Academic literature on the topic 'Brain targeting lung administration'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Brain targeting lung administration.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Brain targeting lung administration"
Carlisle, Grant, Austin Fowler, Joel Soma, Lester Drewes, and Bret Friday. "SCIDOT-29. EVALUATING THE FEASIBILITY OF INTRANASAL FLT DELIVERY FOR PET IMAGING OF PRIMARY BRAIN TUMORS." Neuro-Oncology 21, Supplement_6 (November 2019): vi277. http://dx.doi.org/10.1093/neuonc/noz175.1165.
Full textBonthagarala, Brahmaiah, Shabana P., Abbaraju Lakshmi Harini, and Varun Dasari. "Nasal Drug Delivery: A Potential Route for Brain Targetting." International Journal of Advances in Scientific Research 1, no. 2 (April 1, 2015): 65. http://dx.doi.org/10.7439/ijasr.v1i2.1782.
Full textVerry, Camille, Sandrine Dufort, Benjamin Lemasson, Sylvie Grand, Johan Pietras, Irène Troprès, Yannick Crémillieux, et al. "Targeting brain metastases with ultrasmall theranostic nanoparticles, a first-in-human trial from an MRI perspective." Science Advances 6, no. 29 (July 2020): eaay5279. http://dx.doi.org/10.1126/sciadv.aay5279.
Full textNakayama, Shingo, Mamoru Sasaki, Shojiroh Morinaga, and Naoto Minematsu. "Nonsmall Cell Lung Carcinoma with Giant Cell Features Expressing Programmed Death-Ligand 1: A Report of a Patient Successfully Treated with Pembrolizumab." Case Reports in Oncological Medicine 2018 (2018): 1–4. http://dx.doi.org/10.1155/2018/5863015.
Full textMoholkar, Disha Nagesh, Raghuram Kandimalla, Farrukh Aqil, and Ramesh Gupta. "Abstract 372: Biodistribution and tumor targeting of exosomes using mouse models." Cancer Research 82, no. 12_Supplement (June 15, 2022): 372. http://dx.doi.org/10.1158/1538-7445.am2022-372.
Full textRezaei Aghdam, Hakimeh, Ahmad Bitarafan Rajabi, Seyed Esmaeil Sadat Ebrahimi, Davood Beiki, Khosrou Abdi, Seyed Shahaboddin Mousavi Motlagh, Banafsheh Kiani Dehkordi, Amir Darbandi Azar, and Mehdi Shafiee Ardestani. "18F-FDG MicroPET and MRI Targeting Breast Cancer Mouse Model with Designed Synthesis Nanoparticles." Journal of Nanomaterials 2022 (June 2, 2022): 1–9. http://dx.doi.org/10.1155/2022/5737835.
Full textAlonso, Mario, Emilia Barcia, Juan-Francisco González, Consuelo Montejo, Luis García-García, Mónica-Carolina Villa-Hermosilla, Sofía Negro, Ana-Isabel Fraguas-Sánchez, and Ana Fernández-Carballido. "Functionalization of Morin-Loaded PLGA Nanoparticles with Phenylalanine Dipeptide Targeting the Brain." Pharmaceutics 14, no. 11 (October 31, 2022): 2348. http://dx.doi.org/10.3390/pharmaceutics14112348.
Full textPriyadarshani G Patil, Sampada V Marodkar, Sachin J Dighade, Prajakta N Dongare, and Bhagyashri A Borade. "Innovative approach for nasal drug delivery system for brain target." GSC Advanced Research and Reviews 9, no. 3 (December 30, 2021): 093–106. http://dx.doi.org/10.30574/gscarr.2021.9.3.0296.
Full textHasanovic, Anida, and Isabelle Mus-Veteau. "Targeting the Multidrug Transporter Ptch1 Potentiates Chemotherapy Efficiency." Cells 7, no. 8 (August 14, 2018): 107. http://dx.doi.org/10.3390/cells7080107.
Full textEpenetos, A. A., C. Kousparou, and S. Stylianou. "Inhibition of Notch and tumor regression." Journal of Clinical Oncology 27, no. 15_suppl (May 20, 2009): e14623-e14623. http://dx.doi.org/10.1200/jco.2009.27.15_suppl.e14623.
Full textDissertations / Theses on the topic "Brain targeting lung administration"
DAL, MAGRO ROBERTA. "Enhanced brain targeting of ApoE-functionalized lipid nanoparticles." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2016. http://hdl.handle.net/10281/103191.
Full textAljohani, Hashim M. "Targeting Tyrosine Kinase Drug Resistance Mechanisms and Metastatic Pathways in Brain Tumors." University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1595846160285645.
Full textBOTTI, Giada. "Cocrystals, prodrugs, microparticles, cyclodextrins and nasal administration of active pharmaceutical substances: innovative strategies to modulate their oral bioavailability or their action site targeting." Doctoral thesis, Università degli studi di Ferrara, 2023. https://hdl.handle.net/11392/2504895.
Full textNuove strategie per migliorare la biodisponibilità orale dei farmaci, limitare effetti collaterali o promuovere il direzionamento di agenti terapeutici al loro sito di azione sono state presentate in questa Tesi. I cocristalli sono stati sfruttati per aumentare la velocità di dissoluzione e la permeabilità attraverso la barriera intestinale della nitrofurantoina (NITRO), antibiotico caratterizzato da bassa solubilità acquosa e biodisponibilità orale. NITRO è stata confrontata, in termini di velocità di dissoluzione e permeazione, con i cocristalli contenenti isoniazide, bipiridile o fenantrolina come coformeri e con le miscele fisiche. I profili di dissoluzione della NITRO sono stati valutati via cromatografia liquida ad alta prestazione (HPLC), gli studi di permeazione sono stati eseguiti su un modello in vitro basato su cellule epiteliali di intestino di ratto. Ho contribuito ad effettuare uno studio in vivo per valutare il profilo farmacocinetico, biodisponibilità orale e tendenza a permeare nel sistema nervoso centrale dal sangue di D-limonene, eugenolo e cinnamaldeide, composti naturali derivati da oli essenziali promettenti nella prevenzione e protezione di patologie neurodegenerative. In base ai risultati, l’eugenolo è stato selezionato per studi in vitro su vitalità e rilascio tempo/dose-dipendente della dopamina in cellule PC12 differenziate a fenotipo neuronale, un modello di neuroni dopaminergici. Sono state studiate nanomicelle self-assemblanti costituite da bioconiugati anfifilici di inulina-D-α-tocoferolo succinato caricate con un composto antiossidante (INVITE C), la curcumina, per migliorarne le proprietà biofarmaceutiche e indurne il direzionamento alla retina. Sono stati effettuati esperimenti di trasporto su monostrati polarizzati di cellule di epitelio pigmentato umano, valutandone la resistenza elettrica transepiteliale e il beneficio di INVITE C in condizioni diabetiche simulate. Sono stati progettati e sintetizzati profarmaci dell’acido ferulico (Fer), noto per le attività antiossidanti e antinfiammatorie, potenzialmente utili contro patologie neurodegenerative. È stato sintetizzato un profarmaco di Fer (metil ferulato, Fer-Me). Fer-Me è stato caricato in microparticelle solide lipidiche (SLM) di tristearina o acido stearico come sistema di trasporto e di direzionamento per Fer. Studi farmacocinetici in vitro sono stati condotti via HPLC per valutare se Fer-Me fosse un profarmaco. La capacità delle SLM di controllare il rilascio del profarmaco e la velocità di dissoluzione sono stati osservati attraverso studi di dissoluzione e rilascio dalle SLM, quantificando via HPLC. Inoltre, è stato sintetizzato un coniugato di Fer con se stesso senza l’uso di linkers, metilato sul carbossile (Fer-Fer-Me). Fer-Fer-Me e i suoi potenziali prodotti di idrolisi, ovvero l’omologo non metilato (Fer-Fer-OH), Fer-Me e Fer, sono stati quantificati via HPLC in seguito ad appropriate procedure di estrazione da fluidi fisiologici. Studi farmacocinetici in vitro hanno dimostrato che Fer-Fer-Me è un profarmaco di Fer, ed è stato caricato in SLM di tristearina e acido stearico. I risultati ottenuti dalla caratterizzazione hanno permesso di selezionare le SLM di acido stearico per una somministrazione nasale a ratti, quantificando il profarmaco nel liquido cerebrospinale (CSF) per dimostrare la capacità della formulazione di indurre il direzionamento nel sistema nervoso centrale. È stato studiato un ulteriore approccio relativo alla somministrazione nasale e al direzionamento centrale utilizzando ciclodestrine e geraniolo (GER), un composto naturale derivato dagli oli essenziali che potrebbe esercitare effetti antinfiammatori in patologie neurodegenerative. Sono stati formulati complessi di inclusione con β-ciclodestrina (β-CD) e il suo derivato idrofilico idrossipropil-β-ciclodestrina (HP-β-CD), studiando la biocompatibilità con la mucosa nasale e la biodisponibilità di GER nel CSF nei ratti.
Pinheiro, do nascimento Ludmila. "Stratégies de ciblage des macrophages alvéolaires pour l’administration de glucocorticoïdes." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS215.
Full textThis work focuses on strategies to target glucocorticoids to alveolar macrophages. We have synthesized a budesonide prodrug, budesonide palmitate (BP), increasing its lipophilicity to extend drug half-life in the lungs. BP PEGylated nanoparticles were developed and studied to obtain a stable formulation with suitable physicochemical characteristics and high drug loading to enter alveolar macrophages, key players in lung inflammation. In vitro tests on RAW 264.7 macrophages confirmed the anti-inflammatory activity and absence of cytotoxicity of nanoparticles. These were then encapsulated into Trojan microparticles obtained by spray-drying to facilitate their delivery to the lung as dry powders and release nanoparticles directly to the pulmonary alveoli. Spherical hollow microparticles containing from 0 % to 20 % of BP nanoparticles presented suitable aerodynamic diameters and fine particle fraction for lung delivery. In vivo pharmacokinetic studies demonstrated high and extended budesonide concentrations in the lungs, with low plasma concentrations. In the second part of this thesis, another macrophage targeting strategy was assessed by decoration of nanoparticle surface with mannose. After synthesis of a mannosylated lipid, nanoparticles were formulated and characterized, demonstrating high drug loading and stability up to 30 days. In vitro tests on RAW 264.7 macrophages showed that the presence of mannose on the surface increases nanoparticles internalization 2 fold after 48 h incubation, as compared with PEGylated nanoparticles
Books on the topic "Brain targeting lung administration"
1955-, Hickey Anthony J., and SpringerLink (Online service), eds. Controlled Pulmonary Drug Delivery. New York, NY: Controlled Release Society, 2011.
Find full textRatcliff, Jonathan J., and David W. Wright. Neuroprotection for Traumatic Brain Injury. Edited by David L. Reich, Stephan Mayer, and Suzan Uysal. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190280253.003.0008.
Full textAl-Nahhas, Adil, and Imene Zerizer. Nuclear medicine. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199642489.003.0070.
Full textBook chapters on the topic "Brain targeting lung administration"
Pardridge, William M. "Blood-Brain Barrier Drug Targeting Enables Neuroprotection in Brain Ischemia Following Delayed Intravenous Administration of Neurotrophins." In Advances in Experimental Medicine and Biology, 397–430. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0123-7_15.
Full textPandey, Manju. "Nose-to-Brain Targeted Drug Delivery Bypassing the Blood-Brain Barrier." In Advancements in Controlled Drug Delivery Systems, 159–83. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-7998-8908-3.ch007.
Full textHuang, Jie, Aiping Lu, and Chao Liang. "Deciphering and Targeting Epigenetics in Cancer Metastasis." In Cancer Metastasis - Molecular Mechanism and Clinical Therapy [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.106584.
Full text"Lung procurement following donation after brain death and donation after circulatory death." In Cardiopulmonary transplantation and mechanical circulatory support, edited by Maziar Khorsandi, Steven Tsui, John Dark, Alan J. Kirk, Matthew Hartwig, Mani A. Daneshmand, Carmelo Milano, et al., 347–54. Oxford University PressOxford, 2022. http://dx.doi.org/10.1093/med/9780192867612.003.0027.
Full textLankalapalli, Srinivas, and V. S. Vinai Kumar Tenneti. "Drug Delivery through Liposomes." In Smart Drug Delivery. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.97727.
Full textBorrelli, Emma. "The Importance of the Redox Modulation in the Prevention and Treatment of Chronic Pulmonary Diseases." In Importance of Oxidative Stress and Antioxidant System in Health and Disease [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.108887.
Full textS. Flora, S. J., Rahul Shukla, and Mayank Handa. "Flavonoid Based Bioactive for Therapeutic Application in Neurological Disorders." In Therapeutic Implications of Natural Bioactive Compounds, 1–23. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/9789815080025122030004.
Full textPancholi, Shyam S., Aseem Setia, Manu Singhai, and Atul Chaudhary. "Nanocarrier-based Targeted Delivery in Cancer." In Nanoparticles and Nanocarriers-Based Pharmaceutical Formulations, 197–229. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/9789815049787122010010.
Full textAl-Nahhas, Adil, and Imene Zerizer. "Nuclear Medicine Imaging and Therapy in Rheumatology." In Oxford Textbook of Rheumatology, 531–39. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199642489.003.0070_update_001.
Full text