To see the other types of publications on this topic, follow the link: Brownian dynamics simulations (BDS).

Journal articles on the topic 'Brownian dynamics simulations (BDS)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Brownian dynamics simulations (BDS).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

GUPTA, V. K. "BROWNIAN DYNAMICS SIMULATION OF CATCH TO SLIP TRANSITION OVER A MODEL ENERGY LANDSCAPE." Journal of Biological Systems 24, no. 02n03 (June 2016): 275–93. http://dx.doi.org/10.1142/s0218339016500145.

Full text
Abstract:
We perform Brownian dynamics simulation (BDS) of catch to slip transition over a model energy landscape. Through our BDS we demonstrate that for forces below the critical force the bond rupture occurs mostly through the catch pathway while for forces above the critical force the bond rupture occurs mostly through the slip pathway. We also demonstrate that the shoulder in the bond rupture force distribution switches to peak as the loading rate increases progressively and the bond lifetime is maximized at the model dependent critical force. The force dependent bond lifetime obtained via transforming the bond rupture force distribution at a given loading rate is in excellent agreement with that obtained from our BDS at constant forces. An alternative to the current mechanism of catch to slip transition is presented and validated through BDS.
APA, Harvard, Vancouver, ISO, and other styles
2

Geyer, T., C. Gorba, and V. Helms. "Interfacing Brownian dynamics simulations." Journal of Chemical Physics 120, no. 10 (March 8, 2004): 4573–80. http://dx.doi.org/10.1063/1.1647522.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Oettinger, Hans Christian. "Variance Reduced Brownian Dynamics Simulations." Macromolecules 27, no. 12 (June 1994): 3415–23. http://dx.doi.org/10.1021/ma00090a041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Huber, Gary A., and J. Andrew McCammon. "Brownian Dynamics Simulations of Biological Molecules." Trends in Chemistry 1, no. 8 (November 2019): 727–38. http://dx.doi.org/10.1016/j.trechm.2019.07.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

He, Siqian, and Harold A. Scheraga. "Brownian dynamics simulations of protein folding." Journal of Chemical Physics 108, no. 1 (January 1998): 287–300. http://dx.doi.org/10.1063/1.475379.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Erban, Radek. "From molecular dynamics to Brownian dynamics." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470, no. 2167 (July 8, 2014): 20140036. http://dx.doi.org/10.1098/rspa.2014.0036.

Full text
Abstract:
Three coarse-grained molecular dynamics (MD) models are investigated with the aim of developing and analysing multi-scale methods which use MD simulations in parts of the computational domain and (less detailed) Brownian dynamics (BD) simulations in the remainder of the domain. The first MD model is formulated in one spatial dimension. It is based on elastic collisions of heavy molecules (e.g. proteins) with light point particles (e.g. water molecules). Two three-dimensional MD models are then investigated. The obtained results are applied to a simplified model of protein binding to receptors on the cellular membrane. It is shown that modern BD simulators of intracellular processes can be used in the bulk and accurately coupled with a (more detailed) MD model of protein binding which is used close to the membrane.
APA, Harvard, Vancouver, ISO, and other styles
7

Wade, R. C. "Brownian dynamics simulations of enzyme-substrate encounter." Biochemical Society Transactions 24, no. 1 (February 1, 1996): 254–59. http://dx.doi.org/10.1042/bst0240254.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Lei, Ronald G. Larson, and Tam Sridhar. "Brownian dynamics simulations of dilute polystyrene solutions." Journal of Rheology 44, no. 2 (March 2000): 291–322. http://dx.doi.org/10.1122/1.551087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Meng, Xuan-Yu, Yu Xu, Hong-Xing Zhang, Mihaly Mezei, and Meng Cui. "Predicting Protein Interactions by Brownian Dynamics Simulations." Journal of Biomedicine and Biotechnology 2012 (2012): 1–11. http://dx.doi.org/10.1155/2012/121034.

Full text
Abstract:
We present a newly adapted Brownian-Dynamics (BD)-based protein docking method for predicting native protein complexes. The approach includes global BD conformational sampling, compact complex selection, and local energy minimization. In order to reduce the computational costs for energy evaluations, a shell-based grid force field was developed to represent the receptor protein and solvation effects. The performance of this BD protein docking approach has been evaluated on a test set of 24 crystal protein complexes. Reproduction of experimental structures in the test set indicates the adequate conformational sampling and accurate scoring of this BD protein docking approach. Furthermore, we have developed an approach to account for the flexibility of proteins, which has been successfully applied to reproduce the experimental complex structure from the structure of two unbounded proteins. These results indicate that this adapted BD protein docking approach can be useful for the prediction of protein-protein interactions.
APA, Harvard, Vancouver, ISO, and other styles
10

BRAŃKA, ARKADIUSZ C. "ON ALGORITHMS FOR BROWNIAN DYNAMICS COMPUTER SIMULATIONS." Computational Methods in Science and Technology 4, no. 1 (1998): 35–42. http://dx.doi.org/10.12921/cmst.1998.04.01.35-42.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Cass, M. J., D. M. Heyes, and R. J. English. "Brownian Dynamics Simulations of Associating Diblock Copolymers." Langmuir 23, no. 12 (June 2007): 6576–87. http://dx.doi.org/10.1021/la063210j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Huertas de la Torre, Marisa, Riccardo Forni, and Giuseppe Chirico. "Brownian dynamics simulations of fluorescence fluctuation spectroscopy." European Biophysics Journal 30, no. 2 (May 11, 2001): 129–39. http://dx.doi.org/10.1007/s002490000117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

DÜNWEG, BURKHARD, and WOLFGANG PAUL. "BROWNIAN DYNAMICS SIMULATIONS WITHOUT GAUSSIAN RANDOM NUMBERS." International Journal of Modern Physics C 02, no. 03 (September 1991): 817–27. http://dx.doi.org/10.1142/s0129183191001037.

Full text
Abstract:
We point out that in a Brownian dynamics simulation it is justified to use arbitrary distribution functions of random numbers if the moments exhibit the correct limiting behavior prescribed by the Fokker-Planck equation. Our argument is supported by a simple analytical consideration and some numerical examples: We simulate the Wiener process, the Ornstein-Uhlenbeck process and the diffusion in a Φ4 potential, using both Gaussian and uniform random numbers. In these examples, the rate of convergence of the mean first exit time is found to be nearly identical for both types of random numbers.
APA, Harvard, Vancouver, ISO, and other styles
14

Suman, Balram, and Satish Kumar. "Brownian dynamics simulations of hydrophobic dendrimer adsorption." Molecular Simulation 35, no. 1-2 (January 2009): 38–49. http://dx.doi.org/10.1080/08927020802191966.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Podtelezhnikov, Alexei, and Alexander Vologodskii. "Simulations of Polymer Cyclization by Brownian Dynamics." Macromolecules 30, no. 21 (October 1997): 6668–73. http://dx.doi.org/10.1021/ma970391a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Wijmans, Christopher M., and Eric Dickinson. "Brownian dynamics simulations of filled particle gels." Journal of the Chemical Society, Faraday Transactions 94, no. 1 (1998): 129–37. http://dx.doi.org/10.1039/a706632e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Berger, Jeffrey W., and Jane M. Vanderkooi. "Brownian dynamics simulations of intramolecular energy transfer." Biophysical Chemistry 30, no. 3 (July 1988): 257–69. http://dx.doi.org/10.1016/0301-4622(88)85021-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Sanyal, Subrata, and Ajay K. Sood. "Relaxation dynamics in dense binary colloidal mixtures: Brownian dynamics simulations." Physical Review E 57, no. 1 (January 1, 1998): 908–23. http://dx.doi.org/10.1103/physreve.57.908.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

van den Noort, A., and W. J. Briels. "Brownian dynamics simulations of concentration coupled shear banding." Journal of Non-Newtonian Fluid Mechanics 152, no. 1-3 (June 2008): 148–55. http://dx.doi.org/10.1016/j.jnnfm.2007.11.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Adolf, David B., and Mark D. Ediger. "Brownian dynamics simulations of local motions in polyisoprene." Macromolecules 24, no. 21 (October 1991): 5834–42. http://dx.doi.org/10.1021/ma00021a018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Azevedo, T. N., and L. G. Rizzi. "Microrheology of filament networks from Brownian dynamics simulations." Journal of Physics: Conference Series 1483 (February 2020): 012001. http://dx.doi.org/10.1088/1742-6596/1483/1/012001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Chang, Rakwoo, and Arun Yethiraj. "Brownian dynamics simulations of salt-free polyelectrolyte solutions." Journal of Chemical Physics 116, no. 12 (2002): 5284. http://dx.doi.org/10.1063/1.1453396.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Guo, Kunkun, Julian Shillcock, and Reinhard Lipowsky. "Treadmilling of actin filaments via Brownian dynamics simulations." Journal of Chemical Physics 133, no. 15 (October 21, 2010): 155105. http://dx.doi.org/10.1063/1.3497001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Lyulin, Alexey V., Geoffrey R. Davies, and David B. Adolf. "Brownian Dynamics Simulations of Dendrimers under Shear Flow." Macromolecules 33, no. 9 (May 2000): 3294–304. http://dx.doi.org/10.1021/ma992128a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Brańka, A. C., and D. M. Heyes. "Algorithms for Brownian dynamics computer simulations: Multivariable case." Physical Review E 60, no. 2 (August 1, 1999): 2381–87. http://dx.doi.org/10.1103/physreve.60.2381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Xu, Yueyi, and Micah J. Green. "Brownian dynamics simulations of nanosheet solutions under shear." Journal of Chemical Physics 141, no. 2 (July 14, 2014): 024905. http://dx.doi.org/10.1063/1.4884821.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Zakharov, P. N., N. A. Abrashitova, A. V. Shmatok, V. O. Ryzhikh, N. B. Gudimchuk, and F. I. Ataullakhanov. "PGA HPC Implementation of Microtubule Brownian Dynamics Simulations." Proceedings of the Institute for System Programming of the RAS 28, no. 3 (2016): 241–66. http://dx.doi.org/10.15514/ispras-2016-28(3)-15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Ilie, Ioana M., Wouter K. den Otter, and Wim J. Briels. "Rotational Brownian Dynamics simulations of clathrin cage formation." Journal of Chemical Physics 141, no. 6 (August 14, 2014): 065101. http://dx.doi.org/10.1063/1.4891306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Potter, Michael J., Brock Luty, Huan-Xiang Zhou, and J. Andrew McCammon. "Time-Dependent Rate Coefficients from Brownian Dynamics Simulations." Journal of Physical Chemistry 100, no. 12 (January 1996): 5149–54. http://dx.doi.org/10.1021/jp953229n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Yu, Wenbin, Chung F. Wong, and John Zhang. "Brownian Dynamics Simulations of Polyalanine in Salt Solutions." Journal of Physical Chemistry 100, no. 37 (January 1996): 15280–89. http://dx.doi.org/10.1021/jp960124r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Xiao, C., and D. M. Heyes. "Brownian dynamics simulations of attractive polymers in solution." Journal of Chemical Physics 117, no. 5 (August 2002): 2377–88. http://dx.doi.org/10.1063/1.1488928.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Carpen, Ileana C., and John F. Brady. "Microrheology of colloidal dispersions by Brownian dynamics simulations." Journal of Rheology 49, no. 6 (November 2005): 1483–502. http://dx.doi.org/10.1122/1.2085174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Kenward, Martin, and Kevin D. Dorfman. "Brownian dynamics simulations of single-stranded DNA hairpins." Journal of Chemical Physics 130, no. 9 (March 7, 2009): 095101. http://dx.doi.org/10.1063/1.3078795.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Heyes, D. M., and J. R. Melrose. "Brownian Dynamics Simulations of Electro-Rheological Fluids, II." Molecular Simulation 5, no. 5 (December 1990): 293–306. http://dx.doi.org/10.1080/08927029008022415.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Torres-Díaz, I., and C. Rinaldi. "Brownian dynamics simulations of ellipsoidal magnetizable particle suspensions." Journal of Physics D: Applied Physics 47, no. 23 (May 13, 2014): 235003. http://dx.doi.org/10.1088/0022-3727/47/23/235003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Heyes, D. M., and J. R. Melrose. "Brownian dynamics simulations of model hard-sphere suspensions." Journal of Non-Newtonian Fluid Mechanics 46, no. 1 (January 1993): 1–28. http://dx.doi.org/10.1016/0377-0257(93)80001-r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Perlmutter, Jason D., and Michael F. Hagan. "Brownian Dynamics Simulations of Polymer Mediated Capsid Assembly." Biophysical Journal 104, no. 2 (January 2013): 413a—414a. http://dx.doi.org/10.1016/j.bpj.2012.11.2305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Erban, Radek. "Coupling all-atom molecular dynamics simulations of ions in water with Brownian dynamics." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 472, no. 2186 (February 2016): 20150556. http://dx.doi.org/10.1098/rspa.2015.0556.

Full text
Abstract:
Molecular dynamics (MD) simulations of ions (K + , Na + , Ca 2+ and Cl − ) in aqueous solutions are investigated. Water is described using the SPC/E model. A stochastic coarse-grained description for ion behaviour is presented and parametrized using MD simulations. It is given as a system of coupled stochastic and ordinary differential equations, describing the ion position, velocity and acceleration. The stochastic coarse-grained model provides an intermediate description between all-atom MD simulations and Brownian dynamics (BD) models. It is used to develop a multiscale method which uses all-atom MD simulations in parts of the computational domain and (less detailed) BD simulations in the remainder of the domain.
APA, Harvard, Vancouver, ISO, and other styles
39

Corry, Ben, Matthew Hoyles, Toby W. Allen, Michael Walker, Serdar Kuyucak, and Shin-Ho Chung. "Reservoir Boundaries in Brownian Dynamics Simulations of Ion Channels." Biophysical Journal 82, no. 4 (April 2002): 1975–84. http://dx.doi.org/10.1016/s0006-3495(02)75546-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Chirico, G., and J. Langowski. "Brownian dynamics simulations of supercoiled DNA with bent sequences." Biophysical Journal 71, no. 2 (August 1996): 955–71. http://dx.doi.org/10.1016/s0006-3495(96)79299-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Huber, G. A., and S. Kim. "Weighted-ensemble Brownian dynamics simulations for protein association reactions." Biophysical Journal 70, no. 1 (January 1996): 97–110. http://dx.doi.org/10.1016/s0006-3495(96)79552-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Nissfolk, Jarl, Tobias Ekholm, and Christer Elvingson. "Brownian dynamics simulations on a hypersphere in 4-space." Journal of Chemical Physics 119, no. 13 (October 2003): 6423–32. http://dx.doi.org/10.1063/1.1603729.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Jardat, M., O. Bernard, C. Treiner, G. R. Kneller, and P. Turq. "Dynamical properties of electrolyte solutions from Brownian dynamics simulations." Le Journal de Physique IV 10, PR5 (March 2000): Pr5–113—Pr5–116. http://dx.doi.org/10.1051/jp4:2000514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Heyes, D. M., and A. C. Branka. "Brownian Dynamics Simulations of Model Near-Hard-Sphere Suspensions." Physics and Chemistry of Liquids 26, no. 3 (October 1993): 153–60. http://dx.doi.org/10.1080/00319109308030658.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Lipková, Jana, Konstantinos C. Zygalakis, S. Jonathan Chapman, and Radek Erban. "Analysis of Brownian Dynamics Simulations of Reversible Bimolecular Reactions." SIAM Journal on Applied Mathematics 71, no. 3 (January 2011): 714–30. http://dx.doi.org/10.1137/100794213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Fiore, Andrew M., Florencio Balboa Usabiaga, Aleksandar Donev, and James W. Swan. "Rapid sampling of stochastic displacements in Brownian dynamics simulations." Journal of Chemical Physics 146, no. 12 (March 28, 2017): 124116. http://dx.doi.org/10.1063/1.4978242.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Mielke, Steven P., Craig J. Benham, and Niels Grønbech-Jensen. "Persistence Lengths of DNA Obtained from Brownian Dynamics Simulations†." Journal of Physical Chemistry A 113, no. 16 (April 23, 2009): 4213–16. http://dx.doi.org/10.1021/jp8107599.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Vigilante, Wyatt, Oscar Lopez, and Jerome Fung. "Brownian dynamics simulations of sphere clusters in optical tweezers." Optics Express 28, no. 24 (November 13, 2020): 36131. http://dx.doi.org/10.1364/oe.409078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Lyulin, Alexey V., David B. Adolf, and Geoffrey R. Davies. "Brownian dynamics simulations of linear polymers under shear flow." Journal of Chemical Physics 111, no. 2 (July 8, 1999): 758–71. http://dx.doi.org/10.1063/1.479355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Segovia-Gutiérrez, Juan Pablo, Juan de Vicente, Roque Hidalgo-Álvarez, and Antonio M. Puertas. "Brownian dynamics simulations in magnetorheology and comparison with experiments." Soft Matter 9, no. 29 (2013): 6970. http://dx.doi.org/10.1039/c3sm00137g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography