Journal articles on the topic 'Brake cooling'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Brake cooling.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Ramachandran, G., K. Kathiresan, and M. Venkatesan. "Brake Characteristics and Cooling Methods – A Review." Applied Mechanics and Materials 813-814 (November 2015): 949–53. http://dx.doi.org/10.4028/www.scientific.net/amm.813-814.949.
Full textMullisen, R. S. "Thermal Engineering Design Project: Disk Brake Cooling Simulation." International Journal of Mechanical Engineering Education 25, no. 4 (October 1997): 299–305. http://dx.doi.org/10.1177/030641909702500406.
Full textBelhocien, Ali, and Wan Zaidi Wan Omar. "CFD Modeling and Simulation of Aeorodynamic Cooling of Automotive Brake Rotor." Journal of Multiscale Modelling 09, no. 01 (March 2018): 1750008. http://dx.doi.org/10.1142/s1756973717500081.
Full textDuan, Zheng Yong, Yong Peng, and Heng Wu. "Optimization and Control Researches into the Cooling System of Pneumatic Disc Brake." Advanced Materials Research 479-481 (February 2012): 1414–20. http://dx.doi.org/10.4028/www.scientific.net/amr.479-481.1414.
Full textHsueh, M. H. "The Application of Thermoelectric Cooling Module in the Vehicle's Braking System." Applied Mechanics and Materials 163 (April 2012): 226–32. http://dx.doi.org/10.4028/www.scientific.net/amm.163.226.
Full textArasu, S., and A. Krishnamoorthy. "Design and Manufacturing of Conical Vent Profile Disc Brake." Applied Mechanics and Materials 766-767 (June 2015): 1028–33. http://dx.doi.org/10.4028/www.scientific.net/amm.766-767.1028.
Full textKathiresan, K., J. Adhavan, and M. Venkatesan. "Experimental Investigation on Droplet Cooling of Brakes." Applied Mechanics and Materials 592-594 (July 2014): 1585–89. http://dx.doi.org/10.4028/www.scientific.net/amm.592-594.1585.
Full textVoller, G. P., M. Tirovic, R. Morris, and P. Gibbens. "Analysis of automotive disc brake cooling characteristics." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 217, no. 8 (August 1, 2003): 657–66. http://dx.doi.org/10.1243/09544070360692050.
Full textLyons, O. F. P., D. B. Murray, and A. A. Torrance. "Air jet cooling of brake discs." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 222, no. 6 (June 1, 2008): 995–1004. http://dx.doi.org/10.1243/09544062jmes927.
Full textAntczak, Kamil, and Marcin Sosnowski. "Simulation of the influence of brake disc geometry of its cooling efficiency." International Journal of Engineering and Safety Sciences 1 (2020): 39–52. http://dx.doi.org/10.16926/ijess.2020.01.03.
Full textIvanova, L., and E. Kolotilo. "Bathroom brake circuits with vermicular graphite." Theory and practice of metallurgy, no. 6 (November 20, 2018): 40–49. http://dx.doi.org/10.34185/tpm.6.2018.05.
Full textStevens, Kevin, and Marko Tirovic. "Heat dissipation from a stationary brake disc, Part 1: Analytical modelling and experimental investigations." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 232, no. 9 (May 18, 2017): 1707–33. http://dx.doi.org/10.1177/0954406217707983.
Full textKrivosheya, Yuriy Vladimirovich, and Viktor Vasilyevich Bugaenko. "Fan cooling of friction band brake of railway rolling stock." Transport of the Urals, no. 4 (2020): 13–17. http://dx.doi.org/10.20291/1815-9400-2020-4-13-17.
Full textHe, Ya Feng. "The Performance Research of Automobile Disc Brake Based on Finite Element Technology." Advanced Materials Research 381 (November 2011): 90–93. http://dx.doi.org/10.4028/www.scientific.net/amr.381.90.
Full textLe Gigan, Gaël. "Improvement in the brake disc design for heavy vehicles by parametric evaluation." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 231, no. 14 (February 5, 2017): 1989–2004. http://dx.doi.org/10.1177/0954407016688421.
Full textGrigoratos, Theodoros, Carlos Agudelo, Jaroslaw Grochowicz, Sebastian Gramstat, Matt Robere, Guido Perricone, Agusti Sin, et al. "Statistical Assessment and Temperature Study from the Interlaboratory Application of the WLTP–Brake Cycle." Atmosphere 11, no. 12 (December 2, 2020): 1309. http://dx.doi.org/10.3390/atmos11121309.
Full textZhang, Shi Zhen, Wei Rui Wang, Liang Jin, and Wei Jiang. "Numerical Analysis and Experimental Study on Temperature Field of Brake Disc during the Air-Cooling Process." Advanced Materials Research 189-193 (February 2011): 2009–12. http://dx.doi.org/10.4028/www.scientific.net/amr.189-193.2009.
Full textLi, Gaohui. "The Design of the Automobile Brake Cooling System." OALib 05, no. 04 (2018): 1–10. http://dx.doi.org/10.4236/oalib.1104567.
Full textPetry, Matthias, Abdelkrim Lamjahdy, Ali Jawad, Bernd Markert, and Hubertus Murrenhoff. "Validation of a thermo- and a hydromechanical model of a brake system for high-speed rail applications." Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 232, no. 8 (March 26, 2018): 2149–62. http://dx.doi.org/10.1177/0954409718765348.
Full textSuchánek, Andrej, Jozef Harušinec, Mária Loulová, and Peter Strážovec. "Analysis of the distribution of temperature fields in the braked railway wheel." MATEC Web of Conferences 157 (2018): 02048. http://dx.doi.org/10.1051/matecconf/201815702048.
Full textLi, Sui Ping, Wei Dong Chen, and Jing Jing Yao. "Based on the Double SCM Real Time Control System Design of Drum Brake." Advanced Materials Research 706-708 (June 2013): 667–73. http://dx.doi.org/10.4028/www.scientific.net/amr.706-708.667.
Full textGarcía-León, Ricardo A., and Eder Flórez-Solano. "Dynamic analysis of three autoventilated disc brakes." Ingeniería e Investigación 37, no. 3 (September 1, 2017): 102–14. http://dx.doi.org/10.15446/ing.investig.v37n3.63381.
Full textVdovin, Alexey, Mats Gustafsson, and Simone Sebben. "A coupled approach for vehicle brake cooling performance simulations." International Journal of Thermal Sciences 132 (October 2018): 257–66. http://dx.doi.org/10.1016/j.ijthermalsci.2018.05.016.
Full textTirovic, Marko, and Kevin Stevens. "Heat dissipation from a stationary brake disc, Part 2: CFD modelling and experimental validations." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 232, no. 10 (May 18, 2017): 1898–924. http://dx.doi.org/10.1177/0954406217707984.
Full textMaleque, M. A., M. M. Rahman, and M. S. Hossain. "Conceptual Design of Aluminium Metal Matrix Composite Brake Rotor System." Advanced Materials Research 264-265 (June 2011): 1648–53. http://dx.doi.org/10.4028/www.scientific.net/amr.264-265.1648.
Full textXiong, Jing Jing, and Li Tao Zhou. "The Research and Development of Motor Cooling Control System Based on Electronic Parking Brake Test Bench." Applied Mechanics and Materials 733 (February 2015): 674–79. http://dx.doi.org/10.4028/www.scientific.net/amm.733.674.
Full textJiang, Lan, Yanli Jiang, Liang Yu, Hongliang Yang, Zishen Li, and Youdong Ding. "Thermo-Mechanical Coupling Analyses for Al Alloy Brake Discs with Al2O3-SiC(3D)/Al Alloy Composite Wear-Resisting Surface Layer for High-Speed Trains." Materials 12, no. 19 (September 27, 2019): 3155. http://dx.doi.org/10.3390/ma12193155.
Full textTang, Wen Xian, Yun Di Cai, Cheng Cheng, and Qiu Yun Huang. "Thermal Stress Analysis of Water-Cooling Brake Disc Based on 3D Thermo-Mechanical Coupling Model." Advanced Materials Research 314-316 (August 2011): 1581–86. http://dx.doi.org/10.4028/www.scientific.net/amr.314-316.1581.
Full textRouhi Moghanlou, Mohammad, and Hamed Saeidi Googarchin. "Three-dimensional coupled thermo-mechanical analysis for fatigue failure of a heavy vehicle brake disk: Simulation of braking and cooling phases." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 234, no. 13 (June 1, 2020): 3145–63. http://dx.doi.org/10.1177/0954407020921711.
Full textBorawski, Andrzej. "Suggested Research Method for Testing Selected Tribological Properties of Friction Components in Vehicle Braking Systems." Acta Mechanica et Automatica 10, no. 3 (September 1, 2016): 223–26. http://dx.doi.org/10.1515/ama-2016-0034.
Full textVernersson, T., and R. Lundén. "Temperatures at railway tread braking. Part 3: wheel and block temperatures and the influence of rail chill." Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 221, no. 4 (July 1, 2007): 443–54. http://dx.doi.org/10.1243/09544097jrrt91.
Full textSayeed Ahmed, Gulam, and Salem Algarni. "Design, Development and FE Thermal Analysis of a Radially Grooved Brake Disc Developed through Direct Metal Laser Sintering." Materials 11, no. 7 (July 13, 2018): 1211. http://dx.doi.org/10.3390/ma11071211.
Full textHolshev, N. V., A. A. Lavrenchenko, A. V. Prokhorov, and D. N. Konovalov. "The method of thermal calculation of automotive disc brake assemblies." Вестник гражданских инженеров 17, no. 4 (2020): 203–8. http://dx.doi.org/10.23968/1999-5571-2020-17-4-203-208.
Full textLitvinov, A. E., P. A. Polyakov, E. A. Polyakova, R. S. Tagiev, E. S. Fedotov, and A. A. Golikov. "Development of Methodology for Evaluating the Brake Disc Cooling System." Bulletin of Kalashnikov ISTU 23, no. 1 (June 15, 2020): 14. http://dx.doi.org/10.22213/2413-1172-2020-1-14-22.
Full textGarcía-León, Ricardo Andres, Wilder Quintero-Quintero, and Magda Rodriguez-Castilla. "Thermal analysis of three motorcycle disc brakes." Smart and Sustainable Built Environment 9, no. 2 (November 20, 2019): 208–26. http://dx.doi.org/10.1108/sasbe-07-2019-0098.
Full textNisonger, Robert L., Chih-hung Yen, and David Antanaitis. "High Temperature Brake Cooling - Characterization for Brake System Modeling in Race Track and High Energy Driving Conditions." SAE International Journal of Passenger Cars - Mechanical Systems 4, no. 1 (April 12, 2011): 384–98. http://dx.doi.org/10.4271/2011-01-0566.
Full textDyko, M. P., and K. Vafai. "Fundamental Issues and Recent Advancements in Analysis of Aircraft Brake Natural Convective Cooling." Journal of Heat Transfer 120, no. 4 (November 1, 1998): 840–57. http://dx.doi.org/10.1115/1.2825903.
Full textGramstat, Sebastian, Thilo Mertens, Robert Waninger, and Dmytro Lugovyy. "Impacts on Brake Particle Emission Testing." Atmosphere 11, no. 10 (October 21, 2020): 1132. http://dx.doi.org/10.3390/atmos11101132.
Full textVdovin, Alexey, and Gaël Le Gigan. "Aerodynamic and Thermal Modelling of Disc Brakes—Challenges and Limitations." Energies 13, no. 1 (January 1, 2020): 203. http://dx.doi.org/10.3390/en13010203.
Full textMunisamy, Kannan M., and Ramel Shafik. "Disk brake design for cooling improvement using Computational Fluid Dynamics (CFD)." IOP Conference Series: Earth and Environmental Science 16 (June 17, 2013): 012109. http://dx.doi.org/10.1088/1755-1315/16/1/012109.
Full textHuang, Hui, Shumei Chen, and Kaifeng Chen. "Novel magnetorheological brake with self-protection and water cooling for elevators." Journal of Mechanical Science and Technology 32, no. 5 (May 2018): 1955–64. http://dx.doi.org/10.1007/s12206-018-0403-6.
Full textZheng, Xun Jia, Tian Hong Luo, and Ce Jia. "Dynamic Response Modeling of Fluid-Solid Coupling for Wet Brake Disc." Applied Mechanics and Materials 475-476 (December 2013): 1397–401. http://dx.doi.org/10.4028/www.scientific.net/amm.475-476.1397.
Full textKalaaji, Jad, and Mervat Madi. "Reduction of disc brake fading using both design and material optimization." MATEC Web of Conferences 261 (2019): 02004. http://dx.doi.org/10.1051/matecconf/201926102004.
Full textGao, C. H., J. M. Huang, X. Z. Lin, and X. S. Tang. "Stress Analysis of Thermal Fatigue Fracture of Brake Disks Based on Thermomechanical Coupling." Journal of Tribology 129, no. 3 (December 6, 2006): 536–43. http://dx.doi.org/10.1115/1.2736437.
Full textPalmer, E., R. Mishra, and J. Fieldhouse. "An optimization study of a multiple-row pin-vented brake disc to promote brake cooling using computational fluid dynamics." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 223, no. 7 (July 2009): 865–75. http://dx.doi.org/10.1243/09544070jauto1053.
Full textBao, Ze Fu, Hai Feng Dai, Peng Zang, and Jiang Ping Wang. "Design and Application of Forced Heat Dispersing Device of Superdeep Drilling Rig in High Temperature." Advanced Materials Research 339 (September 2011): 561–65. http://dx.doi.org/10.4028/www.scientific.net/amr.339.561.
Full textHan, Ying. "Study on Hydraulic System for Full Hybrid Transmission." Applied Mechanics and Materials 607 (July 2014): 495–99. http://dx.doi.org/10.4028/www.scientific.net/amm.607.495.
Full textIdusuyi, Nosa, Ijeoma Babajide, Oluwaseun K. Ajayi, and Temilola T. Olugasa. "A Computational Study on the Use of an Aluminium Metal Matrix Composite and Aramid as Alternative Brake Disc and Brake Pad Material." Journal of Engineering 2014 (2014): 1–6. http://dx.doi.org/10.1155/2014/494697.
Full textKim, Moo-Geun, Sung-Kyu Ko, and Moon-Wan Lee. "A Study for the Cooling Performance of a Brake with Heat Pipes." Journal of the Korean Society of Marine Engineering 32, no. 4 (May 31, 2008): 563–69. http://dx.doi.org/10.5916/jkosme.2008.32.4.563.
Full textGalindo-Lopez, C. H., and M. Tirovic. "Understanding and improving the convective cooling of brake discs with radial vanes." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 222, no. 7 (July 2008): 1211–29. http://dx.doi.org/10.1243/09544070jauto594.
Full text