Journal articles on the topic 'BREAKHIS DATASET'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'BREAKHIS DATASET.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Joshi, Shubhangi A., Anupkumar M. Bongale, P. Olof Olsson, Siddhaling Urolagin, Deepak Dharrao, and Arunkumar Bongale. "Enhanced Pre-Trained Xception Model Transfer Learned for Breast Cancer Detection." Computation 11, no. 3 (March 13, 2023): 59. http://dx.doi.org/10.3390/computation11030059.
Full textXu, Xuebin, Meijuan An, Jiada Zhang, Wei Liu, and Longbin Lu. "A High-Precision Classification Method of Mammary Cancer Based on Improved DenseNet Driven by an Attention Mechanism." Computational and Mathematical Methods in Medicine 2022 (May 14, 2022): 1–14. http://dx.doi.org/10.1155/2022/8585036.
Full textOgundokun, Roseline Oluwaseun, Sanjay Misra, Akinyemi Omololu Akinrotimi, and Hasan Ogul. "MobileNet-SVM: A Lightweight Deep Transfer Learning Model to Diagnose BCH Scans for IoMT-Based Imaging Sensors." Sensors 23, no. 2 (January 6, 2023): 656. http://dx.doi.org/10.3390/s23020656.
Full textUkwuoma, Chiagoziem C., Md Altab Hossain, Jehoiada K. Jackson, Grace U. Nneji, Happy N. Monday, and Zhiguang Qin. "Multi-Classification of Breast Cancer Lesions in Histopathological Images Using DEEP_Pachi: Multiple Self-Attention Head." Diagnostics 12, no. 5 (May 5, 2022): 1152. http://dx.doi.org/10.3390/diagnostics12051152.
Full textMohanakurup, Vinodkumar, Syam Machinathu Parambil Gangadharan, Pallavi Goel, Devvret Verma, Sameer Alshehri, Ramgopal Kashyap, and Baitullah Malakhil. "Breast Cancer Detection on Histopathological Images Using a Composite Dilated Backbone Network." Computational Intelligence and Neuroscience 2022 (July 6, 2022): 1–10. http://dx.doi.org/10.1155/2022/8517706.
Full textNahid, Abdullah-Al, Mohamad Ali Mehrabi, and Yinan Kong. "Histopathological Breast Cancer Image Classification by Deep Neural Network Techniques Guided by Local Clustering." BioMed Research International 2018 (2018): 1–20. http://dx.doi.org/10.1155/2018/2362108.
Full textSun, Yixin, Lei Wu, Peng Chen, Feng Zhang, and Lifeng Xu. "Using deep learning in pathology image analysis: A novel active learning strategy based on latent representation." Electronic Research Archive 31, no. 9 (2023): 5340–61. http://dx.doi.org/10.3934/era.2023271.
Full textIstighosah, Maie, Andi Sunyoto, and Tonny Hidayat. "Breast Cancer Detection in Histopathology Images using ResNet101 Architecture." sinkron 8, no. 4 (October 1, 2023): 2138–49. http://dx.doi.org/10.33395/sinkron.v8i4.12948.
Full textLi, Lingxiao, Niantao Xie, and Sha Yuan. "A Federated Learning Framework for Breast Cancer Histopathological Image Classification." Electronics 11, no. 22 (November 16, 2022): 3767. http://dx.doi.org/10.3390/electronics11223767.
Full textBurrai, Giovanni P., Andrea Gabrieli, Marta Polinas, Claudio Murgia, Maria Paola Becchere, Pierfranco Demontis, and Elisabetta Antuofermo. "Canine Mammary Tumor Histopathological Image Classification via Computer-Aided Pathology: An Available Dataset for Imaging Analysis." Animals 13, no. 9 (May 6, 2023): 1563. http://dx.doi.org/10.3390/ani13091563.
Full textMinarno, Agus Eko, Lulita Ria Wandani, and Yufis Azhar. "Classification of Breast Cancer Based on Histopathological Image Using EfficientNet-B0 on Convolutional Neural Network." International Journal of Emerging Technology and Advanced Engineering 12, no. 8 (August 2, 2022): 70–77. http://dx.doi.org/10.46338/ijetae0822_09.
Full textAgbley, Bless Lord Y., Jianping Li, Md Altab Hossin, Grace Ugochi Nneji, Jehoiada Jackson, Happy Nkanta Monday, and Edidiong Christopher James. "Federated Learning-Based Detection of Invasive Carcinoma of No Special Type with Histopathological Images." Diagnostics 12, no. 7 (July 9, 2022): 1669. http://dx.doi.org/10.3390/diagnostics12071669.
Full textMewada, Hiren K., Amit V. Patel, Mahmoud Hassaballah, Monagi H. Alkinani, and Keyur Mahant. "Spectral–Spatial Features Integrated Convolution Neural Network for Breast Cancer Classification." Sensors 20, no. 17 (August 22, 2020): 4747. http://dx.doi.org/10.3390/s20174747.
Full textLi, Xin, HongBo Li, WenSheng Cui, ZhaoHui Cai, and MeiJuan Jia. "Classification on Digital Pathological Images of Breast Cancer Based on Deep Features of Different Levels." Mathematical Problems in Engineering 2021 (December 30, 2021): 1–13. http://dx.doi.org/10.1155/2021/8403025.
Full textAmato, Domenico, Salvatore Calderaro, Giosué Lo Bosco, Riccardo Rizzo, and Filippo Vella. "Metric Learning in Histopathological Image Classification: Opening the Black Box." Sensors 23, no. 13 (June 28, 2023): 6003. http://dx.doi.org/10.3390/s23136003.
Full textLiu, Min, Yu He, Minghu Wu, and Chunyan Zeng. "Breast Histopathological Image Classification Method Based on Autoencoder and Siamese Framework." Information 13, no. 3 (February 24, 2022): 107. http://dx.doi.org/10.3390/info13030107.
Full textUmer, Muhammad Junaid, Muhammad Sharif, Seifedine Kadry, and Abdullah Alharbi. "Multi-Class Classification of Breast Cancer Using 6B-Net with Deep Feature Fusion and Selection Method." Journal of Personalized Medicine 12, no. 5 (April 26, 2022): 683. http://dx.doi.org/10.3390/jpm12050683.
Full textUmer, Muhammad Junaid, Muhammad Sharif, Seifedine Kadry, and Abdullah Alharbi. "Multi-Class Classification of Breast Cancer Using 6B-Net with Deep Feature Fusion and Selection Method." Journal of Personalized Medicine 12, no. 5 (April 26, 2022): 683. http://dx.doi.org/10.3390/jpm12050683.
Full textSarker, Md Mostafa Kamal, Farhan Akram, Mohammad Alsharid, Vivek Kumar Singh, Robail Yasrab, and Eyad Elyan. "Efficient Breast Cancer Classification Network with Dual Squeeze and Excitation in Histopathological Images." Diagnostics 13, no. 1 (December 29, 2022): 103. http://dx.doi.org/10.3390/diagnostics13010103.
Full textChandranegara, Didih Rizki, Faras Haidar Pratama, Sidiq Fajrianur, Moch Rizky Eka Putra, and Zamah Sari. "Automated Detection of Breast Cancer Histopathology Image Using Convolutional Neural Network and Transfer Learning." MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer 22, no. 3 (July 3, 2023): 455–68. http://dx.doi.org/10.30812/matrik.v22i3.2803.
Full textWakili, Musa Adamu, Harisu Abdullahi Shehu, Md Haidar Sharif, Md Haris Uddin Sharif, Abubakar Umar, Huseyin Kusetogullari, Ibrahim Furkan Ince, and Sahin Uyaver. "Classification of Breast Cancer Histopathological Images Using DenseNet and Transfer Learning." Computational Intelligence and Neuroscience 2022 (October 10, 2022): 1–31. http://dx.doi.org/10.1155/2022/8904768.
Full textAlirezazadeh, Pendar, Fadi Dornaika, and Abdelmalik Moujahid. "Chasing a Better Decision Margin for Discriminative Histopathological Breast Cancer Image Classification." Electronics 12, no. 20 (October 20, 2023): 4356. http://dx.doi.org/10.3390/electronics12204356.
Full textZaalouk, Ahmed M., Gamal A. Ebrahim, Hoda K. Mohamed, Hoda Mamdouh Hassan, and Mohamed M. A. Zaalouk. "A Deep Learning Computer-Aided Diagnosis Approach for Breast Cancer." Bioengineering 9, no. 8 (August 15, 2022): 391. http://dx.doi.org/10.3390/bioengineering9080391.
Full textLi, Jia, Jingwen Shi, Hexing Su, and Le Gao. "Breast Cancer Histopathological Image Recognition Based on Pyramid Gray Level Co-Occurrence Matrix and Incremental Broad Learning." Electronics 11, no. 15 (July 26, 2022): 2322. http://dx.doi.org/10.3390/electronics11152322.
Full textJae Lim, Myung, Da Eun Kim, Dong Kun Chung, Hoon Lim, and Young Man Kwon. "Deep Convolution Neural Networks for Medical Image Analysis." International Journal of Engineering & Technology 7, no. 3.33 (August 29, 2018): 115. http://dx.doi.org/10.14419/ijet.v7i3.33.18588.
Full textKode, Hepseeba, and Buket D. Barkana. "Deep Learning- and Expert Knowledge-Based Feature Extraction and Performance Evaluation in Breast Histopathology Images." Cancers 15, no. 12 (June 6, 2023): 3075. http://dx.doi.org/10.3390/cancers15123075.
Full textLeow, Jia Rong, Wee How Khoh, Ying Han Pang, and Hui Yen Yap. "Breast cancer classification with histopathological image based on machine learning." International Journal of Electrical and Computer Engineering (IJECE) 13, no. 5 (October 1, 2023): 5885. http://dx.doi.org/10.11591/ijece.v13i5.pp5885-5897.
Full textTummala, Sudhakar, Jungeun Kim, and Seifedine Kadry. "BreaST-Net: Multi-Class Classification of Breast Cancer from Histopathological Images Using Ensemble of Swin Transformers." Mathematics 10, no. 21 (November 4, 2022): 4109. http://dx.doi.org/10.3390/math10214109.
Full textKaplun, Dmitry, Alexander Krasichkov, Petr Chetyrbok, Nikolay Oleinikov, Anupam Garg, and Husanbir Singh Pannu. "Cancer Cell Profiling Using Image Moments and Neural Networks with Model Agnostic Explainability: A Case Study of Breast Cancer Histopathological (BreakHis) Database." Mathematics 9, no. 20 (October 17, 2021): 2616. http://dx.doi.org/10.3390/math9202616.
Full textChopra, Pooja, N. Junath, Sitesh Kumar Singh, Shakir Khan, R. Sugumar, and Mithun Bhowmick. "Cyclic GAN Model to Classify Breast Cancer Data for Pathological Healthcare Task." BioMed Research International 2022 (July 21, 2022): 1–12. http://dx.doi.org/10.1155/2022/6336700.
Full textElshafey, Mohamed Abdelmoneim, and Tarek Elsaid Ghoniemy. "A hybrid ensemble deep learning approach for reliable breast cancer detection." International Journal of Advances in Intelligent Informatics 7, no. 2 (April 19, 2021): 112. http://dx.doi.org/10.26555/ijain.v7i2.615.
Full textYang, Yunfeng, and Chen Guan. "Classification of histopathological images of breast cancer using an improved convolutional neural network model." Journal of X-Ray Science and Technology 30, no. 1 (January 22, 2022): 33–44. http://dx.doi.org/10.3233/xst-210982.
Full textSaha, Priya, Puja Das, Niharika Nath, and Mrinal Kanti Bhowmik. "Estimation of Abnormal Cell Growth and MCG-Based Discriminative Feature Analysis of Histopathological Breast Images." International Journal of Intelligent Systems 2023 (June 30, 2023): 1–12. http://dx.doi.org/10.1155/2023/6318127.
Full textHao, Yan, Li Zhang, Shichang Qiao, Yanping Bai, Rong Cheng, Hongxin Xue, Yuchao Hou, Wendong Zhang, and Guojun Zhang. "Breast cancer histopathological images classification based on deep semantic features and gray level co-occurrence matrix." PLOS ONE 17, no. 5 (May 5, 2022): e0267955. http://dx.doi.org/10.1371/journal.pone.0267955.
Full textLee, Jiann-Shu, and Wen-Kai Wu. "Breast Tumor Tissue Image Classification Using DIU-Net." Sensors 22, no. 24 (December 14, 2022): 9838. http://dx.doi.org/10.3390/s22249838.
Full textAshurov, Asadulla, Samia Allaoua Chelloug, Alexey Tselykh, Mohammed Saleh Ali Muthanna, Ammar Muthanna, and Mehdhar S. A. M. Al-Gaashani. "Improved Breast Cancer Classification through Combining Transfer Learning and Attention Mechanism." Life 13, no. 9 (September 21, 2023): 1945. http://dx.doi.org/10.3390/life13091945.
Full textAlqahtani, Yahya, Umakant Mandawkar, Aditi Sharma, Mohammad Najmus Saquib Hasan, Mrunalini Harish Kulkarni, and R. Sugumar. "Breast Cancer Pathological Image Classification Based on the Multiscale CNN Squeeze Model." Computational Intelligence and Neuroscience 2022 (August 29, 2022): 1–11. http://dx.doi.org/10.1155/2022/7075408.
Full textBurçak, Kadir Can, and Harun Uğuz. "A New Hybrid Breast Cancer Diagnosis Model Using Deep Learning Model and ReliefF." Traitement du Signal 39, no. 2 (April 30, 2022): 521–29. http://dx.doi.org/10.18280/ts.390214.
Full textAsare, Sarpong Kwadwo, Fei You, and Obed Tettey Nartey. "A Semisupervised Learning Scheme with Self-Paced Learning for Classifying Breast Cancer Histopathological Images." Computational Intelligence and Neuroscience 2020 (December 8, 2020): 1–16. http://dx.doi.org/10.1155/2020/8826568.
Full textTangsakul, Surasak, and Sartra Wongthanavasu. "Deep Cellular Automata-Based Feature Extraction for Classification of the Breast Cancer Image." Applied Sciences 13, no. 10 (May 15, 2023): 6081. http://dx.doi.org/10.3390/app13106081.
Full textBoumaraf, Said, Xiabi Liu, Yuchai Wan, Zhongshu Zheng, Chokri Ferkous, Xiaohong Ma, Zhuo Li, and Dalal Bardou. "Conventional Machine Learning versus Deep Learning for Magnification Dependent Histopathological Breast Cancer Image Classification: A Comparative Study with Visual Explanation." Diagnostics 11, no. 3 (March 16, 2021): 528. http://dx.doi.org/10.3390/diagnostics11030528.
Full textWang, Jiatong, Tiantian Zhu, Shan Liang, R. Karthiga, K. Narasimhan, and V. Elamaran. "Binary and Multiclass Classification of Histopathological Images Using Machine Learning Techniques." Journal of Medical Imaging and Health Informatics 10, no. 9 (August 1, 2020): 2252–58. http://dx.doi.org/10.1166/jmihi.2020.3124.
Full textJakkaladiki, Sudha Prathyusha, and Filip Maly. "An efficient transfer learning based cross model classification (TLBCM) technique for the prediction of breast cancer." PeerJ Computer Science 9 (March 21, 2023): e1281. http://dx.doi.org/10.7717/peerj-cs.1281.
Full textClement, David, Emmanuel Agu, Muhammad A. Suleiman, John Obayemi, Steve Adeshina, and Wole Soboyejo. "Multi-Class Breast Cancer Histopathological Image Classification Using Multi-Scale Pooled Image Feature Representation (MPIFR) and One-Versus-One Support Vector Machines." Applied Sciences 13, no. 1 (December 22, 2022): 156. http://dx.doi.org/10.3390/app13010156.
Full textClement, David, Emmanuel Agu, John Obayemi, Steve Adeshina, and Wole Soboyejo. "Breast Cancer Tumor Classification Using a Bag of Deep Multi-Resolution Convolutional Features." Informatics 9, no. 4 (October 28, 2022): 91. http://dx.doi.org/10.3390/informatics9040091.
Full textLu, Shida, Kai Huang, Talha Meraj, and Hafiz Tayyab Rauf. "A novel CAPTCHA solver framework using deep skipping Convolutional Neural Networks." PeerJ Computer Science 8 (April 6, 2022): e879. http://dx.doi.org/10.7717/peerj-cs.879.
Full textTao, Ran, Zhaoya Gong, Qiwei Ma, and Jean-Claude Thill. "Boosting Computational Effectiveness in Big Spatial Flow Data Analysis with Intelligent Data Reduction." ISPRS International Journal of Geo-Information 9, no. 5 (May 6, 2020): 299. http://dx.doi.org/10.3390/ijgi9050299.
Full textTang, Yansong, Xingyu Liu, Xumin Yu, Danyang Zhang, Jiwen Lu, and Jie Zhou. "Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based Action Recognition." ACM Transactions on Multimedia Computing, Communications, and Applications 18, no. 2 (May 31, 2022): 1–24. http://dx.doi.org/10.1145/3472722.
Full textIsthigosah, Maie, Andi Sunyoto, and Tonny Hidayat. "Image Augmentation for BreaKHis Medical Data using Convolutional Neural Networks." sinkron 8, no. 4 (October 1, 2023): 2381–92. http://dx.doi.org/10.33395/sinkron.v8i4.12878.
Full textLaporte, Matias, Martin Gjoreski, and Marc Langheinrich. "LAUREATE." Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 7, no. 3 (September 27, 2023): 1–41. http://dx.doi.org/10.1145/3610892.
Full text