Academic literature on the topic 'Breast screening'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Breast screening.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Breast screening"

1

Yamauchi, Hideko. "Breast Cancer Screening System in USA." Nihon Nyugan Kenshin Gakkaishi (Journal of Japan Association of Breast Cancer Screening) 21, no. 2 (2012): 115–26. http://dx.doi.org/10.3804/jjabcs.21.115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Calinescu, Gina, Corina Grigoriu, Athir Eddan, Nicolae Bacalbasa, Irina Balescu, Bianca-Margareta Mihai, Roxana Elena Bohiltea, and Claudia Stoica. "Breast density and breast cancer." Romanian Journal of Medical Practice 16, S7 (December 30, 2021): 29–32. http://dx.doi.org/10.37897/rjmp.2021.s7.9.

Full text
Abstract:
Breast density is increasingly recognized as an independent risk factor for the development of breast cancer. It has been shown to be associated with a four-to sixfold increase a woman's risk of malignant breast disease. Increased breast density, as identified on mammography, is known to decrease the diagnostic sensitivity of the examination, which is of great concern to women at increased risk for breast cancer. Dense tissue has generally been associated with younger age and premenopausal status, with the assumption that breast density gradually decreases after menopause. However, the actual proportion of older women with dense breasts is unknown. Unfortunately, mammography is less accurate on dense breast tissue compared to fattier breast tissue. Multiple studies suggest a solution to this by demonstrating the ability of supplemental screening ultrasound to detect additional malignant lesions in women with dense breast tissue but with negative mammography. Improved screening methods for women with dense breasts are needed due to their increased risk of breast cancer and of failed early diagnosis by screening mammography.
APA, Harvard, Vancouver, ISO, and other styles
3

Gordon, Paula B. "The Impact of Dense Breasts on the Stage of Breast Cancer at Diagnosis: A Review and Options for Supplemental Screening." Current Oncology 29, no. 5 (May 17, 2022): 3595–636. http://dx.doi.org/10.3390/curroncol29050291.

Full text
Abstract:
The purpose of breast cancer screening is to find cancers early to reduce mortality and to allow successful treatment with less aggressive therapy. Mammography is the gold standard for breast cancer screening. Its efficacy in reducing mortality from breast cancer was proven in randomized controlled trials (RCTs) conducted from the early 1960s to the mid 1990s. Panels that recommend breast cancer screening guidelines have traditionally relied on the old RCTs, which did not include considerations of breast density, race/ethnicity, current hormone therapy, and other risk factors. Women do not all benefit equally from mammography. Mortality reduction is significantly lower in women with dense breasts because normal dense tissue can mask cancers on mammograms. Moreover, women with dense breasts are known to be at increased risk. To provide equity, breast cancer screening guidelines should be created with the goal of maximizing mortality reduction and allowing less aggressive therapy, which may include decreasing the interval between screening mammograms and recommending consideration of supplemental screening for women with dense breasts. This review will address the issue of dense breasts and the impact on the stage of breast cancer at the time of diagnosis, and discuss options for supplemental screening.
APA, Harvard, Vancouver, ISO, and other styles
4

Arima, Yuriko. "Breast Cancer Screening Programme in the UK." Nihon Nyugan Kenshin Gakkaishi (Journal of Japan Association of Breast Cancer Screening) 21, no. 2 (2012): 127–37. http://dx.doi.org/10.3804/jjabcs.21.127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chou, Yi-Hong. "Evolution of Breast Cancer Screening in Taiwan." Nihon Nyugan Kenshin Gakkaishi (Journal of Japan Association of Breast Cancer Screening) 21, no. 2 (2012): 138–42. http://dx.doi.org/10.3804/jjabcs.21.138.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Russell, Ian S. "Breast screening." Medical Journal of Australia 142, no. 1 (January 1985): 6–8. http://dx.doi.org/10.5694/j.1326-5377.1985.tb113271.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Balaam, Ellen. "Breast screening." Medical Journal of Australia 142, no. 5 (March 1985): 332. http://dx.doi.org/10.5694/j.1326-5377.1985.tb113397.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Austoker, J. "Breast screening." BMJ 300, no. 6720 (February 3, 1990): 332–33. http://dx.doi.org/10.1136/bmj.300.6720.332-c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

O’Tuathail, Claire. "Breast screening." Nursing Older People 12, no. 2 (April 1, 2000): 30. http://dx.doi.org/10.7748/nop.12.2.30.s28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Logan, D. M., S. E. Aitken, and W. K. Evans. "Breast Screening." Journal SOGC 21, no. 8 (July 1999): 780–85. http://dx.doi.org/10.1016/s0849-5831(16)30484-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Breast screening"

1

Hann, A. P. "The politics of breast cancer screening." Thesis, University of East Anglia, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.309962.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Miller, Anthony Bernard. "The Canadian National Breast Screening Study." Thesis, University of Cambridge, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.614122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kan, Sik-yau Anita. "A clinical audit of mammography screening." Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/hkuto/record/B41710113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Song, Ningning. "Quantitative photoacoustic tomography for breast cancer screening." Thesis, Ecole centrale de Marseille, 2014. http://www.theses.fr/2014ECDM0005/document.

Full text
Abstract:
Ces travaux de thèse sont motivés par le développement de techniques d’imagerie alternatives pour le diagnostic précoce du cancer du sein. Parmi celles-ci, l’imagerie photoacoustique couple potentiellement les avantages de deux modalités d’imagerie non-invasives, à savoir la quantification de contrastes physiologiques du fait de l’excitation optique et la haute résolution du fait d’un sondage acoustique.Le but de ces travaux est de proposer une modélisation multiondes du phénomène photoacoustique, et d’incorporer ce modèle dans un algorithme de reconstruction efficace pour résoudre le problème inverse. Celui-ci se rapporte à la reconstruction de cartes de propriétés physiques (optique et/ou acoustiques) de l’intérieur du sein. La Méthode des Eléments Finis (MEF) a été retenue pour résoudre l’équation de propagation optique. Pour la résolution de l’équation de propagation acoustique, une méthode semi-analytique, basée sur des calculs par transformées de Fourier (méthod k-space), a été choisie. Pour la résolution du problème inverse, deux approches ont été étudiées : i) un sondage passif, permettant de remonter à la distribution de pression initiale, à l’aide de la méthode de retournement temporel ; ii) un sondage actif, où l’on interroge le milieu sélectivement sous différentes excitations, permettant de remonter quantitativement aux propriétés optiques du milieu. On appelle cette dernière approche Tomographie PhotoAcoustique Quantitative (TPAQ). Une étude spécifique sur le protocole d’illumination/détection a été conduite, prenant également en compte les contraintes expérimentales
The present work was motivated by the development of alternative imaging techniques for breast cancer early diagnosis, that is photoacoustic imaging, which potentially couples the merits of optical imaging and ultrasound imaging, that is high optical functional contrasts brought by optical probing and high spatial resolution by ultrasound detection. Our work aims at modeling the photoacoustic multiwave phenomenon and incorporate it in an efficient reconstruction algorithm to solve the inverse problem. The inverse problem consists in the recovery of interior maps of physical properties of the breast. The forward model couples optical and acoustic propagations. The Finite Element Method (FEM) was chosen for solving the optical propagation equation, while a semi-analytical method based on Fourier transforms calculations (k-space method) was preferred for solving the acoustic propagation equation. For the inverse model, time reversal method was adopted to reconstruct the initial pressure distribution, an active approach of the inverse problem was also achieved, which decoupled the optical properties from measured photoacoustic pressure, this approach is called quantitative photoacoustic tomography (QPAT), in this approach, illumination/detection protocol was studied, and the experimental set up is also take into consideration. In the last step, photoacoustic pressure measurements obtained from experiment and simulation are studied and compared
APA, Harvard, Vancouver, ISO, and other styles
5

Santorelli, Adam. "Breast screening with custom-shaped pulsed microwaves." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=107686.

Full text
Abstract:
Microwave imaging has been proposed as a possible complimentary imaging technique to X-ray mammography for early-stage breast cancer detection and screening. Based on the intrinsic differences in the various tissues of the breast at microwave frequencies, microwave imaging offers an imaging modality that is safe, pain-free, and without limitations on the frequency of the exam.An initial time domain microwave imaging system has been previously developed within our group. Accurate numerical models, for finite-difference time-domain simulations, matched to the experimental system have been developed. Numerical simulations are used to assess the safety of the microwave imaging technique. We calculate the maximum energy absorbed by the breast when exposed to incident microwaves and ensure that these values fall within the established thresholds.In this thesis we will test our hypothesis that an augmented microwave imaging system can improve tumour detection by making use of custom-made pulses with critical frequency content. We integrate passive microwave circuitry with a previously designed experimental microwave imaging system in order to create a new system that transmits an optimized pulse. We contrast measurement results of this newly developed system with those of the previously developed experimental system when imaging various tissue phantoms.
L'imagerie micro-ondes a été proposée comme une nouvelle technique pour la détection du cancer du sein qui est complémentaire au mammographie. Cette technique est basée sur les differences intrinsèques des tissus mammaires différents à des frequences micro-ondes. L'imagerie mirco-onde est une technique qui est sûr, sans douleur, et sans limitations sur la fréquence de l'examen.Un système préliminaire pour l'imagerie micro-ondes dans le domaine temporel a déjà été mis au point. Des modèles numériques précis , pour les simulations avec la "finite-difference time-domain" technique, qui sont en accorde avec la système expérimental sont construit.Des simulations sont utilisé pour évaluer la sécurité de la technique d'imagerie micro-ondes. Nous calculons le maximum d'énergie absorbée par le sein quand il est exposé aux micro-ondes incidentes et nous s'assure que les résultats sont en accord avec les normes établis. Dans cette thèse, nous allons tester notre hypothèse que un système d'imagerie micro-ondes augmentée peut améliorer la détection des cancers en utilisant des impulsions fait sur-mesure. Nous utilisons des circuits micro-ondes passives, avec le système déjà développé, pour créer un nouveau système qui transmet un impulsion optimisé. On compare les résultats de nos mesures avec les deux systèmes quand on utilise des fantômes de tissus divers.
APA, Harvard, Vancouver, ISO, and other styles
6

Chang, Sue-Ling. "Breast cancer subtypes and screening mammography sensitivity." Thesis, Université Laval, 2014. http://www.theses.ulaval.ca/2014/30680/30680.pdf.

Full text
Abstract:
Les cancers du sein peuvent être classifiés selon le statut de récepteur d’estrogène (RE), de récepteur de progestérone (RP), de récepteur HER2, ou selon quatre sous-types (Luminal A, Luminal B, HER2-enrichi, Triple-négatif) ayant des propriétés biologiques et cliniques différentes. La sensibilité du dépistage par mammographie pourrait varier selon ces types de cancers mais ceci n’est pas encore clair. L’agressivité de la tumeur, mesurée par le grade histologique pourrait expliquer cette association. Les types de cancers d’intervalle ont été comparés à ceux de cancers détectés par dépistage parmi 1536 cas infiltrants provenant d’un centre de référence de Québec. Les tumeurs RE-négatif, RP-négatif, HER2-positif, Luminal B, HER2-enrichi et TPN étaient tous plus fréquentes chez les femmes avec cancers d’intervalle que chez celles avec cancers détectés par dépistage. À l’exception des tumeurs HER2-positif et HER2-enrichi, le grade histologique expliquait en grande partie la variabilité observée entre les types de cancer et la sensibilité.
Breast cancers can be classified according to tumour estrogen (ER) and progesterone (PR) receptors, human epidermal growth factor receptor 2 (HER2), and according to four subtypes (Luminal A, Luminal B, HER2-enriched, Triple-negative), each with different biological and clinical profiles. These tumour types may also influence screening mammography sensitivity but this is still not clear. Tumour aggressiveness, measured by the histological grade, may also play a role in explaining this association. Interval cancer types were compared to screen-detected cancer types in 1536 invasive cases obtained from a reference center in Quebec. ER-negative, PR-negative and HER2-positive, Luminal B, HER2-enriched and TPN tumours were all more frequent in women with interval cancers than in women with screen-detected cancers. Except for HER2-positive and HER2-enriched tumours, histological grade explained most of the variability observed between tumour receptor status, subtypes and sensitivity.
APA, Harvard, Vancouver, ISO, and other styles
7

Brown, Wendy L. "Emotional and pain responses to screening mammography /." [St. Lucia, Qld.], 2002. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe16300.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

簡適悠 and Sik-yau Anita Kan. "A clinical audit of mammography screening." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B41710113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Purtzer, Mary Anne. "Processes inherent in mammography-screening decisions of rural, low-income women." Laramie, Wyo. : University of Wyoming, 2007. http://proquest.umi.com/pqdweb?did=1338920401&sid=1&Fmt=2&clientId=18949&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Maloy, Frances. "The demand for breast cancer screening services : an inquiry into the importance of cost as an impediment to use /." Thesis, Connect to this title online; UW restricted, 1999. http://hdl.handle.net/1773/7389.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Breast screening"

1

MRCGP, Humphreys John, Cancer Research Campaign (Great Britain), and National Breast Screening Programme (Great Britain), eds. Breast cancer screening. Oxford: Oxford University Press, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Royal Colleges of Physicians of the United Kingdom. Committee on Health Promotion. Screening for breast cancer. London: Faculty of Community Medicine of the Royal Colleges of Physicians of the United Kingdom, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

service, NHS breast screening. What is breast screening. London: North East Thames Regional Health Authority, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Farrow, Alexandra. Breast cancer screening thesaurus. Bristol: Health Care Evaluation Unit, Department of Epidemiology and Public Health Medicine, University of Bristol, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Clinical Standards Board for Scotland. Breast screening: Clinical standards. Edinburgh: Clinical Standards Board for Scotland, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Royal Colleges of Physicians of the United Kingdom. Committee on Health Promotion. Screening for breast cancer. London: The Colleges, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Scotland, NHS. Breat screening: East of Scotland breast screening service local report - November 2003. Edinburgh: NHS Quality Improvement Scotland, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Congress, Trades Union. Breast and cervical screening agreements. London: Trades Union Congress, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Breast cancer screening and prevention. Hauppauge, N.Y: Nova Science, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Codd, Mary B. The Eccles breast screening programme. Dublin: University College Dublin, Centre for HealthEconomics, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Breast screening"

1

Moss, S. M. "Breast Cancer." In Cancer Screening, 143–70. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429179587-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fretwell, Ann-Marie. "Breast Screening." In Breast Cancer Nursing Care and Management, 58–80. West Sussex, UK: John Wiley & Sons, Ltd., 2013. http://dx.doi.org/10.1002/9781118784921.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Barter, Sue. "Breast Screening." In Oncoplastic Breast Surgery, 12–19. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781315115146-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chotai, Niketa, and Supriya Kulkarni. "Screening." In Breast Imaging Essentials, 31–32. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1412-8_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rosen, Eric L., Steven D. Frankel, and Edward A. Sickles. "Screening Mammography." In Breast Care, 52–68. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-2144-9_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Meltzer, Carin, and Per Skaane. "Mammography Screening." In Breast Imaging, 43–68. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94918-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Garcia, Mila Trementosa, Laura Aguiar Penteado, Flávia Abranches Corsetti Purcino, and Jose Roberto Filassi. "Screening." In Modern Breast Cancer Imaging, 247–57. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-84546-9_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

di Pace Bauab, Selma, and Vera Lucia Nunes Aguillar. "Special Screening Situations." In Breast Diseases, 83–96. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13636-9_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Selvi, Radhakrishna. "Breast Cancer Screening." In Breast Diseases, 15–19. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-2077-0_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ungerer, Saskia. "The Breast." In Whole-body MRI Screening, 277–309. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-55201-4_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Breast screening"

1

Sfakianakis, Eleftherios, Foivos Irakleidis, Katerina Ntailian, and Peng Tan. "CLINICAL SIGNIFICANCE OF BREAST DENSITY: IS THERE ANY NEED FOR SUPPLEMENTAL SCREENING?" In Abstracts from the Brazilian Breast Cancer Symposium - BBCS 2021. Mastology, 2021. http://dx.doi.org/10.29289/259453942021v31s2006.

Full text
Abstract:
Objectives: Mammographic density (MD) is the amount of fibroglandular breast tissue, which appears relatively radiopaque on mammography when compared with fat that appears radiolucent. It may obscure an underlying breast cancer (BC), thus decreases mammographic sensitivity. MD is also an independent BC risk factor. MD is most commonly classified by the Breast Imaging Reporting and Data System (BI-RADS), fifth edition, 2012, where breast density is determined by radiologists using visual assessment that is subject to inter-rater variability. The term “dense breasts” refers to either heterogeneously dense or extremely dense breasts (category C or D), accounting for approximately 47%–50% of women. Supplemental screening modalities, such as digital breast tomosynthesis (DBT), MRI, and ultrasound, when combined with digital mammography (DM) have shown to be effective in the identification of mammographically occult breast lesions in high breast density patients. In this study, we examined the potential value of available screening modalities and their importance in patients with increased MD. Methodology: We conducted a systematic review of the literature via MEDLINE assessing the clinical importance of MD and its role in supplemental screening protocols. Results: Reduced mammographic sensitivity — Mammographic sensitivity rate is adversely proportional to MD. Breast stromal component and hence stromal stiffening promote an increase in MD. Another important factor is that extracellular matrix stiffness has been found to be tumorigenic and is significantly associated with BC. As a consequence, the combined relative BC risk is increased exponentially in levels A, B, C, and D BI-RADS categories, respectively. Supplemental screening modalities — To overcome the limitations of digital mammography in higher MD categories, the introduction of DBT has significantly improved BC detection and reduced recall rates when added to mammography. Both STORM-1 and STORM-2 trials showed the significant improvement in BC detection rate when DBT was combined with DM. On the other hand, MBTST trial revealed an increase of false-positive rates when BC screening was carried out with DBT alone. In another multicenter study, the ACRIN Protocol 6666 established that the addition of ultrasound (US) to DM in women within BI-RADS C and D groups will identify an additional 1.1–7.2 cancers per 1,000 high-risk women, but substantially increase the number of false positive results. Breast MRI may be offered as supplemental screening modality in women with heterogeneous or extremely dense breast tissue. The combination of MRI with DM and US in screening of heterogeneous or extremely dense breasts with at least one risk factor for BC produces a 100% sensitivity rate. Also, supplemental MRI screening in women with extremely dense breasts can reduce the incidence of undetected interval BC. On the contrary, the addition of MRI possesses low specificity rates and increased cost. Conclusions: Increased BD is a common mammographic finding in women. Although very common, its association with reduced mammographic sensitivity and consequently BC detection masking is of high clinical significance. Additionally, BD alone is a risk factor for BC, despite the fact that the exact mechanisms of tumorigenesis associated to it are yet to be fully understood. Supplemental screening modalities, such as DBT, MRI, and US, when combined with DM have been shown to be effective in the identification of mammographically occult BC in high BD patients. The increased number of unnecessary biopsies as a result of increased false positivity rates may increase the physical and psychological patient burden. Since there is no consensus for routine use of DBT or MRI in screening of women with increased BD, the decision for supplemental screening should be personalized.
APA, Harvard, Vancouver, ISO, and other styles
2

Boone, John M. "Dedicated Breast CT for Breast Cancer Screening." In MEDICAL PHYSICS: Seventh Mexican Symposium on Medical Physics. AIP, 2003. http://dx.doi.org/10.1063/1.1615091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Demigha, Souad. "Data mining for breast cancer screening." In 2015 10th International Conference on Computer Science & Education (ICCSE). IEEE, 2015. http://dx.doi.org/10.1109/iccse.2015.7250219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cruz, Alexandra La, Carlos Andres Diaz Santacruz, Leisson Polo, and Erika Severeyn. "Breast Cancer Screening Using Deep Learning." In 2022 IEEE Sixth Ecuador Technical Chapters Meeting (ETCM). IEEE, 2022. http://dx.doi.org/10.1109/etcm56276.2022.9935747.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mainprize, James, Olivier Alonzo-Proulx, Taghreed I. Alshafeiy, James T. Patrie, Jennifer A. Harvey, and Martin J. Yaffe. "Masking risk predictors in screening mammography." In Fourteenth International Workshop on Breast Imaging, edited by Elizabeth A. Krupinski. SPIE, 2018. http://dx.doi.org/10.1117/12.2318074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Berg, WA. "Breast ultrasound in the screening and diagnosis of breast cancer." In CTRC-AACR San Antonio Breast Cancer Symposium: 2008 Abstracts. American Association for Cancer Research, 2009. http://dx.doi.org/10.1158/0008-5472.sabcs-ms3-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cowley, Helen C., and Alastair G. Gale. "Breast cancer screening: comparison of radiologists' performance in a self-assessment scheme and in actual breast screening." In Medical Imaging '99, edited by Elizabeth A. Krupinski. SPIE, 1999. http://dx.doi.org/10.1117/12.349637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pereira, Lucas F. S., Sarah B. D. Carrijo, Larissa F. Almeida, Jordana M. Oliveira, Beatriz de A. Negraes, Cesar A. S. T. Vilanova Costa, and Antonio M. T. C. Silva. "MAMMOGRAPHY AND BREAST CANCER: ANALYSIS OF A PROVEN SCREENING METHOD." In Brazilian Breast Cancer Symposium. v29s1, 2019. http://dx.doi.org/10.29289/259453942019v29s1ep52.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Abubaker Bugrein, Hekmet, and Salha Bujassoum. "Qatar Experience In Standard Breast Cancer Screening." In Qatar Foundation Annual Research Conference Proceedings. Hamad bin Khalifa University Press (HBKU Press), 2014. http://dx.doi.org/10.5339/qfarc.2014.hbpp0443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Suapang, Piyamas, Chadaporn Naruephai, and Sorawat Chivapreecha. "Computer Aided Diagnosis for Breast Cancer Screening." In International Conference on Industrial Application Engineering 2016. The Institute of Industrial Applications Engineers, 2016. http://dx.doi.org/10.12792/iciae2016.044.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Breast screening"

1

Greenberg, Robert, and Patricia Carney. Regional Breast Cancer Screening Network. Fort Belvoir, VA: Defense Technical Information Center, September 2000. http://dx.doi.org/10.21236/ada394136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Alfano, Robert R. Breast Cancer Screening Using Photonic Technology. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada399367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Boone, John M. Computer Simulation of Breast Cancer Screening. Fort Belvoir, VA: Defense Technical Information Center, July 1999. http://dx.doi.org/10.21236/ada383107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Alfano, Robert R. Breast Cancer Screening Using Photonic Technology. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada384638.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Joseph. Miniaturized DNA Biosensor for Decentralized Breast-Cancer Screening. Fort Belvoir, VA: Defense Technical Information Center, June 2001. http://dx.doi.org/10.21236/ada395007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Joseph. Miniaturized DNA Biosensor for Decentralized Breast-Cancer Screening. Fort Belvoir, VA: Defense Technical Information Center, June 2002. http://dx.doi.org/10.21236/ada406787.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Joseph. Miniaturized DNA Biosensor for Decentralized Breast-Cancer Screening. Fort Belvoir, VA: Defense Technical Information Center, June 2004. http://dx.doi.org/10.21236/ada426440.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Joseph. Miniaturized DNA Biosensor for Decentralized Breast-Cancer Screening. Fort Belvoir, VA: Defense Technical Information Center, June 2003. http://dx.doi.org/10.21236/ada418130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fort, Jane G., and Nasar U. Ahmed. Empowering Factors Among Breast Cancer Screening Compliant Underserved Populations. Fort Belvoir, VA: Defense Technical Information Center, October 2005. http://dx.doi.org/10.21236/ada443597.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ahmed, Nasar U. Empowering Factors Among Breast Cancer Screening Compliant Underserved Populations. Fort Belvoir, VA: Defense Technical Information Center, October 2001. http://dx.doi.org/10.21236/ada398988.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography