Journal articles on the topic 'Brittle Metallic Glasses'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Brittle Metallic Glasses.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Sun, Y. H. "Inverse ductile–brittle transition in metallic glasses?" Materials Science and Technology 31, no. 6 (October 10, 2014): 635–50. http://dx.doi.org/10.1179/1743284714y.0000000684.
Full textZhao, J. X., R. T. Qu, F. F. Wu, Z. F. Zhang, B. L. Shen, M. Stoica, and J. Eckert. "Fracture mechanism of some brittle metallic glasses." Journal of Applied Physics 105, no. 10 (May 15, 2009): 103519. http://dx.doi.org/10.1063/1.3129313.
Full textDing, Rui Xian, Sheng Zhong Kou, Jian Jun Fan, and Ye Jiang. "Effect of Raw Material Purity on Structure and Properties of Metallic Glasses." Materials Science Forum 1035 (June 22, 2021): 759–67. http://dx.doi.org/10.4028/www.scientific.net/msf.1035.759.
Full textLee, Min Ha, Joong Hwan Jun, and Jürgen Eckert. "Effect of Residual Stress on Mechanical Property of Monolithic Bulk Metallic Glass." Materials Science Forum 654-656 (June 2010): 1050–53. http://dx.doi.org/10.4028/www.scientific.net/msf.654-656.1050.
Full textGuo, S. F., J. L. Qiu, P. Yu, S. H. Xie, and W. Chen. "Fe-based bulk metallic glasses: Brittle or ductile?" Applied Physics Letters 105, no. 16 (October 20, 2014): 161901. http://dx.doi.org/10.1063/1.4899124.
Full textQiao, J. W., M. M. Meng, Z. H. Wang, C. J. Huang, R. Li, Y. S. Wang, H. J. Yang, Y. Zhang, and L. F. Li. "Scattering mechanical performances for brittle bulk metallic glasses." AIP Advances 4, no. 11 (November 2014): 117107. http://dx.doi.org/10.1063/1.4901280.
Full textMurali, P., R. Narasimhan, T. F. Guo, Y. W. Zhang, and H. J. Gao. "Shear bands mediate cavitation in brittle metallic glasses." Scripta Materialia 68, no. 8 (April 2013): 567–70. http://dx.doi.org/10.1016/j.scriptamat.2012.11.038.
Full textYu, P., Y. H. Liu, G. Wang, H. Y. Bai, and W. H. Wang. "Enhance plasticity of bulk metallic glasses by geometric confinement." Journal of Materials Research 22, no. 9 (September 2007): 2384–88. http://dx.doi.org/10.1557/jmr.2007.0318.
Full textHofmann, Douglas C., and William L. Johnson. "Improving Ductility in Nanostructured Materials and Metallic Glasses: “Three Laws”." Materials Science Forum 633-634 (November 2009): 657–63. http://dx.doi.org/10.4028/www.scientific.net/msf.633-634.657.
Full textAkçay, F. A. "Structural Characteristic Length in Metallic Glasses." Journal of Mechanics 36, no. 2 (January 20, 2020): 255–64. http://dx.doi.org/10.1017/jmech.2019.64.
Full textYang, Guan-Nan, Yang Shao, and Ke-Fu Yao. "Understanding the Fracture Behaviors of Metallic Glasses—An Overview." Applied Sciences 9, no. 20 (October 12, 2019): 4277. http://dx.doi.org/10.3390/app9204277.
Full textHuang, X., Z. Ling, and L. H. Dai. "Ductile-to-brittle transition in spallation of metallic glasses." Journal of Applied Physics 116, no. 14 (October 14, 2014): 143503. http://dx.doi.org/10.1063/1.4897552.
Full textPan, D. G., H. F. Zhang, A. M. Wang, Z. G. Wang, and Z. Q. Hu. "Fracture instability in brittle Mg-based bulk metallic glasses." Journal of Alloys and Compounds 438, no. 1-2 (July 2007): 145–49. http://dx.doi.org/10.1016/j.jallcom.2006.08.014.
Full textCHEN, Yan, and LanHong DAI. "Inherent parameters governing ductile-brittle transition in metallic glasses." SCIENTIA SINICA Physica, Mechanica & Astronomica 42, no. 6 (May 1, 2012): 551–59. http://dx.doi.org/10.1360/132012-296.
Full textTo, Theany, Christian Gamst, Martin B. Østergaard, Lars R. Jensen, and Morten M. Smedskjaer. "Fracture energy of high-Poisson's ratio oxide glasses." Journal of Applied Physics 131, no. 24 (June 28, 2022): 245105. http://dx.doi.org/10.1063/5.0096855.
Full textGu, X. J., S. Joseph Poon, and Gary J. Shiflet. "Mechanical properties of iron-based bulk metallic glasses." Journal of Materials Research 22, no. 2 (February 2007): 344–51. http://dx.doi.org/10.1557/jmr.2007.0036.
Full textZhu, Z. W., S. J. Zheng, H. F. Zhang, B. Z. Ding, Z. Q. Hu, P. K. Liaw, Y. D. Wang, and Y. Ren. "Plasticity of bulk metallic glasses improved by controlling the solidification condition." Journal of Materials Research 23, no. 4 (April 2008): 941–48. http://dx.doi.org/10.1557/jmr.2008.0127.
Full textLi, G., M. Q. Jiang, F. Jiang, L. He, and J. Sun. "Temperature-induced ductile-to-brittle transition of bulk metallic glasses." Applied Physics Letters 102, no. 17 (April 29, 2013): 171901. http://dx.doi.org/10.1063/1.4803170.
Full textYang, H. W., M. J. Tan, R. D. Li, and J. Q. Wang. "Effect of Minor V Addition on Al88Y7Fe5 Amorphous Alloys." Applied Mechanics and Materials 302 (February 2013): 76–81. http://dx.doi.org/10.4028/www.scientific.net/amm.302.76.
Full textLiu, Y. H., G. Wang, M. X. Pan, P. Yu, D. Q. Zhao, and W. H. Wang. "Deformation behaviors and mechanism of Ni–Co–Nb–Ta bulk metallic glasses with high strength and plasticity." Journal of Materials Research 22, no. 4 (April 2007): 869–75. http://dx.doi.org/10.1557/jmr.2007.0104.
Full textLagos, Miguel, and Raj Das. "Brittle and Ductile Character of Amorphous Solids." Advances in Applied Mathematics and Mechanics 8, no. 3 (January 27, 2016): 485–98. http://dx.doi.org/10.4208/aamm.2013.m439.
Full textYang, W., Y. Zhao, L. Dou, C. Dun, J. Zhang, M. Li, G. Zhao, L. Xue, H. Bian, and H. Liu. "Correlation between fractal dimension and strength of brittle bulk metallic glasses." Materials Science and Technology 30, no. 4 (October 23, 2013): 447–50. http://dx.doi.org/10.1179/1743284713y.0000000374.
Full textZeng, F., M. Q. Jiang, and L. H. Dai. "Dilatancy induced ductile–brittle transition of shear band in metallic glasses." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474, no. 2212 (April 2018): 20170836. http://dx.doi.org/10.1098/rspa.2017.0836.
Full textPan, D., H. Guo, W. Zhang, A. Inoue, and M. W. Chen. "Temperature-induced anomalous brittle-to-ductile transition of bulk metallic glasses." Applied Physics Letters 99, no. 24 (December 12, 2011): 241907. http://dx.doi.org/10.1063/1.3669508.
Full textKhusnutdinoff, Ramil M., and Anatolii V. Mokshin. "Elastic Properties and Glass Forming Ability of the Zr50Cu40Ag10 Metallic Alloy." Solid State Phenomena 310 (September 2020): 145–49. http://dx.doi.org/10.4028/www.scientific.net/ssp.310.145.
Full textZhang, Z. F., J. Eckert, and L. Schultz. "Tensile and fatigue fracture mechanisms of a Zr-based bulk metallic glass." Journal of Materials Research 18, no. 2 (February 2003): 456–65. http://dx.doi.org/10.1557/jmr.2003.0058.
Full textKumar, Golden, Tadakatsu Ohkubo, and Kazuhiro Hono. "Effect of melt temperature on the mechanical properties of bulk metallic glasses." Journal of Materials Research 24, no. 7 (July 2009): 2353–60. http://dx.doi.org/10.1557/jmr.2009.0272.
Full textZakharenko, M., M. Babich, I. Yurgelevych, S. Zaichenko, and N. Perov. "Magnetic properties of the 3d-based metallic glasses at ductile-brittle transition." Le Journal de Physique IV 08, PR2 (June 1998): Pr2–99—Pr2–102. http://dx.doi.org/10.1051/jp4:1998223.
Full textZhu, Bida, Minsheng Huang, and Zhenhuan Li. "Brittle to ductile transition of metallic glasses induced by embedding spherical nanovoids." Journal of Applied Physics 122, no. 21 (December 7, 2017): 215108. http://dx.doi.org/10.1063/1.4997281.
Full textWang, Q., J. J. Liu, Y. F. Ye, T. T. Liu, S. Wang, C. T. Liu, J. Lu, and Y. Yang. "Universal secondary relaxation and unusual brittle-to-ductile transition in metallic glasses." Materials Today 20, no. 6 (July 2017): 293–300. http://dx.doi.org/10.1016/j.mattod.2017.05.007.
Full textMoitzi, F., D. Şopu, D. Holec, D. Perera, N. Mousseau, and J. Eckert. "Chemical bonding effects on the brittle-to-ductile transition in metallic glasses." Acta Materialia 188 (April 2020): 273–81. http://dx.doi.org/10.1016/j.actamat.2020.02.002.
Full textJiang, F., M. Q. Jiang, H. F. Wang, Y. L. Zhao, L. He, and J. Sun. "Shear transformation zone volume determining ductile–brittle transition of bulk metallic glasses." Acta Materialia 59, no. 5 (March 2011): 2057–68. http://dx.doi.org/10.1016/j.actamat.2010.12.006.
Full textYe, J. C., J. Lu, Y. Yang, and P. K. Liaw. "Study of the intrinsic ductile to brittle transition mechanism of metallic glasses." Acta Materialia 57, no. 20 (December 2009): 6037–46. http://dx.doi.org/10.1016/j.actamat.2009.08.029.
Full textZhao, Jing, Jun Yi, Bo Huang, and Gang Wang. "Metallic Glassy Hollow Microfibers." Metals 12, no. 9 (August 31, 2022): 1463. http://dx.doi.org/10.3390/met12091463.
Full textOzawa, Misaki, Ludovic Berthier, Giulio Biroli, Alberto Rosso, and Gilles Tarjus. "Random critical point separates brittle and ductile yielding transitions in amorphous materials." Proceedings of the National Academy of Sciences 115, no. 26 (June 11, 2018): 6656–61. http://dx.doi.org/10.1073/pnas.1806156115.
Full textGhaemi, Milad, Mehdi Jafary-Zadeh, Khoong Hong Khoo, and Huajian Gao. "Chemical affinity can govern notch-tip brittle-to-ductile transition in metallic glasses." Extreme Mechanics Letters 52 (April 2022): 101651. http://dx.doi.org/10.1016/j.eml.2022.101651.
Full textDean, S. W., S. G. Zaichenko, A. M. Glezer, and V. P. Filippova. "Stability of Metallic Glasses: Criteria and Prediction of Ductile-Brittle Transition and Crystallization." Journal of ASTM International 9, no. 2 (2012): 103936. http://dx.doi.org/10.1520/jai103936.
Full textJiang, M. Q., G. Wilde, F. Jiang, and L. H. Dai. "Understanding ductile-to-brittle transition of metallic glasses from shear transformation zone dilatation." Theoretical and Applied Mechanics Letters 5, no. 5 (August 2015): 200–204. http://dx.doi.org/10.1016/j.taml.2015.09.002.
Full textSingh, I., T. F. Guo, R. Narasimhan, and Y. W. Zhang. "Cavitation in brittle metallic glasses – Effects of stress state and distributed weak zones." International Journal of Solids and Structures 51, no. 25-26 (December 2014): 4373–85. http://dx.doi.org/10.1016/j.ijsolstr.2014.09.005.
Full textYuan, X., D. Şopu, F. Moitzi, K. K. Song, and J. Eckert. "Intrinsic and extrinsic effects on the brittle-to-ductile transition in metallic glasses." Journal of Applied Physics 128, no. 12 (September 28, 2020): 125102. http://dx.doi.org/10.1063/5.0020201.
Full textCui, J. W., R. T. Qu, F. F. Wu, Z. F. Zhang, B. L. Shen, M. Stoica, and J. Eckert. "Shear band evolution during large plastic deformation of brittle and ductile metallic glasses." Philosophical Magazine Letters 90, no. 8 (August 2010): 573–79. http://dx.doi.org/10.1080/09500839.2010.484399.
Full textLiu, Z. Q., W. H. Wang, M. Q. Jiang, and Z. F. Zhang. "Intrinsic factor controlling the deformation and ductile-to-brittle transition of metallic glasses." Philosophical Magazine Letters 94, no. 10 (September 3, 2014): 658–68. http://dx.doi.org/10.1080/09500839.2014.955548.
Full textJeong, Ha Guk, Woo Jin Kim, Jung Chan Bae, Duk Jae Yoon, Seo Gou Choi, and Kyoung Hoan Na. "Hole Punching onto the Zr65Al10Ni10Cu15 BMG Sheet Fabricated by Squeeze Casting." Materials Science Forum 475-479 (January 2005): 3423–26. http://dx.doi.org/10.4028/www.scientific.net/msf.475-479.3423.
Full textKonstantinidis, Avraam A., Konstantinos Michos, and Elias C. Aifantis. "On the correct interpretation of compression experiments of micropillars produced by a focused ion beam." Journal of the Mechanical Behavior of Materials 25, no. 3-4 (August 28, 2016): 83–87. http://dx.doi.org/10.1515/jmbm-2016-0009.
Full textShamlaye, Karl F., Kevin J. Laws, and Michael Ferry. "Fabrication of Bulk Metallic Glass Composites at Low Processing Temperatures." Materials Science Forum 773-774 (November 2013): 461–65. http://dx.doi.org/10.4028/www.scientific.net/msf.773-774.461.
Full textGeissler, David, Jacob Grosse, Sven Donath, David Ehinger, Mihai Stoica, Jürgen Eckert, and Uta Kühn. "Granulation of Bulk Metallic Glass Forming Alloys as a Feedstock for Thermoplastic Forming and their Compaction into Bulk Samples." Materials Science Forum 879 (November 2016): 589–94. http://dx.doi.org/10.4028/www.scientific.net/msf.879.589.
Full textØstergaard, Martin B., Søren R. Hansen, Kacper Januchta, Theany To, Sylwester J. Rzoska, Michal Bockowski, Mathieu Bauchy, and Morten M. Smedskjaer. "Revisiting the Dependence of Poisson’s Ratio on Liquid Fragility and Atomic Packing Density in Oxide Glasses." Materials 12, no. 15 (July 31, 2019): 2439. http://dx.doi.org/10.3390/ma12152439.
Full textZhao, Jiaxi, and Zhefeng Zhang. "On the stress-state dependent plasticity of brittle metallic glasses: Experiment, theory and simulation." Materials Science and Engineering: A 586 (December 2013): 123–32. http://dx.doi.org/10.1016/j.msea.2013.08.009.
Full textYin, Jian, Xiujun Ma, and Zhijian Zhou. "Composition and size dependent brittle-to-malleable transitions of Mg-based bulk metallic glasses." Materials Science and Engineering: A 605 (May 2014): 286–93. http://dx.doi.org/10.1016/j.msea.2014.03.065.
Full textWei, Yujie. "The intrinsic and extrinsic factors for brittle-to-ductile transition in bulk metallic glasses." Theoretical and Applied Fracture Mechanics 71 (June 2014): 76–78. http://dx.doi.org/10.1016/j.tafmec.2014.06.001.
Full text