Contents
Academic literature on the topic 'Bris de symétrie'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bris de symétrie.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bris de symétrie"
Jedrzejewski, Franck. "Nœuds Polychromes et Entrelacs Sonores : Vers de Nouvelles Catégories Musicales." Musicae Scientiae 7, no. 1_suppl (September 2003): 73–83. http://dx.doi.org/10.1177/10298649040070s104.
Full textDissertations / Theses on the topic "Bris de symétrie"
Samandar, eweis Dureen. "Asymmetric division in single cell nematode embryos outside the Caenorhabditis genus." Electronic Thesis or Diss., Université Paris sciences et lettres, 2021. http://www.theses.fr/2021UPSLS063.
Full textAsymmetric cell division is an essential process of development. The process and its regulation have been studied extensively in the Caenorhabditis elegans embryo. Asymmetric division of the single-cell embryo is a conserved process in nematode species, however, the cellular features leading up to division are surprisingly variable. During my PhD, I aimed to study these differences by using two non-C. elegans embryos: Diploscapter pachys and Pristionchus pacificus. D. pachys is the closest parthenogenetic relative to C. elegans. Since the polarity cue in C. elegans is brought by the sperm, how polarity is triggered in D. pachys remains unknown. My results show that the nucleus inhabits principally the hemisphere of the D. pachys embryo that will become the posterior pole. Moreover, in embryos where the nucleus is forced to one pole by centrifugation, it returns to its preferred pole. Although the embryo is polarized, cortical ruffling and actin cytoskeleton at both poles appear identical. Interestingly, the location of the meiotic spindle also correlates with the future posterior cell. In some oocytes, a slight actin enrichment along with unusual microtubule structures emanating from the meiotic spindle are observed at the future posterior pole. Overall, my main PhD project shows that polarity of the D. pachys embryo is attained during meiosis wherein the meiotic spindle could potentially be playing a role by a mechanism that may be present but suppressed in C. elegans. For P. pacificus, biolistic transgenesis has been shown recently successful. However, due to a lack of a stringent selection marker, the continuation of this project was unfeasible during my PhD. Altogether, the results of my PhD add to the understanding of non-C. elegans early embryogenesis and emphasizes on the importance of using these species for comparative studies
Francois, Jordan. "Réduction des symétries de jauges : une nouvelle approche géométrique." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4037/document.
Full textThe principle of local symmetry, or gauge symmetry, is at the basis of our understanding of fundamental interactions. The natural framework of gauge theories is the theory of connections on fiber bundles, a branch of differential geometry. Despite its importance, gauge symmetry has some drawbacks, two especially prominent: 1) Gauge invariance forbids mass terms for interaction fields, which is at odds with the phenomenology of the Weak interaction. 2) The quantization of gauge theories is delicate since the path integral is a priori ill defined. Gauge symmetry must then be reduced. Essentially three strategies are available, each addressing one problem or the other. Gauge fixing addresses 2 (Faddeev-Popov trick). Spontaneous symmetry breaking addresses 1 (Higgs mechanism). Finally, the bundle reduction theorem addresses 1.We propose here a new strategy of gauge symmetries reduction: the dressing field method. It is a differential geometric result which happens to be the basis of the notion of `Dirac variable'. We show that this method sheds some light on recent works in hadronic Physics. The electrweak sector of the Standard Model is treated, which suggests a new interpretation. Extention of the method to higher-order G-structure, as well as an application to conformal geometry, is given. Finally we show how the method alters the BRS algebra of a gauge theory, and a preliminary analysis of its impact on the question of anomalies in Quantume Field Theory is proposed
Tidei, Carina. "G-structures projective et conforme et leur structure BRS." Phd thesis, Aix-Marseille 2, 2009. http://theses.univ-amu.fr.lama.univ-amu.fr/2009AIX22062.pdf.
Full textThis study proposes an innovation application of two concepts studied by the mathematical community, the k-frame bundle and the Cartan connection. On the one hand, the use os a special Cartan connection on the 2-frame bundle allows us to propose a generalization of the concept of Schwarzian derivative in arbitrary dimension for projective and conformal diffeomorphisms. On the other hand, we were albe to develop a BRS structure which reproduce infinitesimally the action of diffeomorphisms on gauge fields plus a curvature term. Hence, the notion of Cartan connection on the frame bundle of second order resolves a problem open since twenty years by A. M. Polyakov who obtains the action of diffeomorphisms (space-time summetry) from a gauge transformation (internal symmetry). The result was published and opens a new field of recherch. The space-times and internal symmetries can then be formalised thanks to the same formalism
Books on the topic "Bris de symétrie"
Hofstadter, Douglas R. Gödel, Escher, Bach. Les Brins d'une Guirlande Eternelle. Dunod, 2000.
Find full text