Academic literature on the topic 'Branching processes'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Branching processes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Branching processes"

1

Nerman, Olle, S. Asmussen, and H. Hering. "Branching Processes." Journal of the American Statistical Association 81, no. 395 (September 1986): 858. http://dx.doi.org/10.2307/2289024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Krapivsky, P. L., and S. Redner. "Immortal branching processes." Physica A: Statistical Mechanics and its Applications 571 (June 2021): 125853. http://dx.doi.org/10.1016/j.physa.2021.125853.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mayster, Penka. "Alternating branching processes." Journal of Applied Probability 42, no. 4 (December 2005): 1095–108. http://dx.doi.org/10.1239/jap/1134587819.

Full text
Abstract:
We introduce the idea of controlling branching processes by means of another branching process, using the fractional thinning operator of Steutel and van Harn. This idea is then adapted to the model of alternating branching, where two Markov branching processes act alternately at random observation and treatment times. We study the extinction probability and limit theorems for reproduction by n cycles, as n → ∞.
APA, Harvard, Vancouver, ISO, and other styles
4

Mayster, Penka. "Alternating branching processes." Journal of Applied Probability 42, no. 04 (December 2005): 1095–108. http://dx.doi.org/10.1017/s0021900200001133.

Full text
Abstract:
We introduce the idea of controlling branching processes by means of another branching process, using the fractional thinning operator of Steutel and van Harn. This idea is then adapted to the model of alternating branching, where two Markov branching processes act alternately at random observation and treatment times. We study the extinction probability and limit theorems for reproduction by n cycles, as n → ∞.
APA, Harvard, Vancouver, ISO, and other styles
5

Weiss, Gideon. "Branching Bandit Processes." Probability in the Engineering and Informational Sciences 2, no. 3 (July 1988): 269–78. http://dx.doi.org/10.1017/s0269964800000826.

Full text
Abstract:
A set of ni arms of type i, i = 1,…, L, is available. A pull of arm of type i occupies a duration Vi at the end of which a reward Ci and Ni1,…, NiL new arms are obtained, while all other arms are frozen. A Gittins priority order of types is obtained and shown to yield the maximal discounted reward from this branching process of arms.
APA, Harvard, Vancouver, ISO, and other styles
6

Bramson, Maury, Ding Wan-ding, and Rick Durrett. "Annihilating branching processes." Stochastic Processes and their Applications 37, no. 1 (February 1991): 1–17. http://dx.doi.org/10.1016/0304-4149(91)90056-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Vatutin, V. A., and A. M. Zubkov. "Branching processes. II." Journal of Soviet Mathematics 67, no. 6 (December 1993): 3407–85. http://dx.doi.org/10.1007/bf01096272.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vatutin, V. A., and A. M. Zubkov. "Branching processes. I." Journal of Soviet Mathematics 39, no. 1 (October 1987): 2431–75. http://dx.doi.org/10.1007/bf01086176.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jagers, Peter, and Andreas Lagerås. "General branching processes conditioned on extinction are still branching processes." Electronic Communications in Probability 13 (2008): 540–47. http://dx.doi.org/10.1214/ecp.v13-1419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Zenghu. "Path-valued branching processes and nonlocal branching superprocesses." Annals of Probability 42, no. 1 (January 2014): 41–79. http://dx.doi.org/10.1214/12-aop759.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Branching processes"

1

Harris, John William. "Branching diffusion processes." Thesis, University of Bath, 2006. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.428379.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fittipaldi, María Clara. "Representation results for continuos-state branching processes and logistic branching processes." Tesis, Universidad de Chile, 2014. http://www.repositorio.uchile.cl/handle/2250/116458.

Full text
Abstract:
Doctora en Ciencias de la Ingeniería, Mención Modelación Matemática
El objetivo de este trabajo es explorar el comportamiento de los procesos de rami ficación evolucionando a tiempo y estados continuos, y encontrar representaciones para su trayectoria y su genealogía. En el primer capítulo se muestra que un proceso de ramifi cación condicionado a no extinguirse es la única solución fuerte de una ecuación diferencial estocástica conducida por un movimiento Browniano y una medida puntual de Poisson, más un subordinador que representa la inmigración, dónde estos procesos son mutuamente independientes. Para esto se usa el hecho de que es posible obtener la ley del proceso condicionado a partir del proceso original, a través de su h-transformada, y se da una manera trayectorial de construir la inmigración a partir de los saltos del proceso. En el segundo capítulo se encuentra una representación para los procesos de rami ficación con crecimiento logístico, usando ecuaciones estocásticas. En particular, usando la de finición general dada por A. Lambert, se prueba que un proceso logístico es la única solución fuerte de una ecuación estocástica conducida por un movimiento Browniano y una medida puntual de Poisson, pero con un drift negativo fruto de la competencia entre individuos. En este capítulo se encuentra además una ecuación diferencial estocástica asociada con un proceso logístico condicionado a no extinguirse, suponiendo que éste existe y que puede ser de finido a través de una h-transformada. Esta representación muestra que nuevamente el condicionamiento da origen a un término correspondiente a la inmigración, pero en este caso dependiente de la población. Por último, en el tercer capítulo se obtiene una representación de tipo Ray-Knight para los procesos de ramifi cación logísticos, lo que da una descripción de su genealogía continua. Para esto, se utiliza la construcción de árboles aleatorios continuos asociados con procesos de Lévy generales dada por J.-F. Le Gall e Y. Le Jan, y una generalización del procedimiento de poda desarrollado por R. Abraham, J.-F. Delmas. Este resultado extiende la representación de Ray-Knight para procesos de difusión logísticos dada por V. Le, E. Pardoux y A. Wakolbinger.
APA, Harvard, Vancouver, ISO, and other styles
3

Ku, Ho Ming. "Interacting Markov branching processes." Thesis, University of Liverpool, 2014. http://livrepository.liverpool.ac.uk/2002759/.

Full text
Abstract:
In engineering, biology and physics, in many systems, the particles or members give birth and die through time. These systems can be modeled by continuoustime Markov Chains and Markov Processes. Applications of Markov Processes are investigated by many scientists, Jagers [1975] for example . In ordinary Markov branching processes, each particles or members are assumed to be identical and independent. However, in some cases, each two members of the species may interact/collide together to give new birth. In considering these cases, we need to have some more general processes. We may use collision branching processes to model such systems. Then, in order to consider an even more general model, i.e. each particles can have branching and collision effect. In this case the branching component and collision component will have an interaction effect. We consider this model as interacting branching collision processes. In this thesis, in Chapter 1, we firstly look at some background, basic concepts of continuous-time Markov Chains and ordinary Markov branching processes. After revising some basic concepts and models, we look into more complicated models, collision branching processes and interacting branching collision processes. In Chapter 2, for collision branching processes, we investigate the basic properties, criteria of uniqueness, and explicit expressions for the extinction probability and the expected/mean extinction time and expected/mean explosion time. In Chapter 3, for interacting branching collision processes, similar to the structure in last chapter, we investigate the basic properties, criteria of uniqueness. Because of the more complicated model settings, a lot more details are required in considering the extinction probability. We will divide this section into several parts and consider the extinction probability under different cases and assumptions. After considering the extinction probability for the interacting branching processes, we notice that the explicit form of the extinction probability may be too complicated. In the last part of Chapter 3, we discuss the asymptotic behavior for the extinction probability of the interacting branching collision processes. In Chapter 4, we look at a related but still important branching model, Markov branching processes with immigration, emigration and resurrection. We investigate the basic properties, criteria of uniqueness. The most interesting part is that we investigate the extinction probability with our technique/methods using in Chapter 4. This can also be served as a good example of the methods introducing in Chapter 3. In Chapter 5, we look at two interacting branching models, One is interacting collision process with immigration, emigration and resurrection. The other one is interacting branching collision processes with immigration, emigration and resurrection. we investigate the basic properties, criteria of uniqueness and extinction probability. My original material starts from Chapter 4. The model used in chapter 4 were introduced by Li and Liu [2011]. In Li and Liu [2011], some calculation in cases of extinction probability evaluation were not strictly defined. My contribution focuses on the extinction probability evaluation and discussing the asymptotic behavior for the extinction probability in Chapter 4. A paper for this model will be submitted in this year. While two interacting branching models are discussed in Chapter 5. Some important properties for the two models are studied in detail.
APA, Harvard, Vancouver, ISO, and other styles
4

Collins, Joseph P. "Branching processes with varying environments." Thesis, University of Bath, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.607471.

Full text
Abstract:
This thesis concentrates on Branching Processes. We look at applying spine techniques and martingale changes of measure in order to first provide alternative proofs of well known discrete-time results concerning Branching Processes in Random Environments. We then apply the same ideas in a different setting to study Branching Brownian Motion with a Random Environment, focussing on the long-term spatial behaviour of the process. The final area of interest is Branching Brownian Motion with absorption at the origin, where we consider t he asymptotic behaviour of the survival probabilities near criticality in variations on an original model.
APA, Harvard, Vancouver, ISO, and other styles
5

Cole, D. J. "Stochastic branching processes in biology." Thesis, University of Kent, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270684.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Janarthanan, Sivarjalingam. "Spatial spread in general branching processes." Thesis, University of Sheffield, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.265577.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Marguet, Aline. "Branching processes for structured populations and estimators for cell division." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLX073/document.

Full text
Abstract:
Cette thèse porte sur l'étude probabiliste et statistique de populations sans interactions structurées par un trait. Elle est motivée par la compréhension des mécanismes de division et de vieillissement cellulaire. On modélise la dynamique de ces populations à l'aide d'un processus de Markov branchant à valeurs mesures. Chaque individu dans la population est caractérisé par un trait (l'âge, la taille, etc...) dont la dynamique au cours du temps suit un processus de Markov. Ce trait détermine le cycle de vie de chaque individu : sa durée de vie, son nombre de descendants et le trait à la naissance de ses descendants. Dans un premier temps, on s'intéresse à la question de l'échantillonnage uniforme dans la population. Nous décrivons le processus pénalisé, appelé processus auxiliaire, qui correspond au trait d'un individu "typique" dans la population en donnant son générateur infinitésimal. Dans un second temps, nous nous intéressons au comportement asymptotique de la mesure empirique associée au processus de branchement. Sous des hypothèses assurant l'ergodicité du processus auxiliaire, nous montrons que le processus auxiliaire correspond asymptotiquement au trait le long de sa lignée ancestrale d'un individu échantillonné uniformément dans la population. Enfin, à partir de données composées des traits à la naissance des individus dans l'arbre jusqu'à une génération donnée, nous proposons des estimateurs à noyau de la densité de transition de la chaine correspondant au trait le long d'une lignée ainsi que de sa mesure invariante. De plus, dans le cas d'une diffusion réfléchie sur un compact, nous estimons par maximum de vraisemblance le taux de division du processus. Nous montrons la consistance de cet estimateur ainsi que sa normalité asymptotique. L'implémentation numérique de l'estimateur est par ailleurs réalisée
We study structured populations without interactions from a probabilistic and a statistical point of view. The underlying motivation of this work is the understanding of cell division mechanisms and of cell aging. We use the formalism of branching measure-valued Markov processes. In our model, each individual is characterized by a trait (age, size, etc...) which moves according to a Markov process. The rate of division of each individual is a function of its trait and when a branching event occurs, the trait of the descendants at birth depends on the trait of the mother and on the number of descendants. First, we study the trait of a uniformly sampled individual in the population. We explicitly describe the penalized Markov process, named auxiliary process, corresponding to the dynamic of the trait of a "typical" individual by giving its associated infinitesimal generator. Then, we study the asymptotic behavior of the empirical measure associated with the branching process. Under assumptions assuring the ergodicity of the auxiliary process, we prove that the auxiliary process asymptotically corresponds to the trait along its ancestral lineage of a uniformly sampled individual in the population. Finally, we address the problem of parameter estimation in the case of a branching process structured by a diffusion. We consider data composed of the trait at birth of all individuals in the population until a given generation. We give kernel estimators for the transition density and the invariant measure of the chain corresponding to the trait of an individual along a lineage. Moreover, in the case of a reflected diffusion on a compact set, we use maximum likelihood estimation to reconstruct the division rate. We prove consistency and asymptotic normality for this estimator. We also carry out the numerical implementation of the estimator
APA, Harvard, Vancouver, ISO, and other styles
8

Bocharov, Sergey. "Branching Lévy Processes with Inhomogeneous Breeding Potentials." Thesis, University of Bath, 2012. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.571868.

Full text
Abstract:
The object of study in this thesis is a number of different models of branching Levy processes in inhomogeneous breeding potential. We employ some widely-used spine techniques to investigate various features of these models for their subsequent comparison. The thesis is divided into 5 chapters. In the first chapter we introduce the general framework for branching Markov processes within which we are going to present all our results. In the second chapter we consider a branching Brownian motion in the potential β|·|p, β> 0, p ≥0. We give a new proof of the result about the critical value of p for the explosion time of the population. The main advantage of the new proof is that it can be easily generalised to other models. The third chapter is devoted to continuous-time branching random walks in the potential β|·|p, β> 0, p ≥0. We give results about the explosion time and the right most particle behaviour comparing them with the known results for the branching Brownian motion. In the fourth chapter we look at general branching Levy processes in the potential β|·|p, β> 0, p ≥0. Subject to certain assumptions we prove some results about the explosion time and the rightmost particle. We exhibit how the corresponding results for the branching Brownian motion and and the branching random walk fit into the general structure. The last chapter considers a branching Brownian motion with branching taking place at the origin on the local time scale. We present some results about the population dynamics and the right most particle behaviour. We also prove the Strong Law of Large Numbers for this model.
APA, Harvard, Vancouver, ISO, and other styles
9

Hautphenne, Sophie. "An algorithmic look at phase-controlled branching processes." Doctoral thesis, Universite Libre de Bruxelles, 2009. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210255.

Full text
Abstract:
Branching processes are stochastic processes describing the evolution of populations of individuals which reproduce and die independently of each other according to specific probability laws. We consider a particular class of branching processes, called Markovian binary trees, where the lifetime and birth epochs of individuals are controlled by a Markovian arrival process.

Our objective is to develop numerical methods to answer several questions about Markovian binary trees. The issue of the extinction probability is the main question addressed in the thesis. We first assume independence between individuals. In this case, the extinction probability is the minimal nonnegative solution of a matrix fixed point equation which can generally not be solved analytically. In order to solve this equation, we develop a linear algorithm based on functional iterations, and a quadratic algorithm, based on Newton's method, and we give their probabilistic interpretation in terms of the tree.

Next, we look at some transient features for a Markovian binary tree: the distribution of the population size at any given time, of the time until extinction and of the total progeny. These distributions are obtained using the Kolmogorov and the renewal approaches.

We illustrate the results mentioned above through an example where the Markovian binary tree serves as a model for female families in different countries, for which we use real data provided by the World Health Organization website.

Finally, we analyze the case where Markovian binary trees evolve under the external influence of a random environment or a catastrophe process. In this case, individuals do not behave independently of each other anymore, and the extinction probability may no longer be expressed as the solution of a fixed point equation, which makes the analysis more complicated. We approach the extinction probability, through the study of the population size distribution, by purely numerical methods of resolution of partial differential equations, and also by probabilistic methods imposing constraints on the external process or on the maximal population size.

/

Les processus de branchements sont des processus stochastiques décrivant l'évolution de populations d'individus qui se reproduisent et meurent indépendamment les uns des autres, suivant des lois de probabilités spécifiques.

Nous considérons une classe particulière de processus de branchement, appelés arbres binaires Markoviens, dans lesquels la vie d'un individu et ses instants de reproduction sont contrôlés par un MAP. Notre objectif est de développer des méthodes numériques pour répondre à plusieurs questions à propos des arbres binaires Markoviens.

La question de la probabilité d'extinction d'un arbre binaire Markovien est la principale abordée dans la thèse. Nous faisons tout d'abord l'hypothèse d'indépendance entre individus. Dans ce cas, la probabilité d'extinction s'exprime comme la solution minimale non négative d'une équation de point fixe matricielle, qui ne peut être résolue analytiquement. Afin de résoudre cette équation, nous développons un algorithme linéaire, basé sur l'itération fonctionnelle, ainsi que des algorithmes quadratiques, basés sur la méthode de Newton, et nous donnons leur interprétation probabiliste en termes de l'arbre que l'on étudie.

Nous nous intéressons ensuite à certaines caractéristiques transitoires d'un arbre binaire Markovien: la distribution de la taille de la population à un instant donné, celle du temps jusqu'à l'extinction du processus et celle de la descendance totale. Ces distributions sont obtenues en utilisant l'approche de Kolmogorov ainsi que l'approche de renouvellement.

Nous illustrons les résultats mentionnés plus haut au travers d'un exemple où l'arbre binaire Markovien sert de modèle pour des populations féminines dans différents pays, et pour lesquelles nous utilisons des données réelles fournies par la World Health Organization.

Enfin, nous analysons le cas où les arbres binaires Markoviens évoluent sous une influence extérieure aléatoire, comme un environnement Markovien aléatoire ou un processus de catastrophes. Dans ce cas, les individus ne se comportent plus indépendamment les uns des autres, et la probabilité d'extinction ne peut plus s'exprimer comme la solution d'une équation de point fixe, ce qui rend l'analyse plus compliquée. Nous approchons la probabilité d'extinction au travers de l'étude de la distribution de la taille de la population, à la fois par des méthodes purement numériques de résolution d'équations aux dérivées partielles, ainsi que par des méthodes probabilistes en imposant des contraintes sur le processus extérieur ou sur la taille maximale de la population.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished

APA, Harvard, Vancouver, ISO, and other styles
10

Wang, Ying. "Branching Processes: Optimization, Variational Characterization, and Continuous Approximation." Doctoral thesis, Universitätsbibliothek Leipzig, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-62048.

Full text
Abstract:
In this thesis, we use multitype Galton-Watson branching processes in random environments as individual-based models for the evolution of structured populations with both demographic stochasticity and environmental stochasticity, and investigate the phenotype allocation problem. We explore a variational characterization for the stochastic evolution of a structured population modeled by a multitype Galton-Watson branching process. When the population under consideration is large and the time scale is fast, we deduce the continuous approximation for multitype Markov branching processes in random environments. Many problems in evolutionary biology involve the allocation of some limited resource among several investments. It is often of interest to know whether, and how, allocation strategies can be optimized for the evolution of a structured population with randomness. In our work, the investments represent different types of offspring, or alternative strategies for allocations to offspring. As payoffs we consider the long-term growth rate, the expected number of descendants with some future discount factor, the extinction probability of the lineage, or the expected survival time. Two different kinds of population randomness are considered: demographic stochasticity and environmental stochasticity. In chapter 2, we solve the allocation problem w.r.t. the above payoff functions in three stochastic population models depending on different kinds of population randomness. Evolution is often understood as an optimization problem, and there is a long tradition to look at evolutionary models from a variational perspective. In chapter 3, we deduce a variational characterization for the stochastic evolution of a structured population modeled by a multitype Galton-Watson branching process. In particular, the so-called retrospective process plays an important role in the description of the equilibrium state used in the variational characterization. We define the retrospective process associated with a multitype Galton-Watson branching process and identify it with the mutation process describing the type evolution along typical lineages of the multitype Galton-Watson branching process. Continuous approximation of branching processes is of both practical and theoretical interest. However, to our knowledge, there is no literature on approximation of multitype branching processes in random environments. In chapter 4, we firstly construct a multitype Markov branching process in a random environment. When conditioned on the random environment, we deduce the Kolmogorov equations and the mean matrix for the conditioned branching process. Then we introduce a parallel mutation-selection Markov branching process in a random environment and analyze its instability property. Finally, we deduce a weak convergence result for a sequence of the parallel Markov branching processes in random environments and give examples for applications.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Branching processes"

1

Heyde, C. C., ed. Branching Processes. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-2558-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

González Velasco, Miguel, Inés M. del Puerto García, and George P. Yanev. Controlled Branching Processes. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119452973.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

M, Ahsanullah, and Yanev George P, eds. Records and branching processes. Hauppauge, N.Y: Nova Science Publishers, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kimmel, Marek, and David E. Axelrod. Branching Processes in Biology. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-1559-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kimmel, Marek, and David E. Axelrod. Branching Processes in Biology. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/b97371.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Axelrod, David E., 1940- author, ed. Branching processes in biology. New York: Springer, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Harris, Theodore Edward. The theory of branching processes. New York: Dover Publications, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Athreya, Krishna B., and Peter Jagers, eds. Classical and Modern Branching Processes. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-1862-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Taïb, Ziad. Branching Processes and Neutral Evolution. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-51536-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

del Puerto, Inés M., Miguel González, Cristina Gutiérrez, Rodrigo Martínez, Carmen Minuesa, Manuel Molina, Manuel Mota, and Alfonso Ramos, eds. Branching Processes and Their Applications. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31641-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Branching processes"

1

Yadav, Sumit Kumar. "Branching Processes." In Advances in Analytics and Applications, 31–41. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1208-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Privault, Nicolas. "Branching Processes." In Springer Undergraduate Mathematics Series, 189–209. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0659-4_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rozanov, Yuriĭ A. "Branching Processes." In Introduction to Random Processes, 25–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-72717-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pardoux, Étienne. "Branching Processes." In Probabilistic Models of Population Evolution, 5–11. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30328-4_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gikhman, Iosif Ilyich, and Anatoli Vladimirovich Skorokhod. "Branching Processes." In The Theory of Stochastic Processes II, 377–432. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-61921-2_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Goswami, A., and B. V. Rao. "Branching Processes." In Texts and Readings in Mathematics, 71–96. Gurgaon: Hindustan Book Agency, 2006. http://dx.doi.org/10.1007/978-93-86279-31-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lanchier, Nicolas. "Branching processes." In Stochastic Modeling, 93–99. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50038-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Alava, Mikko J., and Kent Bækgaard Lauritsen. "Branching Processes." In Encyclopedia of Complexity and Systems Science, 1–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-27737-5_43-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Privault, Nicolas. "Branching Processes." In Springer Undergraduate Mathematics Series, 149–66. Singapore: Springer Singapore, 2013. http://dx.doi.org/10.1007/978-981-4451-51-2_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Vrbik, Jan, and Paul Vrbik. "Branching Processes." In Universitext, 73–90. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4057-4_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Branching processes"

1

Trivedi, Ashutosh, and Dominik Wojtczak. "Timed Branching Processes." In 2010 Seventh International Conference on the Quantitative Evaluation of Systems (QEST). IEEE, 2010. http://dx.doi.org/10.1109/qest.2010.36.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mista, Agustín, Alejandro Russo, and John Hughes. "Branching processes for QuickCheck generators." In ICFP '18: 23nd ACM SIGPLAN International Conference on Functional Programming. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3242744.3242747.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Delfieu, David, and Medesu Sogbohossou. "An algebra for branching processes." In 2013 International Conference on Control, Decision and Information Technologies (CoDIT). IEEE, 2013. http://dx.doi.org/10.1109/codit.2013.6689616.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Murai, Fabricio, Bruno Ribeiro, Donald Towsley, and Krista Gile. "Characterizing branching processes from sampled data." In the 22nd International Conference. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2487788.2488053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Terzieva, Antoanela. "Model of phytoplankton by branching processes." In The 4th Virtual International Conference on Advanced Research in Scientific Areas. Publishing Society, 2015. http://dx.doi.org/10.18638/arsa.2015.4.1.803.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mitrofani, Ioanna A., and Vasilis P. Koutras. "Modelling Refinery Pump System Reliability using Branching Processes." In Proceedings of the 29th European Safety and Reliability Conference (ESREL). Singapore: Research Publishing Services, 2020. http://dx.doi.org/10.3850/978-981-14-8593-0_5671-cd.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Baake, Ellen, and Robert Bialowons. "Ancestral processes with selection: Branching and Moran models." In Stochastic Models in Biological Sciences. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc80-0-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nakagawa, Hideyuki, and Mamoru Kitaura. "Nonradiative branching processes of self-trapped excitons in cadmium halide crystals." In Excitonic Processes in Condensed Matter: International Conference, edited by Jai Singh. SPIE, 1995. http://dx.doi.org/10.1117/12.200961.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Czerwinski, Wojciech, and Petr Jancar. "Branching Bisimilarity of Normed BPA Processes Is in NEXPTIME." In 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE, 2015. http://dx.doi.org/10.1109/lics.2015.25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Staneva, A., and V. Stoimenova. "Machine learning based parameter estimation of multitype branching processes." In THE 5TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN INFORMATION SYSTEMS (CIIS 2022): Intelligent and Resilient Digital Innovations for Sustainable Living. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0177863.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Branching processes"

1

Puerto, Inés M. del, George P. Yanev, Manuel Molina, Nikolay M. Yanev, and Miguel González. Continuous-time Controlled Branching Processes. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, March 2021. http://dx.doi.org/10.7546/crabs.2021.03.04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Durham, Stephen D., and Kai F. Yu. Regenerative Sampling and Monotonic Branching Processes. Fort Belvoir, VA: Defense Technical Information Center, May 1986. http://dx.doi.org/10.21236/ada170145.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Slavtchova-Bojkova, Marussia, and Kaloyan Vitanov. Modelling Cancer Evolution by Multi-type Agedependent Branching Processes. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, October 2018. http://dx.doi.org/10.7546/crabs.2018.10.01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mitov, Kosto V. Critical Markov Branching Processes with Non-homogeneous Poisson Immigration. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, July 2020. http://dx.doi.org/10.7546/crabs.2020.07.02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Slavtchova-Bojkova, Maroussia N., Ollivier Hyrien, and Nikolay M. Yanev. Poisson Random Measures and Noncritical Multitype Markov Branching Processes. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, May 2021. http://dx.doi.org/10.7546/crabs.2021.05.03.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yanev, Nikolay M., Vessela Stoimenova, and Dimitar V. Atanasov. Branching Stochastic Processes with Immigration as Models of Covid-19 Pandemic Development. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, November 2020. http://dx.doi.org/10.7546/crabs.2020.11.02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dickman, Martin B., and Oded Yarden. Regulation of Early Events in Hyphal Elongation, Branching and Differentiation of Filamentous Fungi. United States Department of Agriculture, 2000. http://dx.doi.org/10.32747/2000.7580674.bard.

Full text
Abstract:
In filamentous fungi, hyphal elongation, branching and morphogenesis are in many cases the key to successful saprophytic and pathogenic fungal proliferation. The understanding of the fungal morphogenetic response to environmental cues is in its infancy. Studies concerning the regulation of fungal growth and development (some of which have been obtained by the participating collaborators in this project) point to the fact that ser/thr protein kinases and phosphatases are (i) involved in the regulation of such processes and (ii) share common structural and functional features between saprophytes and pathogens. It is our objective to combine a pharmaceutical and a genetic approach in order to identify, characterize and functionally dissect some of the regulatory factors involved in hyphal growth, branching and differentiation. Using an immunohistochemical approach, a ser/thr protein kinase involved in hyphal elongation in both Neurospora crassa and Colletotrichum trifolii has been localized in order to identify the physical arena of regulation of hyphal elongation. The analysis of additional kinases and phosphatases (e.g. Protein kinase C, cAMP-dependent kinase, lipid-activated protein kinase, components of the type 2A protein phosphatase) as well as a RAS-related gene (an additional key participant in signal transduction) has been performed. In order to succeed in advancing the goals of this project, we have taken advantage of available elongation/branching mutants in N. crassa and continuously combined the accumulated information obtained while studying the two systems in order to dissect the elements involved in these processes. The various inhibitors/effectors analyzed can serve as a basis for modification to be used as anti-fungal compounds. Understanding the regulation of hyphal proliferation is a key requirement for identifying novel target points for either curbing fungal growth (as in the case of pathogenesis) or affecting growth patterns in various biotechnological processes. The major objective of our joint project was to advance our understanding of regulation of hyphal growth, especially during early events of fungal germination. Towards achieving this goal, we have coupled the analysis of a genetically tractable organism (N. crassa) with a plant pathogen o economic importance (C. trifolii). As the project progressed we believe that the results obtained have provided a reinforcement to our basic approach which called for combining the two fungal systems for a joint research project. On the one hand, we feel that much of the advance made was possible due to the amenability of N. crassa to genetic manipulations. The relevance of some of the initial findings obtained in Neurospora have been proven to be relevant to the plant pathogen while unique features of the pathogen have been identified in Colletotrichum. Most of the results obtained from this research project have been published. Thus, the main volume of this report is comprised of the relevant publications describing the research and results obtained.
APA, Harvard, Vancouver, ISO, and other styles
8

Mayster, Penka, and Assen Tchorbadjieff. Supercritical Markov Branching Process with Random Initial Condition. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, February 2019. http://dx.doi.org/10.7546/crabs.2019.01.03.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Greenberg, Kyle, Parag Pathak, and Tayfun Sönmez. Mechanism Design meets Priority Design: Redesigning the US Army's Branching Process. Cambridge, MA: National Bureau of Economic Research, June 2021. http://dx.doi.org/10.3386/w28911.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Carpita, Nicholas C., Ruth Ben-Arie, and Amnon Lers. Pectin Cross-Linking Dynamics and Wall Softening during Fruit Ripening. United States Department of Agriculture, July 2002. http://dx.doi.org/10.32747/2002.7585197.bard.

Full text
Abstract:
Our study was designed to elucidate the chemical determinants of pectin cross-linking in developing fruits of apple and peach and to evaluate the role of breakage cross-linkages in swelling, softening, and cell separation during the ripening. Peaches cell walls soften and swell considerably during the ripening, whereas apples fruit cells maintain wall firmness but cells separate during late stages of ripening. We used a "double-reduction" technique to show that levels of non-methyl esters of polyuronic acid molecules were constant during the development and ripening and decreased only in overripe fruit. In peach, methyl and non-methyl esters increased during the development and decreased markedly during the ripening. Non-methyl ester linkages in both fruit decreased accompanied fruit softening. The identity of the second component of the linkage and its definitive role in the fruit softening remain elusive. In preliminary examination of isolated apples cell walls, we found that phenolic compounds accumulate early in wall development but decrease markedly during ripening. Quantitative texture analysis was used to correlate with changes to wall chemistry from the fresh-picked ripe stage to the stage during storage when the cell separation occurs. Cell wall composition is similar in all cultivars, with arabinose as the principal neutral sugar. Extensive de-branching of these highly branched arabinans pre-stages softening and cell-cell separation during over-ripening of apple. The longer 5-arabinans remain attached to the major pectic polymer rhamnogalacturonan I (RG I) backbone. The degree of RG I branching, as judged from the ratios of 2-Rha:2,4-Rha, also decreases, specially after an extensive arabinan de-branching. Loss of the 4-Rham linkages correlated strongly with the softening of the fruit. Loss of the monomer or polymer linked to the RG I produce directly or indirectly the softening of the fruit. This result will help to understand the fruit softening and to have better control of the textural changes in fruit during the ripening and especially during the storage. 'Wooliness', an undesirable mealy texture that is induced during chilling of some peach cultivars, greatly reduces the fruit storage possibilities. In order to examine the hypothesis that the basis for this disorder is related to abnormality in the cell wall softening process we have carried out a comparative analysis using the resistant cultivar, Sunsnow, and a sensitive one, Hermosa. We investigated the activity of several pectin- and glycan-modifying enzymes and the expression of their genes during ripening, chilling, and subsequent shelf-life. The changes in carbohydrate status and in methyl vs. non-methyl uronate ester levels in the walls of these cultivars were examined as well to provide a basis for comparison of the relevant gene expression that may impact appearance of the wooly character. The activities of the specific polygalacturonase (PGase) and a CMC-cellulase activities are significantly elevated in walls of peaches that have become wooly. Cellulase activities correlated well with increased level of the transcript, but differential expression of PGase did not correspond with the observed pattern of mRNA accumulation. When expression of ethylene biosynthesis related genes was followed no significant differences in ACC synthase gene expression was observed in the wooly fruit while the normal activation of the ACC oxidase was partially repressed in the Hermosa wooly fruits. Normal ripening-related loss of the uronic acid-rich polymers was stalled in the wooly Hermosa inconsistent with the observed elevation in a specific PGase activity but consistent with PG gene expression. In general, analysis of the level of total esterification, degree of methyl esterification and level of non-methyl esters did not reveal any major alterations between the different fruit varieties or between normal and abnormal ripening. Some decrease in the level of uronic acids methyl esterification was observed for both Hermosa and Sunsnow undergoing ripening following storage at low temperature but not in fruits ripening after harvest. Our results support a role for imbalanced cell wall degradation as a basis for the chilling disorder. While these results do not support a role for the imbalance between PG and pectin methyl esterase (PME) activities as the basis for the disorder they suggest a possible role for imbalance between cellulose and other cell wall polymer degradation during the softening process.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography