Academic literature on the topic 'Breast tissue imaging'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Breast tissue imaging.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Breast tissue imaging"
Rhoden, S. A., and S. M. Totterman. "Breast tissue expander: MR imaging artifact." American Journal of Roentgenology 164, no. 3 (March 1995): 765. http://dx.doi.org/10.2214/ajr.164.3.7863914.
Full textKline, Nicole J., and Patrick J. Treado. "Raman Chemical Imaging of Breast Tissue." Journal of Raman Spectroscopy 28, no. 2-3 (February 1997): 119–24. http://dx.doi.org/10.1002/(sici)1097-4555(199702)28:2/3<119::aid-jrs73>3.0.co;2-3.
Full textKlock, John C., Elaine Iuanow, Bilal Malik, Nancy A. Obuchowski, James Wiskin, and Mark Lenox. "Anatomy-Correlated Breast Imaging and Visual Grading Analysis Using Quantitative Transmission Ultrasound™." International Journal of Biomedical Imaging 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/7570406.
Full textSEKIGUCHI, RYUZO, and MITSUO SATAKE. "Breast Ultrasound: Advances in Imaging With Tissue Harmonic Imaging." Radiologist 8, no. 5 (September 2001): 213–20. http://dx.doi.org/10.1097/00042423-200109000-00002.
Full textHahn, Camerin, and Sima Noghanian. "Heterogeneous Breast Phantom Development for Microwave Imaging Using Regression Models." International Journal of Biomedical Imaging 2012 (2012): 1–12. http://dx.doi.org/10.1155/2012/803607.
Full textKu, Geng, Bruno D. Fornage, Xing Jin, Minghua Xu, Kelly K. Hunt, and Lihong V. Wang. "Thermoacoustic and Photoacoustic Tomography of Thick Biological Tissues toward Breast Imaging." Technology in Cancer Research & Treatment 4, no. 5 (October 2005): 559–65. http://dx.doi.org/10.1177/153303460500400509.
Full textKopans, D. B., C. A. Swann, G. White, K. A. McCarthy, D. A. Hall, S. J. Belmonte, and W. Gallagher. "Asymmetric breast tissue." Radiology 171, no. 3 (June 1989): 639–43. http://dx.doi.org/10.1148/radiology.171.3.2541463.
Full textJoachimowicz, Nadine, Bernard Duchêne, Christophe Conessa, and Olivier Meyer. "Anthropomorphic Breast and Head Phantoms for Microwave Imaging." Diagnostics 8, no. 4 (December 18, 2018): 85. http://dx.doi.org/10.3390/diagnostics8040085.
Full textRosen, Eric L., and Mary Scott Soo. "Tissue harmonic imaging sonography of breast lesions." Clinical Imaging 25, no. 6 (November 2001): 379–84. http://dx.doi.org/10.1016/s0899-7071(01)00335-7.
Full textNikolic, Jelena, Marija Marinkovic, Dragana Lekovic-Stojanov, Isidora Djozic, Nada Vuckovic, and Zlata Janjic. "Bilateral axillary accessory breasts: A case report and literature review." Medical review 73, no. 5-6 (2020): 165–69. http://dx.doi.org/10.2298/mpns2006165n.
Full textDissertations / Theses on the topic "Breast tissue imaging"
Ozan, Cem. "Mechanical modeling of brain and breast tissue." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/22632.
Full textCommittee Chair: Germanovich, Leonid; Committee Co-Chair: Skrinjar, Oskar; Committee Member: Mayne, Paul; Committee Member: Puzrin, Alexander; Committee Member: Rix, Glenn.
Tadrous, Paul Joseph. "The imaging of benign and malignant breast tissue by flourescence lifetime imaging and optical coherence tomography." Thesis, Imperial College London, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.407233.
Full textKiss, Miklos Zoltan. "Application of diffraction enhanced imaging for obtaining improved contrast of calcifications in breast tissue." NCSU, 2002. http://www.lib.ncsu.edu/theses/available/etd-11062002-155217/.
Full textSkerl, Katrin. "Standardisation and quality assurance of 2D ultrasound Shear Wave Elastography imaging in breast tissue." Thesis, University of Dundee, 2016. https://discovery.dundee.ac.uk/en/studentTheses/5ee2b3ed-89aa-4874-830a-ec9be233aae4.
Full textKovalchuk, Nataliya. "Advances in Magnetic Resonance Electrical Impedance Mammography." [Tampa, Fla] : University of South Florida, 2008. http://purl.fcla.edu/usf/dc/et/SFE0002443.
Full textBojnell, Kim, and Mattias Feltendal. "Development of a flexible stand to position a microwave transmitter : A complimentary tool to test equipment for breast cancer research." Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-55146.
Full textTeixeira, Ribeiro Rui Agostinho Fernandes. "Spectral analysis of breast ultrasound data with application to mass sizing and characterization." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:8768959f-cc5a-476d-b924-5a5d7df31b8d.
Full textSmolina, Margarita. "Breast cancer cell lines grown in a three-dimensional culture model: a step towards tissue-like phenotypes as assessed by FTIR imaging." Doctoral thesis, Universite Libre de Bruxelles, 2018. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/267686.
Full textLe cancer du sein est une maladie très hétérogène, tant au niveau clinique que biologique. Cette hétérogénéité rend impossible la caractérisation moléculaire complète des cellules cancéreuses individuelles dans la pratique clinique courante. Dans ce contexte, l’imagerie infrarouge à transformée de Fourier (FTIR) des coupes tissulaires permet d'obtenir pour chaque pixel d'une image de tissu des centaines de marqueurs potentiels indépendants, ce qui pourrait faire de cette technique un outil particulièrement puissant pour identifier des différents types et sous-types cellulaires. L'interprétation des spectres infrarouges (IR) enregistrés à partir des coupes histologiques nécessite cependant une calibration qui fait actuellement défaut. Cette calibration pourrait être obtenue à partir de lignées cellulaires tumorales bien caractérisées. Traditionnellement, les cellules épithéliales mammaires sont étudiées in vitro sous forme de monocouches adhérentes bidimensionnelles (2D), ce qui conduit à l'altération de la communication entre les cellules et leur environnement et, par conséquent, à la perte de l’architecture et de la fonction du tissu épithélial. Un certain nombre d'interactions physiologiques clés peuvent être rétablies en utilisant des systèmes de culture tridimensionnelle (3D) dans une matrice extracellulaire riche en laminine (lrECM). L'objectif de cette thèse consiste à étudier par imagerie FTIR l'influence du microenvironnement (via une comparaison entre les cultures 2D et 3D lrECM ou les cultures 3D lrECM en présence ou en l’absence de fibroblastes) sur une série de treize lignées de cellules tumorales mammaires humaines bien caractérisées et à déterminer les conditions de culture générant des phénotypes spectraux qui se rapprochent le plus de ceux observés dans les tissus tumoraux. Au cours de ce travail, nous avons mis au point la culture des lignées cellulaires dans un modèle 3D lrECM ainsi qu’une méthodologie de préparation des échantillons offrant la possibilité de les comparer de manière pertinente avec les cellules cancéreuses présentes dans les coupes histologiques. De même, nous avons étudié par imagerie FTIR les effets du microenvironnement sur les lignées de cellules tumorales et inversement. Pour les lignées investiguées, le passage d’une culture 2D à une culture 3D lrECM s’accompagne, en effet, de modifications du spectre IR étroitement corrélées aux modifications du transcriptome. Les marqueurs spectraux indiquent également que l’environnement 3D génère un phénotype cellulaire proche de celui trouvé dans les coupes histologiques. De manière intéressante, cette proximité est d’autant plus renforcée en présence de fibroblastes dans le milieu de culture.
Doctorat en Sciences agronomiques et ingénierie biologique
info:eu-repo/semantics/nonPublished
Diemoz, Paul Claude. "Contributions expérimentales et théoriques aux techniques de contraste de phase pour l'imagerie médicale par rayons X." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00602998.
Full textGarcía, Marcos Eloy. "Glandular tissue pattern analysis through multimodal MRI-mammography registration." Doctoral thesis, Universitat de Girona, 2018. http://hdl.handle.net/10803/585969.
Full textEl càncer de mama és el tipus de càncer més comú entre les dones de tot el món. Diversos estudis han demostrat que la combinació de diferents modalitats d'imatge mèdica, com ara la mamografia i la ressonància magnètica (MRI), comporta un diagnòstic més precís. L'objectiu d'aquesta tesi és doble, per una banda avaluar la similitud de la informació entre la mamografia de raigs X i la MRI i, d’altra banda, proposar nous algoritmes de registre que serveixin per a correlacionar la posició espacial en les dues modalitats d'imatge. El problema abarca la construcció del model biomecànic de la mama a partir de la ressonància magnètica, la simulació de la deformació que pateix la mama durant l’adquisició mamogràfica, la simulació dels rajos X atravessant la mama fins a obtenir la imatge (pseudo-mamografia) i els mètodes de registre posteriors per tal de millorar la similitud entre la imatge real i la simulada
Books on the topic "Breast tissue imaging"
Patlak, Margie. Mammography and beyond: Developing technologies for the early detection of breast cancer : a non-technical summary. Edited by National Cancer Policy Board (U.S.). Committee on the Early Detection of Breast Cancer and National Research Council (U.S.). Commission on Life Sciences. Washington, D.C: National Academy Press, 2001.
Find full textAndersson, Ingvar, Robert D. Boutin, and Donald Resnick. The Encyclopaedia of Medical Imaging, Volume 3: Musculoskeletal & Soft Tissue Imaging: Part 1: Musculoskeletal Imaging, Part 2: Breast Imaging. ISIS Medical Media, 1999.
Find full textDeBruhl, Nanette D., and Nazanin Yaghmai. Breast Implants. Edited by Christoph I. Lee, Constance D. Lehman, and Lawrence W. Bassett. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190270261.003.0060.
Full textJoines, Melissa M. Post-Reconstruction Breast. Edited by Christoph I. Lee, Constance D. Lehman, and Lawrence W. Bassett. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190270261.003.0063.
Full textFoo, Eric, and Bonnie N. Joe. Mass in Male (Gynecomastia, Cancer). Edited by Christoph I. Lee, Constance D. Lehman, and Lawrence W. Bassett. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190270261.003.0028.
Full textKettler, Mark D. Circumscribed Mass: Fibroadenoma. Edited by Christoph I. Lee, Constance D. Lehman, and Lawrence W. Bassett. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190270261.003.0015.
Full textDurand, Melissa A. Architectural Distortion (Cancer). Edited by Christoph I. Lee, Constance D. Lehman, and Lawrence W. Bassett. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190270261.003.0029.
Full textValencia, Elizabeth M., and Christoph I. Lee. Two-View Asymmetry. Edited by Christoph I. Lee, Constance D. Lehman, and Lawrence W. Bassett. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190270261.003.0014.
Full textBreast Cancer: Setting Priorities for Effectiveness Research. Natl Academy Pr, 1990.
Find full textLevesque, Paul H., and Laura Sheiman. One-View Asymmetry. Edited by Christoph I. Lee, Constance D. Lehman, and Lawrence W. Bassett. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190270261.003.0013.
Full textBook chapters on the topic "Breast tissue imaging"
Wu, Shandong, Susan Weinstein, Brad M. Keller, Emily F. Conant, and Despina Kontos. "Fully-Automated Fibroglandular Tissue Segmentation in Breast MRI." In Breast Imaging, 244–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31271-7_32.
Full textAvanaki, Ali R. N., Kathryn S. Espig, Albert Xthona, and Tom R. L. Kimpe. "Estimation of Perceived Background Tissue Complexity in Mammograms." In Breast Imaging, 316–23. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41546-8_40.
Full textPetersen, Kersten, Mads Nielsen, Pengfei Diao, Nico Karssemeijer, and Martin Lillholm. "Breast Tissue Segmentation and Mammographic Risk Scoring Using Deep Learning." In Breast Imaging, 88–94. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07887-8_13.
Full textHolland, Katharina, Michiel Kallenberg, Ritse Mann, Carla van Gils, and Nico Karssemeijer. "Stability of Volumetric Tissue Composition Measured in Serial Screening Mammograms." In Breast Imaging, 239–44. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07887-8_34.
Full textBakic, Predrag R., David D. Pokrajac, Raffaele De Caro, and Andrew D. A. Maidment. "Realistic Simulation of Breast Tissue Microstructure in Software Anthropomorphic Phantoms." In Breast Imaging, 348–55. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07887-8_49.
Full textReiser, Ingrid, Beverly A. Lau, Robert M. Nishikawa, and Predrag R. Bakic. "A Directional Small-Scale Tissue Model for an Anthropomorphic Breast Phantom." In Breast Imaging, 141–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31271-7_19.
Full textMainprize, James G., Xinying Wang, Mei Ge, and Martin J. Yaffe. "Towards a Quantitative Measure of Radiographic Masking by Dense Tissue in Mammography." In Breast Imaging, 181–86. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07887-8_26.
Full textMann, Steve D., Kristy L. Perez, Emily K. E. McCracken, Jainil P. Shah, Kingshuk R. Choudhury, Terence Z. Wong, and Martin P. Tornai. "Quantification of Tc-99m Sestamibi Distribution in Normal Breast Tissue Using Dedicated Breast SPECT-CT." In Breast Imaging, 402–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31271-7_52.
Full textGarcía, E., A. Oliver, Y. Diez, O. Diaz, A. Gubern-Mérida, X. Lladó, and J. Martí. "Comparison of Four Breast Tissue Segmentation Algorithms for Multi-modal MRI to X-ray Mammography Registration." In Breast Imaging, 493–500. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41546-8_62.
Full textChen, Xin, Emmanouil Moschidis, Chris Taylor, and Susan Astley. "A Novel Framework for Fat, Glandular Tissue, Pectoral Muscle and Nipple Segmentation in Full Field Digital Mammograms." In Breast Imaging, 201–8. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07887-8_29.
Full textConference papers on the topic "Breast tissue imaging"
Duric, Nebojsa, Peter J. Littrup, Earle Holsapple, Alex Babkin, Robert Duncan, Arkady Kalinin, Roman Pevzner, and Michael Tokarev. "Ultrasound tomography of breast tissue." In Medical Imaging 2003, edited by William F. Walker and Michael F. Insana. SPIE, 2003. http://dx.doi.org/10.1117/12.479909.
Full textJiang, Shudong, Xu Cao, Mingwei Zhou, Jinchao Feng, Brian W. Pogue, and Keith D. Paulsen. "MRI-guide near infrared spectroscopic tomographic imaging system with wearable optical breast interface for breast imaging." In Optical Tomography and Spectroscopy of Tissue XIV, edited by Sergio Fantini and Paola Taroni. SPIE, 2021. http://dx.doi.org/10.1117/12.2579087.
Full textElangovan, Premkumar, David R. Dance, Kenneth C. Young, and Kevin Wells. "Generation of 3D synthetic breast tissue." In SPIE Medical Imaging, edited by Despina Kontos, Thomas G. Flohr, and Joseph Y. Lo. SPIE, 2016. http://dx.doi.org/10.1117/12.2216225.
Full textDremin, Viktor V., Dmytro Anin, Oleksii Sieryi, Mariia A. Borovkova, Juha Näpänkangas, Igor V. Meglinski, and Alexander V. Bykov. "Imaging of early stage breast cancer with circularly polarized light." In Tissue Optics and Photonics, edited by Zeev Zalevsky, Valery V. Tuchin, and Walter C. Blondel. SPIE, 2020. http://dx.doi.org/10.1117/12.2554166.
Full textSak, Mark, Neb Duric, Norman Boyd, Peter Littrup, Erik West, and Cuiping Li. "Breast tissue composition and breast density measurements from ultrasound tomography." In SPIE Medical Imaging, edited by Johan G. Bosch and Marvin M. Doyley. SPIE, 2012. http://dx.doi.org/10.1117/12.912407.
Full textDuric, Nebojsa, Peter J. Littrup, Richard Leach, Jr., Steve G. Azevedo, James V. Candy, Thomas Moore, David H. Chambers, Jeffrey E. Mast, and Earle Holsapple. "Using data fusion to characterize breast tissue." In Medical Imaging 2002, edited by Michael F. Insana and William F. Walker. SPIE, 2002. http://dx.doi.org/10.1117/12.462167.
Full textDuric, Neb, Peter Littrup, Cuiping Li, Olivier Roy, Steve Schmidt, John Seamans, Andrea Wallen, and Lisa Bey-Knight. "Whole breast tissue characterization with ultrasound tomography." In SPIE Medical Imaging, edited by Johan G. Bosch and Neb Duric. SPIE, 2015. http://dx.doi.org/10.1117/12.2083203.
Full textBallerini, Lucia, and Lennart Franzen. "Classification of microscopic images of breast tissue." In Medical Imaging 2004, edited by J. Michael Fitzpatrick and Milan Sonka. SPIE, 2004. http://dx.doi.org/10.1117/12.535670.
Full textShannon, Michael J., Ingrid M. Meszoely, Janet E. Ondrake, Thomas S. Pheiffer, Amber L. Simpson, Kay Sun, and Michael I. Miga. "Initial study of breast tissue retraction toward image guided breast surgery." In SPIE Medical Imaging, edited by David R. Holmes III and Kenneth H. Wong. SPIE, 2012. http://dx.doi.org/10.1117/12.912860.
Full textRobbins, Constance M., Jason Yang, James F. Antaki, and Jana M. Kainerstorfer. "Hand-held multi-wavelength spatial frequency domain imaging for breast cancer imaging." In Optical Tomography and Spectroscopy of Tissue XIII, edited by Sergio Fantini, Paola Taroni, Bruce J. Tromberg, and Eva M. Sevick-Muraca. SPIE, 2019. http://dx.doi.org/10.1117/12.2510399.
Full textReports on the topic "Breast tissue imaging"
Dehghani, Hamid. Three Dimensional Reconstruction Algorithm for Imaging Pathophysiological Signal within Breast Tissue Using Near Infrared Light. Fort Belvoir, VA: Defense Technical Information Center, July 2004. http://dx.doi.org/10.21236/ada428927.
Full textDehghani, Hamid. Three Dimensional Reconstruction Algorithm for Imaging Pathophysiological Signals Within Breast Tissue Using Near Infrared Light. Fort Belvoir, VA: Defense Technical Information Center, July 2006. http://dx.doi.org/10.21236/ada459783.
Full textTrahey, Gregg E. A Novel Ultrasonic Imaging Method for Remote Palpation of Breast Tissues. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada400056.
Full text