Journal articles on the topic 'Brownian dynamics'

To see the other types of publications on this topic, follow the link: Brownian dynamics.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Brownian dynamics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Sammüller, Florian, and Matthias Schmidt. "Adaptive Brownian Dynamics." Journal of Chemical Physics 155, no. 13 (October 7, 2021): 134107. http://dx.doi.org/10.1063/5.0062396.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ma, Lina, Xiantao Li, and Chun Liu. "From generalized Langevin equations to Brownian dynamics and embedded Brownian dynamics." Journal of Chemical Physics 145, no. 11 (September 21, 2016): 114102. http://dx.doi.org/10.1063/1.4962419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bang, Jong-Geun, and Yoong-Sup Yoon. "Analysis of Filtration Performance by Brownian Dynamics." Transactions of the Korean Society of Mechanical Engineers B 33, no. 10 (October 1, 2009): 811–19. http://dx.doi.org/10.3795/ksme-b.2009.33.10.811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Erban, Radek. "From molecular dynamics to Brownian dynamics." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470, no. 2167 (July 8, 2014): 20140036. http://dx.doi.org/10.1098/rspa.2014.0036.

Full text
Abstract:
Three coarse-grained molecular dynamics (MD) models are investigated with the aim of developing and analysing multi-scale methods which use MD simulations in parts of the computational domain and (less detailed) Brownian dynamics (BD) simulations in the remainder of the domain. The first MD model is formulated in one spatial dimension. It is based on elastic collisions of heavy molecules (e.g. proteins) with light point particles (e.g. water molecules). Two three-dimensional MD models are then investigated. The obtained results are applied to a simplified model of protein binding to receptors on the cellular membrane. It is shown that modern BD simulators of intracellular processes can be used in the bulk and accurately coupled with a (more detailed) MD model of protein binding which is used close to the membrane.
APA, Harvard, Vancouver, ISO, and other styles
5

Geyer, T., C. Gorba, and V. Helms. "Interfacing Brownian dynamics simulations." Journal of Chemical Physics 120, no. 10 (March 8, 2004): 4573–80. http://dx.doi.org/10.1063/1.1647522.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Donev, Aleksandar, Chiao-Yu Yang, and Changho Kim. "Efficient reactive Brownian dynamics." Journal of Chemical Physics 148, no. 3 (January 21, 2018): 034103. http://dx.doi.org/10.1063/1.5009464.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fradon, Myriam. "Brownian Dynamics of Globules." Electronic Journal of Probability 15 (2010): 142–61. http://dx.doi.org/10.1214/ejp.v15-739.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Poelert, Sander L., Harrie Weinans, and Amir A. Zadpoor. "BROWNIAN DYNAMICS OF MICROTUBULES." Journal of Biomechanics 45 (July 2012): S440. http://dx.doi.org/10.1016/s0021-9290(12)70441-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

WHITE, TOBY O., GIOVANNI CICCOTT, and JEAN-PIERRE HANSEN. "Brownian dynamics with constraints." Molecular Physics 99, no. 24 (December 20, 2001): 2023–36. http://dx.doi.org/10.1080/00268970110090854.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

RICCI, ANDREA, and GIOVANNI CICCOTTI. "Algorithms for Brownian dynamics." Molecular Physics 101, no. 12 (June 20, 2003): 1927–31. http://dx.doi.org/10.1080/0026897031000108113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Vacchini, Bassano. "Brownian Motion: the Quantum Perspective." Zeitschrift für Naturforschung A 56, no. 1-2 (February 1, 2001): 230–34. http://dx.doi.org/10.1515/zna-2001-0143.

Full text
Abstract:
AbstractWe briefly go through the problem of the quantum description of Brownian motion, concentrating on recent results about the connection between the dynamics of the particle and dynamic structure factor of the medium. - 05.40.Jc, 05.30.Fk, 05.30.Jp, 03.65.Yz
APA, Harvard, Vancouver, ISO, and other styles
12

Delong, Steven, Florencio Balboa Usabiaga, Rafael Delgado-Buscalioni, Boyce E. Griffith, and Aleksandar Donev. "Brownian dynamics without Green's functions." Journal of Chemical Physics 140, no. 13 (April 7, 2014): 134110. http://dx.doi.org/10.1063/1.4869866.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Brańka, A. C., and D. M. Heyes. "Algorithms for Brownian dynamics simulation." Physical Review E 58, no. 2 (August 1, 1998): 2611–15. http://dx.doi.org/10.1103/physreve.58.2611.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Randrup, Jørgen, and Peter Möller. "Brownian shape dynamics in fission." EPJ Web of Conferences 63 (2013): 02009. http://dx.doi.org/10.1051/epjconf/20136302009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Fixman, Marshall. "Brownian dynamics of chain polymers." Faraday Discussions of the Chemical Society 83 (1987): 199. http://dx.doi.org/10.1039/dc9878300199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Lobaskin, V., D. Lobaskin, and I. M. Kulić. "Brownian dynamics of a microswimmer." European Physical Journal Special Topics 157, no. 1 (April 2008): 149–56. http://dx.doi.org/10.1140/epjst/e2008-00637-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Randrup, J., and P. Möller. "Brownian Shape Dynamics in Fission." Physics Procedia 47 (2013): 3–9. http://dx.doi.org/10.1016/j.phpro.2013.06.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Knapp, E. W. "Dynamics of hierarchical Brownian oscillators." Physical Review B 38, no. 14 (November 15, 1988): 9474–82. http://dx.doi.org/10.1103/physrevb.38.9474.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Biswas, Parbati, and Binny J. Cherayil. "Dynamics of Fractional Brownian Walks." Journal of Physical Chemistry 99, no. 2 (January 1995): 816–21. http://dx.doi.org/10.1021/j100002a052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Shin, Hyun Kyung, Changho Kim, Peter Talkner, and Eok Kyun Lee. "Brownian motion from molecular dynamics." Chemical Physics 375, no. 2-3 (October 2010): 316–26. http://dx.doi.org/10.1016/j.chemphys.2010.05.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Ermakova, Elena. "Lysozyme dimerization: brownian dynamics simulation." Journal of Molecular Modeling 12, no. 1 (August 18, 2005): 34–41. http://dx.doi.org/10.1007/s00894-005-0001-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Oettinger, Hans Christian. "Variance Reduced Brownian Dynamics Simulations." Macromolecules 27, no. 12 (June 1994): 3415–23. http://dx.doi.org/10.1021/ma00090a041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

HEYES, D. M., and A. C. BRANKA. "Monte Carlo as Brownian dynamics." Molecular Physics 94, no. 3 (June 20, 1998): 447–54. http://dx.doi.org/10.1080/00268979809482337.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

D. M. HEYES A. C. BRANKA. "Monte Carlo as Brownian dynamics." Molecular Physics 94, no. 3 (June 1998): 447–54. http://dx.doi.org/10.1080/002689798167953.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

HEYES, D. M., and A. C. BRAŃKA. "More efficient Brownian dynamics algorithms." Molecular Physics 98, no. 23 (December 10, 2000): 1949–60. http://dx.doi.org/10.1080/00268970009483398.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

M. Heyes, A. C. Bra ` ka, D. "More efficient Brownian dynamics algorithms." Molecular Physics 98, no. 23 (December 10, 2000): 1949–60. http://dx.doi.org/10.1080/002689700750036962.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Kneller, G. R., and K. Hinsen. "Fractional Brownian dynamics in proteins." Journal of Chemical Physics 121, no. 20 (November 22, 2004): 10278–83. http://dx.doi.org/10.1063/1.1806134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Löwen, Hartmut. "Brownian dynamics of hard spherocylinders." Physical Review E 50, no. 2 (August 1, 1994): 1232–42. http://dx.doi.org/10.1103/physreve.50.1232.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Banchio, Adolfo J., and John F. Brady. "Accelerated Stokesian dynamics: Brownian motion." Journal of Chemical Physics 118, no. 22 (June 8, 2003): 10323–32. http://dx.doi.org/10.1063/1.1571819.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Ennis, J., and Denis J. Evans. "Configurational Temperature for Brownian Dynamics." Molecular Simulation 26, no. 2 (February 2001): 147–55. http://dx.doi.org/10.1080/08927020108023013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Tsekov, Roumen, and Eli Ruckenstein. "Brownian dynamics in amorphous solids." Journal of Chemical Physics 101, no. 9 (November 1994): 7844–49. http://dx.doi.org/10.1063/1.468209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Toroczkai, Z., G. Korniss, B. Schmittmann, and R. K. P. Zia. "Brownian-vacancy–mediated disordering dynamics." Europhysics Letters (EPL) 40, no. 3 (November 1, 1997): 281–86. http://dx.doi.org/10.1209/epl/i1997-00461-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Smith, E. R., I. K. Snook, and W. Van Megen. "Hydrodynamic interactions in Brownian dynamics." Physica A: Statistical Mechanics and its Applications 143, no. 3 (June 1987): 441–67. http://dx.doi.org/10.1016/0378-4371(87)90160-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Beck, Christian. "Brownian motion from deterministic dynamics." Physica A: Statistical Mechanics and its Applications 169, no. 2 (November 1990): 324–36. http://dx.doi.org/10.1016/0378-4371(90)90173-p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Echenausía-Monroy, José Luis, Eric Campos, Rider Jaimes-Reátegui, Juan Hugo García-López, and Guillermo Huerta-Cuellar. "Deterministic Brownian-like Motion: Electronic Approach." Electronics 11, no. 18 (September 17, 2022): 2949. http://dx.doi.org/10.3390/electronics11182949.

Full text
Abstract:
Brownian motion is a dynamic behavior with random changes over time (stochastic) that occurs in many vital functions related to fluid environments, stock behavior, or even renewable energy generation. In this paper, we present a circuit implementation that reproduces Brownian motion based on a fully deterministic set of differential equations. The dynamics of the electronic circuit are characterized using four well-known metrics of Brownian motion, namely: (i) Detrended Fluctuation Analysis (DFA), (ii) power law in the power spectrum, (iii) normal probability distribution, and (iv) Mean Square Displacement (MSD); where traditional Brownian motion exhibits linear time growth of the MSD, a Gaussian distribution, a −2 power law of the frequency spectrum, and DFA values close to 1.5. The obtained results show that for a certain combination of values in the deterministic model, the dynamics in the electronic circuit are consistent with the expectations for a stochastic Brownian behavior. The presented electronic circuit improves the study of Brownian behavior by eliminating the stochastic component, allowing reproducibility of the results through fully deterministic equations, and enabling the generation of physical signals (analog electronic signals) with Brownian-like properties with potential applications in fields such as medicine, economics, genetics, and communications, to name a few.
APA, Harvard, Vancouver, ISO, and other styles
36

Lillian, Todd D., David Bell, and Justin Polk. "Supercoil Dynamics along Stretched DNA by Brownian Dynamics." Biophysical Journal 106, no. 2 (January 2014): 277a. http://dx.doi.org/10.1016/j.bpj.2013.11.1624.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Lemak, A. S., and N. K. Balabaev. "A Comparison Between Collisional Dynamics and Brownian Dynamics." Molecular Simulation 15, no. 4 (September 1995): 223–31. http://dx.doi.org/10.1080/08927029508022336.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Braun, Marco, Alois Würger, and Frank Cichos. "Trapping of single nano-objects in dynamic temperature fields." Phys. Chem. Chem. Phys. 16, no. 29 (2014): 15207–13. http://dx.doi.org/10.1039/c4cp01560f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

FRADON, MYRIAM, and SYLVIE RŒLLY. "INFINITELY MANY BROWNIAN GLOBULES WITH BROWNIAN RADII." Stochastics and Dynamics 10, no. 04 (December 2010): 591–612. http://dx.doi.org/10.1142/s021949371000311x.

Full text
Abstract:
We consider an infinite system of non-overlapping globules undergoing Brownian motions in ℝ3. The term globules means that the objects we are dealing with are spherical, but with a radius which is random and time-dependent. The dynamics is modelized by an infinite-dimensional stochastic differential equation with local time. Existence and uniqueness of a strong solution is proven for such an equation with fixed deterministic initial condition. We also find a class of reversible measures.
APA, Harvard, Vancouver, ISO, and other styles
40

Phung, Thanh N., John F. Brady, and Georges Bossis. "Stokesian Dynamics simulation of Brownian suspensions." Journal of Fluid Mechanics 313 (April 25, 1996): 181–207. http://dx.doi.org/10.1017/s0022112096002170.

Full text
Abstract:
The non-equilibrium behaviour of concentrated colloidal dispersions is studied by Stokesian Dynamics, a general molecular-dynamics-like technique for simulating particles suspended in a viscous fluid. The simulations are of a suspension of monodisperse Brownian hard spheres in simple shear flow as a function of the Péclet number, Pe, which measures the relative importance of shear and Brownian forces. Three clearly defined regions of behaviour are revealed. There is first a Brownian-motion-dominated regime (Pe ≤ 1) where departures from equilibrium in structure and diffusion are small, but the suspension viscosity shear thins dramatically. When the Brownian and hydrodynamic forces balance (Pe ≈ 10), the dispersion forms a new ‘phase’ with the particles aligned in ‘strings’ along the flow direction and the strings are arranged hexagonally. This flow-induced ordering persists over a range of Pe and, while the structure and diffusivity now vary considerably, the rheology remains unchanged. Finally, there is a hydrodynamically dominated regime (Pe > 200) with a dramatic change in the long-time self-diffusivity and the rheology. Here, as the Péclet number increases the suspension shear thickens owing to the formation of large clusters. The simulation results are shown to agree well with experiment.
APA, Harvard, Vancouver, ISO, and other styles
41

Arkar, Kyaw, Mikhail M. Vasiliev, Oleg F. Petrov, Evgenii A. Kononov, and Fedor M. Trukhachev. "Dynamics of Active Brownian Particles in Plasma." Molecules 26, no. 3 (January 21, 2021): 561. http://dx.doi.org/10.3390/molecules26030561.

Full text
Abstract:
Experimental data on the active Brownian motion of single particles in the RF (radio-frequency) discharge plasma under the influence of thermophoretic force, induced by laser radiation, depending on the material and type of surface of the particle, are presented. Unlike passive Brownian particles, active Brownian particles, also known as micro-swimmers, move directionally. It was shown that different dust particles in gas discharge plasma can convert the energy of a surrounding medium (laser radiation) into the kinetic energy of motion. The movement of the active particle is a superposition of chaotic motion and self-propulsion.
APA, Harvard, Vancouver, ISO, and other styles
42

Bley, Michael, Pablo I. Hurtado, Joachim Dzubiella, and Arturo Moncho-Jordá. "Active interaction switching controls the dynamic heterogeneity of soft colloidal dispersions." Soft Matter 18, no. 2 (2022): 397–411. http://dx.doi.org/10.1039/d1sm01507a.

Full text
Abstract:
We employ Reactive Dynamical Density Functional Theory, Reactive Brownian Dynamics simulations and a Continuous Time Random Walk model to study the heterogeneous dynamics of active soft colloids that switch between two states with different mobility.
APA, Harvard, Vancouver, ISO, and other styles
43

He, Siqian, and Harold A. Scheraga. "Brownian dynamics simulations of protein folding." Journal of Chemical Physics 108, no. 1 (January 1998): 287–300. http://dx.doi.org/10.1063/1.475379.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Bauer, Wolfgang R., and Walter Nadler. "Dynamics and efficiency of Brownian rotors." Journal of Chemical Physics 129, no. 22 (December 14, 2008): 225103. http://dx.doi.org/10.1063/1.3026736.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Urbina-Villalba, German, and Máximo García-Sucre. "Brownian Dynamics Simulation of Emulsion Stability." Langmuir 16, no. 21 (October 2000): 7975–85. http://dx.doi.org/10.1021/la000405x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Cates, M. E. "Brownian dynamics of self-similar macromolecules." Journal de Physique 46, no. 7 (1985): 1059–77. http://dx.doi.org/10.1051/jphys:019850046070105900.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Åkesson, Torbjörn, and Bo Jönsson. "Brownian dynamics simulation of interacting particles." Molecular Physics 54, no. 2 (February 10, 1985): 369–81. http://dx.doi.org/10.1080/00268978500100291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Wajnryb, E., P. Szymczak, and B. Cichocki. "Brownian dynamics: divergence of mobility tensor." Physica A: Statistical Mechanics and its Applications 335, no. 3-4 (April 2004): 339–58. http://dx.doi.org/10.1016/j.physa.2003.12.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Nyland, Gunnar H., Paal Skjetne, Arne Mikkelsen, and Arnljot Elgsaeter. "Brownian dynamics simulation of needle chains." Journal of Chemical Physics 105, no. 3 (July 15, 1996): 1198–207. http://dx.doi.org/10.1063/1.471941.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Sottas, Pierre-Edouard, Eric Larquet, Andrzej Stasiak, and Jacques Dubochet. "Brownian Dynamics Simulation of DNA Condensation." Biophysical Journal 77, no. 4 (October 1999): 1858–70. http://dx.doi.org/10.1016/s0006-3495(99)77029-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography