 4.01%) was achieved from BN-BSo compared to BN-BSog (65.85 ± 4.87%) and pure BN (17.54 ± 1.37 %). The permeation study results revealed that BN-BSo, BN-BSog, and pure BN exhibited 56.2 ± 2.7%, 39.2 ± 2.9%, and 16.6 ± 2.3%. The enhancement ratio of permeation flux was found to be 1.4-fold and 3.4-fold for the BN-BS-og and pure BN dispersion. The HET-CAM study showed that BN-BSog was found to be nonirritant as the score was found within the limit. The antifungal study revealed a significant (p < 0.05) enhanced antifungal activity against C. albicans and A. niger. The findings of the study revealed that BS is an important drug delivery system for transdermal delivery.
APA, Harvard, Vancouver, ISO, and other styles
46

Ciarelli, Giancarlo, Mark R. Theobald, Marta G. Vivanco, Matthias Beekmann, Wenche Aas, Camilla Andersson, Robert Bergström, et al. "Trends of inorganic and organic aerosols and precursor gases in Europe: insights from the EURODELTA multi-model experiment over the 1990–2010 period." Geoscientific Model Development 12, no. 12 (November 29, 2019): 4923–54. http://dx.doi.org/10.5194/gmd-12-4923-2019.

Full text
Abstract:
Abstract. In the framework of the EURODELTA-Trends (EDT) modeling experiment, several chemical transport models (CTMs) were applied for the 1990–2010 period to investigate air quality changes in Europe as well as the capability of the models to reproduce observed long-term air quality trends. Five CTMs have provided modeled air quality data for 21 continuous years in Europe using emission scenarios prepared by the International Institute for Applied Systems Analysis/Greenhouse Gas – Air Pollution Interactions and Synergies (IIASA/GAINS) and corresponding year-by-year meteorology derived from ERA-Interim global reanalysis. For this study, long-term observations of particle sulfate (SO42-), total nitrate (TNO3), total ammonium (TNHx) as well as sulfur dioxide (SO2) and nitrogen dioxide (NO2) for multiple sites in Europe were used to evaluate the model results. The trend analysis was performed for the full 21 years (referred to as PT) but also for two 11-year subperiods: 1990–2000 (referred to as P1) and 2000–2010 (referred to as P2). The experiment revealed that the models were able to reproduce the faster decline in observed SO2 concentrations during the first decade, i.e., 1990–2000, with a 64 %–76 % mean relative reduction in SO2 concentrations indicated by the EDT experiment (range of all the models) versus an 82 % mean relative reduction in observed concentrations. During the second decade (P2), the models estimated a mean relative reduction in SO2 concentrations of about 34 %–54 %, which was also in line with that observed (47 %). Comparisons of observed and modeled NO2 trends revealed a mean relative decrease of 25 % and between 19 % and 23 % (range of all the models) during the P1 period, and 12 % and between 22 % and 26 % (range of all the models) during the P2 period, respectively. Comparisons of observed and modeled trends in SO42- concentrations during the P1 period indicated that the models were able to reproduce the observed trends at most of the sites, with a 42 %–54 % mean relative reduction indicated by the EDT experiment (range of all models) versus a 57 % mean relative reduction in observed concentrations and with good performance also during the P2 and PT periods, even though all the models overpredicted the number of statistically significant decreasing trends during the P2 period. Moreover, especially during the P1 period, both modeled and observational data indicated smaller reductions in SO42- concentrations compared with their gas-phase precursor (i.e., SO2), which could be mainly attributed to increased oxidant levels and pH-dependent cloud chemistry. An analysis of the trends in TNO3 concentrations indicated a 28 %–39 % and 29 % mean relative reduction in TNO3 concentrations for the full period for model data (range of all the models) and observations, respectively. Further analysis of the trends in modeled HNO3 and particle nitrate (NO3-) concentrations revealed that the relative reduction in HNO3 was larger than that for NO3- during the P1 period, which was mainly attributed to an increased availability of “free ammonia”. By contrast, trends in modeled HNO3 and NO3- concentrations were more comparable during the P2 period. Also, trends of TNHx concentrations were, in general, underpredicted by all models, with worse performance for the P1 period than for P2. Trends in modeled anthropogenic and biogenic secondary organic aerosol (ASOA and BSOA) concentrations together with the trends in available emissions of biogenic volatile organic compounds (BVOCs) were also investigated. A strong decrease in ASOA was indicated by all the models, following the reduction in anthropogenic non-methane VOC (NMVOC) precursors. Biogenic emission data provided by the modeling teams indicated a few areas with statistically significant increase in isoprene emissions and monoterpene emissions during the 1990–2010 period over Fennoscandia and eastern European regions (i.e., around 14 %–27 %), which was mainly attributed to the increase of surface temperature. However, the modeled BSOA concentrations did not linearly follow the increase in biogenic emissions. Finally, a comprehensive evaluation against positive matrix factorization (PMF) data, available during the second period (P2) at various European sites, revealed a systematic underestimation of the modeled SOA fractions of a factor of 3 to 11, on average, most likely because of missing SOA precursors and formation pathways, with reduced biases for the models that accounted for chemical aging of semi-volatile SOA components in the atmosphere.
APA, Harvard, Vancouver, ISO, and other styles
47

Nguyen, Q. T., M. K. Christensen, F. Cozzi, A. Zare, A. M. K. Hansen, K. Kristensen, T. E. Tulinius, et al. "Understanding the anthropogenic influence on formation of biogenic secondary organic aerosols via analysis of organosulfates and related oxidation products." Atmospheric Chemistry and Physics Discussions 14, no. 2 (January 27, 2014): 2449–98. http://dx.doi.org/10.5194/acpd-14-2449-2014.

Full text
Abstract:
Abstract. Anthropogenic emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx) may affect concentration levels and composition of biogenic secondary organic aerosols (BSOA) through photochemical reactions with biogenic organic precursors to form organosulfates and nitrooxy organosulfates. We investigated this influence in a field study from 19 May–22 June 2011 at two sampling sites in Denmark. Within the study, we identified a substantial number of organic acids, organosulfates and nitrooxy organosulfates in the ambient urban curbside and semi-rural background air. A high degree of correlation in concentrations was found among a group of specific organic acids, organosulfates and nitrooxy organosulfates, which may originate from various precursors, suggesting a common mechanism or factor affecting their concentration levels at the sites. It was proposed that the formation of those species most likely occurred on a larger spatial scale with the compounds being long-range transported to the sites on the days with highest concentrations. The origin of the long-range transported aerosols was investigated using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model in addition to modeled emissions of related precursors including isoprene and monoterpenes using the global Model of Emissions of Gases and Aerosols from Nature (MEGAN) and SO2 emissions using the European Monitoring and Evaluation Program (EMEP) database. The local impacts were also studied by examining the correlation between selected species which showed significantly enhanced concentrations at the urban curbside site and the local concentrations of various gases including SO2, ozone (O3), carbon monoxide (CO), NOx, aerosol acidity and other meteorological conditions. This investigation showed that an inter-play of the local parameters such as the aerosol acidity, NOx, relative humidity (RH), temperature and global radiation seemed to influence the concentration level of those species, via such as wet aerosol chemistry. The local impacts however seemed minor on the concentration levels of the studied compounds. The total concentrations of organosulfates and nitrooxy organosulfates contributed to approximately 0.7% of PM1 mass.
APA, Harvard, Vancouver, ISO, and other styles
48

Nguyen, Q. T., M. K. Christensen, F. Cozzi, A. Zare, A. M. K. Hansen, K. Kristensen, T. E. Tulinius, et al. "Understanding the anthropogenic influence on formation of biogenic secondary organic aerosols in Denmark via analysis of organosulfates and related oxidation products." Atmospheric Chemistry and Physics 14, no. 17 (September 1, 2014): 8961–81. http://dx.doi.org/10.5194/acp-14-8961-2014.

Full text
Abstract:
Abstract. Anthropogenic emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx) may affect concentration levels and composition of biogenic secondary organic aerosols (BSOA) through photochemical reactions with biogenic organic precursors to form organosulfates and nitrooxy organosulfates. We investigated this influence in a field study from 19 May to 22 June, 2011 at two sampling sites in Denmark. Within the study, we identified a substantial number of organic acids, organosulfates and nitrooxy organosulfates in the ambient urban curbside and semi-rural background air. A high degree of correlation in concentrations was found among a group of specific organic acids, organosulfates and nitrooxy organosulfates, which may originate from various precursors, suggesting a common mechanism or factor affecting their concentration levels at the sites. It was proposed that the formation of those species most likely occurred on a larger spatial scale, with the compounds being long-range transported to the sites on the days with the highest concentrations. The origin of the long-range transported aerosols was investigated using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model in addition to modeled emissions of related precursors, including isoprene and monoterpenes using the global Model of Emissions of Gases and Aerosols from Nature (MEGAN) and SO2 emissions using the European Monitoring and Evaluation Program (EMEP) database. The local impacts were also studied by examining the correlation between selected species, which showed significantly enhanced concentrations at the urban curbside site and the local concentrations of various gases, including SO2, ozone (O3), NOx, aerosol acidity and other meteorological conditions. This investigation showed that an inter-play of the local parameters such as the aerosol acidity, NOx, SO2, relative humidity (RH), temperature and global radiation seemed to affect the concentration level of those species, suggesting the influence of aqueous aerosol chemistry. The local impacts, however, seemed minor compared to the regional impacts. The total concentrations of organosulfates and nitrooxy organosulfates, on average, contributed to approximately 0.5–0.8% of PM1 mass at the two sampling sites.
APA, Harvard, Vancouver, ISO, and other styles
49

Cha, Yoo Lim, and Sun Hee Kim. "Morphological Effect on Electrochemical Properties of BaSnO3 as an Anode Material for Lithium Ion Batteries." Journal of Nanoscience and Nanotechnology 20, no. 9 (September 1, 2020): 5498–501. http://dx.doi.org/10.1166/jnn.2020.17623.

Full text
Abstract:
In this study, we investigated the electrochemical effects of morphological changes using BaSnO3 (BSO) of various shapes (columns, hollow rods, spheres) as anode materials for Li-ion batteries. The BSOs were prepared by hydrothermal method and their electrochemical properties were evaluated using galvanostataic charge/discharge and CV test. As a results, columnar BSO exhibits the best electrochemical properties, as an inert material, BaO can contribute to Li storage because of higher electrical conductivity. This results suggest that the formation of column shape can lead to improved electrochemical properties as anode materials of secondary battery.
APA, Harvard, Vancouver, ISO, and other styles
50

Nascimento, Janaína P., Megan M. Bela, Bruno B. Meller, Alessandro L. Banducci, Luciana V. Rizzo, Angel Liduvino Vara-Vela, Henrique M. J. Barbosa, et al. "Aerosols from anthropogenic and biogenic sources and their interactions – modeling aerosol formation, optical properties, and impacts over the central Amazon basin." Atmospheric Chemistry and Physics 21, no. 9 (May 5, 2021): 6755–79. http://dx.doi.org/10.5194/acp-21-6755-2021.

Full text
Abstract:
Abstract. The Green Ocean Amazon experiment – GoAmazon 2014–2015 – explored the interactions between natural biogenic forest emissions from central Amazonia and urban air pollution from Manaus. Previous GoAmazon 2014–2015 studies showed that nitrogen oxide (NOx = NO + NO2) and sulfur oxide (SOx) emissions from Manaus strongly interact with biogenic volatile organic compounds (BVOCs), affecting secondary organic aerosol (SOA) formation. In previous studies, ground-based and aircraft measurements provided evidence of SOA formation and strong changes in aerosol composition and properties. Aerosol optical properties also evolve, and their impacts on the Amazonian ecosystem can be significant. As particles age, some processes, such as SOA production, black carbon (BC) deposition, particle growth and the BC lensing effect change the aerosol optical properties, affecting the solar radiation flux at the surface. This study analyzes data and models SOA formation using the Weather Research and Forecasting with Chemistry (WRF-Chem) model to assess the spatial variability in aerosol optical properties as the Manaus plumes interact with the natural atmosphere. The following aerosol optical properties are investigated: single scattering albedo (SSA), asymmetry parameter (gaer), absorption Ångström exponent (AAE) and scattering Ångström exponent (SAE). These simulations were validated using ground-based measurements at three experimental sites, namely the Amazon Tall Tower Observatory – ATTO (T0a), downtown Manaus (T1), Tiwa Hotel (T2) and Manacapuru (T3), as well as the U.S. Department of Energy (DOE) Gulfstream 1 (G-1) aircraft flights. WRF-Chem simulations were performed over 7 d during March 2014. Results show a mean biogenic SOA (BSOA) mass enrichment of 512 % at the T1 site, 450 % in regions downwind of Manaus, such as the T3 site, and 850 % in areas north of the T3 site in simulations with anthropogenic emissions. The SOA formation is rather fast, with about 80 % of the SOA mass produced in 3–4 h. Comparing the plume from simulations with and without anthropogenic emissions, SSA shows a downwind reduction of approximately 10 %, 11 % and 6 % at the T1, T2 and T3 sites, respectively. Other regions, such as those further downwind of the T3 site, are also affected. The gaer values increased from 0.62 to 0.74 at the T1 site and from 0.67 to 0.72 at the T3 site when anthropogenic emissions are active. During the Manaus plume-aging process, a plume tracking analysis shows an increase in SSA from 0.91 close to Manaus to 0.98 160 km downwind of Manaus as a result of SOA production and BC deposition.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography