Journal articles on the topic 'Brain – Spectroscopic imaging'

To see the other types of publications on this topic, follow the link: Brain – Spectroscopic imaging.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Brain – Spectroscopic imaging.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Moonen, Chrit T. W., Geoffrey Sobering, Peter C. M. Van Zijl, Joe Gillen, Markus Von Kienlin, and Alberto Bizzi. "Proton spectroscopic imaging of human brain." Journal of Magnetic Resonance (1969) 98, no. 3 (July 1992): 556–75. http://dx.doi.org/10.1016/0022-2364(92)90007-t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bernasconi, A. "Spectroscopic imaging of frontal neuronal dysfunction in hyperekplexia." Brain 121, no. 8 (August 1, 1998): 1507–12. http://dx.doi.org/10.1093/brain/121.8.1507.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pan, Jullie W., Donald B. Twieg, and Hoby P. Hetherington. "Quantitative spectroscopic imaging of the human brain." Magnetic Resonance in Medicine 40, no. 3 (September 1998): 363–69. http://dx.doi.org/10.1002/mrm.1910400305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Alger, Jeffry R. "Quantitative Proton Magnetic Resonance Spectroscopy and Spectroscopic Imaging of the Brain." Topics in Magnetic Resonance Imaging 21, no. 2 (April 2010): 115–28. http://dx.doi.org/10.1097/rmr.0b013e31821e568f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Duara, Bijit Kumar, Pradipta Ray Choudhury, and Ganesan Gopinath. "Magnetic resonance spectroscopic evaluation of intracranial tumors in adults." National Journal of Clinical Anatomy 04, no. 02 (April 2015): 67–75. http://dx.doi.org/10.1055/s-0039-3401553.

Full text
Abstract:
Abstract Background and Aims: There is a lot of scope for Magnetic Resonance spectroscopy as a tool in diagnosing brain tumors in conjunction with conventional Magnetic Resonance sequences. It is considered to be a non invasive way to get the neurochemistry which will predict the histopathological diagnosis thereby preventing unnecessary surgery and associated morbidity. Here, a Magnetic Resonance spectroscopic imaging study of intra cranial tumors in adults was undertaken to assess the diagnostic usefulness of magnetic resonance spectroscopy in brain tumors. Materials & Methods: In the present study, 40 cases of brain tumors were included, among which 25 were male and rest were female with mean age 45 years. Results: The pathological 'H-MRS (proton magnetic resonance spectroscopy) spectra for various types of brain tumor were studied and tabulated. Conclusion: Magnetic Resonance Spectroscopy is a noninvasive, cost effective and easily repeatable when compared to the conventional brain biopsy procedure. Therefore brain tumor MR imaging should always complemented with dedicated spectroscopy sequences to deal with diagnostic dilemmas and improve patient treatment.
APA, Harvard, Vancouver, ISO, and other styles
6

Vigneron, Daniel B. "Magnetic Resonance Spectroscopic Imaging of Human Brain Development." Neuroimaging Clinics of North America 16, no. 1 (February 2006): 75–85. http://dx.doi.org/10.1016/j.nic.2005.11.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Duyn, J. H., J. Gillen, G. Sobering, P. C. van Zijl, and C. T. Moonen. "Multisection proton MR spectroscopic imaging of the brain." Radiology 188, no. 1 (July 1993): 277–82. http://dx.doi.org/10.1148/radiology.188.1.8511313.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Maudsley, A. A., D. B. Twieg, D. Sappey-Marinier, B. Hubesch, J. W. Hugg, G. B. Matson, and M. W. Weiner. "Spin echo31P spectroscopic imaging in the human brain." Magnetic Resonance in Medicine 14, no. 2 (May 1990): 415–22. http://dx.doi.org/10.1002/mrm.1910140227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

MULKERN, R. V., H. CHAO, J. L. BOWERS, and D. HOLTZMAN. "Multiecho Approaches to Spectroscopic Imaging of the Brain." Annals of the New York Academy of Sciences 820, no. 1 Imaging Brain (May 1997): 97–122. http://dx.doi.org/10.1111/j.1749-6632.1997.tb46191.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

VAN ZIJL, PETER C. M., and PETER B. BARKER. "Magnetic Resonance Spectroscopy and Spectroscopic Imaging for the Study of Brain Metabolism." Annals of the New York Academy of Sciences 820, no. 1 Imaging Brain (May 1997): 75–96. http://dx.doi.org/10.1111/j.1749-6632.1997.tb46190.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Ramaprasad, S. "Lithium spectroscopic imaging of rat brain at therapeutic doses." Magnetic Resonance Imaging 22, no. 5 (June 2004): 727–34. http://dx.doi.org/10.1016/j.mri.2004.01.063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Gruber, Stephen, Andreas Stadlbauer, Vladimir Mlynarik, Brigitte Gatterbauer, Karl Roessler, and Ewald Moser. "Proton magnetic resonance spectroscopic imaging in brain tumor diagnosis." Neurosurgery Clinics of North America 16, no. 1 (January 2005): 101–14. http://dx.doi.org/10.1016/j.nec.2004.07.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Levin, Bonnie E., Heather L. Katzen, Andrew Maudsley, Judith Post, Connie Myerson, Varan Govind, Fatta Nahab, Blake Scanlon, and Aaron Mittel. "Whole-Brain Proton MR Spectroscopic Imaging in Parkinson's Disease." Journal of Neuroimaging 24, no. 1 (December 10, 2012): 39–44. http://dx.doi.org/10.1111/j.1552-6569.2012.00733.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Soher, Brian J., Peter C. M. van Zijl, Jeffrey H. Duyn, and Peter B. Barker. "Quantitative proton MR spectroscopic imaging of the human brain." Magnetic Resonance in Medicine 35, no. 3 (March 1996): 356–63. http://dx.doi.org/10.1002/mrm.1910350313.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Pan, J. W., D. T. Stein, F. Telang, J. H. Lee, J. Shen, P. Brown, G. Cline, et al. "Spectroscopic imaging of glutamate C4 turnover in human brain." Magnetic Resonance in Medicine 44, no. 5 (2000): 673–79. http://dx.doi.org/10.1002/1522-2594(200011)44:5<673::aid-mrm3>3.0.co;2-l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Fernandez, E. J., A. A. Maudsley, T. Higuchi, and M. W. Weiner. "1H spectroscopic imaging of rat brain at 7 tesla." Magnetic Resonance in Medicine 25, no. 1 (May 1992): 107–19. http://dx.doi.org/10.1002/mrm.1910250111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Sase, I., H. Eda, a. Seiyama, A. Takatsuki, and T. Yanagida. "Near-infrared spectroscopic reflectance imaging of human brain function." Seibutsu Butsuri 40, supplement (2000): S136. http://dx.doi.org/10.2142/biophys.40.s136_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Singh, M. "Toward proton MR spectroscopic imaging of stimulated brain function." IEEE Transactions on Nuclear Science 39, no. 4 (1992): 1161–64. http://dx.doi.org/10.1109/23.159776.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Bahk, Yong Whee, Kyung Sub Shinn, Tae Suk Suh, Bo Young Choe, and Kyo Ho Choi. "In Vivo 1H MR Spectroscopic Imaging of Human Brain." Journal of the Korean Radiological Society 31, no. 2 (1994): 185. http://dx.doi.org/10.3348/jkrs.1994.31.2.185.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Duijn, Jeff H., Gerald B. Matson, Andrew A. Maudsley, and Michael W. Weiner. "3D phase encoding 1H spectroscopic imaging of human brain." Magnetic Resonance Imaging 10, no. 2 (January 1992): 315–19. http://dx.doi.org/10.1016/0730-725x(92)90490-q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

De Stefano, Nicola, Maria T. Dotti, Marzia Mortilla, and A. Federico. "Magnetic resonance imaging and spectroscopic changes in brains of patients with cerebrotendinous xanthomatosis." Brain 124, no. 1 (January 2001): 121–31. http://dx.doi.org/10.1093/brain/124.1.121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

van der Zijden, J. P., P. van Eijsden, R. A. de Graaf, and R. M. Dijkhuizen. "1H/13C MR spectroscopic imaging of regionally specific metabolic alterations after experimental stroke." Brain 131, no. 8 (January 10, 2008): 2209–19. http://dx.doi.org/10.1093/brain/awn139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Butt, Sadia A., Lise V. Søgaard, Peter O. Magnusson, Mette H. Lauritzen, Christoffer Laustsen, Per Åkeson, and Jan H. Ardenkjær-Larsen. "Imaging Cerebral 2-Ketoisocaproate Metabolism with Hyperpolarized 13C Magnetic Resonance Spectroscopic Imaging." Journal of Cerebral Blood Flow & Metabolism 32, no. 8 (March 28, 2012): 1508–14. http://dx.doi.org/10.1038/jcbfm.2012.34.

Full text
Abstract:
The branched chain amino acid transaminase (BCAT) has an important role in nitrogen shuttling and glutamate metabolism in the brain. The purpose of this study was to describe the cerebral distribution and metabolism of hyperpolarized 2-keto[1-13C]isocaproate (KIC) in the normal rat using magnetic resonance modalities. Hyperpolarized KIC is metabolized to [1-13C]leucine (leucine) by BCAT. The results show that KIC and its metabolic product, leucine, are present at imageable quantities 20 seconds after end of KIC administration throughout the brain. Further, significantly higher metabolism was observed in hippocampal regions compared with the muscle tissue. In conclusion, the cerebral metabolism of hyperpolarized KIC is imaged and hyperpolarized KIC may be a promising substrate for evaluation of cerebral BCAT activity in conjunction with neurodegenerative disease.
APA, Harvard, Vancouver, ISO, and other styles
24

Tedeschi, G. "Proton magnetic resonance spectroscopic imaging in progressive supranuclear palsy, Parkinson's disease and corticobasal degeneration." Brain 120, no. 9 (September 1, 1997): 1541–52. http://dx.doi.org/10.1093/brain/120.9.1541.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Ramaprasad, Subbaraya, Elzbieta Ripp, Jiaxiong Pi, and Melvin Lyon. "Pharmacokinetics of lithium in rat brain regions by spectroscopic imaging." Magnetic Resonance Imaging 23, no. 8 (October 2005): 859–63. http://dx.doi.org/10.1016/j.mri.2005.07.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Ozhinsky, Eugene, Daniel B. Vigneron, Susan M. Chang, and Sarah J. Nelson. "Automated prescription of oblique brain 3D magnetic resonance spectroscopic imaging." Magnetic Resonance in Medicine 69, no. 4 (June 12, 2012): 920–30. http://dx.doi.org/10.1002/mrm.24339.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Hetherington, Hoby P., Jullie W. Pan, Graeme F. Mason, Steven L. Ponder, Donald B. Twieg, Georg Deutsch, James Mountz, and Gerald M. Pohost. "2D1H spectroscopic imaging of the human brain at 4.1 T." Magnetic Resonance in Medicine 32, no. 4 (October 1994): 530–34. http://dx.doi.org/10.1002/mrm.1910320417.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Hetherington, H. P., F. Telang, J. W. Pan, M. Sammi, D. Schuhlein, P. Molina, and N. D. Volkow. "Spectroscopic imaging of the uptake kinetics of human brain ethanol." Magnetic Resonance in Medicine 42, no. 6 (December 1999): 1019–26. http://dx.doi.org/10.1002/(sici)1522-2594(199912)42:6<1019::aid-mrm5>3.0.co;2-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Zierhut, Matthew L., Esin Ozturk-Isik, Albert P. Chen, Ilwoo Park, Daniel B. Vigneron, and Sarah J. Nelson. "1H spectroscopic imaging of human brain at 3 Tesla: Comparison of fast three-dimensional magnetic resonance spectroscopic imaging techniques." Journal of Magnetic Resonance Imaging 30, no. 3 (September 2009): 473–80. http://dx.doi.org/10.1002/jmri.21834.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Hsu, Shuo-Hsiu, Ming-Chung Chou, Cheng-Wen Ko, Shu-Shong Hsu, Huey-Shyan Lin, Jui-Hsun Fu, Po-Chin Wang, Huay-Ben Pan, and Ping-Hong Lai. "Proton MR spectroscopy in patients with pyogenic brain abscess: MR spectroscopic imaging versus single-voxel spectroscopy." European Journal of Radiology 82, no. 8 (August 2013): 1299–307. http://dx.doi.org/10.1016/j.ejrad.2013.01.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Richards, Todd L. "Functional Magnetic Resonance Imaging and Spectroscopic Imaging of the Brain: Application of fmri and fmrs to Reading Disabilities and Education." Learning Disability Quarterly 24, no. 3 (August 2001): 189–203. http://dx.doi.org/10.2307/1511243.

Full text
Abstract:
This tutorial/review covers functional brain-imaging methods and results used to study language and reading disabilities. Although the main focus is on functional MRI and functional MR spectroscopy, other imaging techniques are discussed briefly such as positron emission tomography (PET), electroencephalography (EEG), magnetoencepholography (MEG), and MR diffusion imaging. These functional brain-imaging studies have demonstrated that dyslexia is a brain-based disorder and that serial imaging studies can be used to study the effect of treatment on functional brain activity.
APA, Harvard, Vancouver, ISO, and other styles
32

Graves, Edward E., Andrea Pirzkall, Tracy R. Mcknight, Daniel B. Vigneron, David A. Larson, Lynn J. Verhey, Michael Mcdermott, Susan Chang, and Sarah J. Nelson. "USE OF PROTON MAGNETIC RESONANCE SPECTROSCOPIC IMAGING DATA IN PLANNING FOCAL RADIATION THERAPIES FOR BRAIN TUMORS." Image Analysis & Stereology 21, no. 2 (May 3, 2011): 69. http://dx.doi.org/10.5566/ias.v21.p69-76.

Full text
Abstract:
Advances in radiation therapy for malignant neoplasms have produced techniques such as Gamma Knife radiosurgery, capable of delivering an ablative dose to a specific, irregular volume of tissue. However, efficient use of these techniques requires the identification of a target volume that will produce the best therapeutic response while sparing surrounding normal brain tissue. Accomplishing this task using conventional computed tomography (CT) and contrast-enhanced magnetic resonance imaging (MRI) techniques has proven difficult because of the difficulties in identifying the effective tumor margin. Magnetic resonance spectroscopic imaging (MRSI) has been shown to offer a clinically-feasible metabolic assessment of the presence and extent of neoplasm that can complement conventional anatomic imaging. This paper reviews current Gamma Knife protocols and MRSI acquisition, reconstruction, and interpretation techniques, and discusses the motivation for including magnetic resonance spectroscopy findings while planning focal radiation therapies. A treatment selection and planning strategy incorporating MRSI is then proposed, which can be used in the future to assess the efficacy of spectroscopy-based therapy planning.
APA, Harvard, Vancouver, ISO, and other styles
33

Ding, X. Q., A. A. Maudsley, S. Sheriff, B. Schmitz, and P. Bronzlik. "Neurometabolic changes in aging human brain observed with whole brain magnetic resonance spectroscopic imaging." New Biotechnology 44 (October 2018): S13. http://dx.doi.org/10.1016/j.nbt.2018.05.165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Banerjee, Suchandrima, Esin Ozturk-Isik, Sarah J. Nelson, and Sharmila Majumdar. "Elliptical magnetic resonance spectroscopic imaging with GRAPPA for imaging brain tumors at 3 T." Magnetic Resonance Imaging 27, no. 10 (December 2009): 1319–25. http://dx.doi.org/10.1016/j.mri.2009.05.031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Warren, Katherine E., Joseph A. Frank, Jeanette L. Black, Rene S. Hill, Josef H. Duyn, Alberta A. Aikin, Bobbi K. Lewis, Peter C. Adamson, and Frank M. Balis. "Proton Magnetic Resonance Spectroscopic Imaging in Children With Recurrent Primary Brain Tumors." Journal of Clinical Oncology 18, no. 5 (March 1, 2000): 1020. http://dx.doi.org/10.1200/jco.2000.18.5.1020.

Full text
Abstract:
PURPOSE: Proton magnetic resonance spectroscopic imaging (1H-MRSI) is a noninvasive technique for spatial characterization of biochemical markers in tissues. We measured the relative tumor concentrations of these biochemical markers in children with recurrent brain tumors and evaluated their potential prognostic significance. PATIENTS AND METHODS: 1H-MRSI was performed on 27 children with recurrent primary brain tumors referred to our institution for investigational drug trials. Diagnoses included high-grade glioma (n = 10), brainstem glioma (n = 7), medulloblastoma/peripheral neuroectodermal tumor (n = 6), ependymoma (n = 3), and pineal germinoma (n = 1). 1H-MRSI was performed on 1.5-T magnetic resonance imagers before treatment. The concentrations of choline (Cho) and N-acetyl-aspartate (NAA) in the tumor and normal brain were quantified using a multislice multivoxel method, and the maximum Cho:NAA ratio was determined for each patient’s tumor. RESULTS: The maximum Cho:NAA ratio ranged from 1.1 to 13.2 (median, 4.5); the Cho:NAA ratio in areas of normal-appearing brain tissue was less than 1.0. The maximum Cho:NAA ratio for each histologic subtype varied considerably; approximately equal numbers of patients within each tumor type had maximum Cho:NAA ratios above and below the median. Patients with a maximum Cho:NAA ratio greater than 4.5 had a median survival of 22 weeks, and all 13 patients died by 63 weeks. Patients with a Cho:NAA ratio less than or equal to 4.5 had a projected survival of more than 50% at 63 weeks. The difference was statistically significant (P = .0067, log-rank test). CONCLUSION: The maximum tumor Cho:NAA ratio seems to be predictive of outcome in children with recurrent primary brain tumors and should be evaluated as a prognostic indicator in newly diagnosed childhood brain tumors.
APA, Harvard, Vancouver, ISO, and other styles
36

Pomper, Martin G., Chris D. Constantinides, Peter B. Barker, Alberto Bizzi, A. Semih Dobgan, Fuji Yokoi, Justin C. McArthur, and Dean F. Wong. "Quantitative MR Spectroscopic Imaging of Brain Lesions in Patients with AIDS." Academic Radiology 9, no. 4 (April 2002): 398–409. http://dx.doi.org/10.1016/s1076-6332(03)80185-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Levitt, Jennifer G., Joseph O'Neill, Rebecca E. Blanton, Susan Smalley, David Fadale, James T. McCracken, Donald Guthrie, Arthur W. Toga, and Jeffrey R. Alger. "Proton magnetic resonance spectroscopic imaging of the brain in childhood autism." Biological Psychiatry 54, no. 12 (December 2003): 1355–66. http://dx.doi.org/10.1016/s0006-3223(03)00688-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Vigneron, Daniel, Andrew Bollen, Michael McDermott, Lawrence Wald, Mark Day, Susan Moyher-Noworolski, Roland Henry, et al. "Three-dimensional magnetic resonance spectroscopic imaging of histologically confirmed brain tumors." Magnetic Resonance Imaging 19, no. 1 (January 2001): 89–101. http://dx.doi.org/10.1016/s0730-725x(01)00225-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Schuff, N., D. L. Amend, D. J. Meyerhoff, J. L. Tanabe, D. Norman, G. Fein, and M. W. Weiner. "Alzheimer disease: quantitative H-1 MR spectroscopic imaging of frontoparietal brain." Radiology 207, no. 1 (April 1998): 91–102. http://dx.doi.org/10.1148/radiology.207.1.9530304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Miyasaka, Naoyuki, Kan Takahashi, and Hoby P. Hetherington. "1H NMR spectroscopic imaging of the mouse brain at 9.4 T." Journal of Magnetic Resonance Imaging 24, no. 4 (October 2006): 908–13. http://dx.doi.org/10.1002/jmri.20709.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Duyn, Jeff H., and Chrit T. W. Moonen. "Fast proton spectroscopic imaging of human brain using multiple spin-echoes." Magnetic Resonance in Medicine 30, no. 4 (October 1993): 409–14. http://dx.doi.org/10.1002/mrm.1910300403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Wald, Lawrence L., Susan E. Moyher, Mark R. Day, Sarah J. Nelson, and Daniel B. Vigneron. "Proton spectroscopic imaging of the human brain using phased array detectors." Magnetic Resonance in Medicine 34, no. 3 (September 1995): 440–45. http://dx.doi.org/10.1002/mrm.1910340322.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Sammi, Manoj K., Jullie W. Pan, Frank W. Telang, Donna Schuhlein, Patricia E. Molina, Nora D. Volkow, Charles S. Springer, and Hoby P. Hetherington. "Measurements of human brain ethanolT2 by spectroscopic imaging at 4 T." Magnetic Resonance in Medicine 44, no. 1 (2000): 35–40. http://dx.doi.org/10.1002/1522-2594(200007)44:1<35::aid-mrm7>3.0.co;2-g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Kurhanewicz, John, Daniel B. Vigneron, and Sarah J. Nelson. "Three-Dimensional Magnetic Resonance Spectroscopic Imaging of Brain and Prostate Cancer." Neoplasia 2, no. 1-2 (January 2000): 166–89. http://dx.doi.org/10.1038/sj.neo.7900081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Lewis, E. Neil, Alexander M. Gorbach, Curtis Marcott, and Ira W. Levin. "High-Fidelity Fourier Transform Infrared Spectroscopic Imaging of Primate Brain Tissue." Applied Spectroscopy 50, no. 2 (February 1996): 263–69. http://dx.doi.org/10.1366/0003702963906618.

Full text
Abstract:
We demonstrate a new mid-infrared and near-infrared imaging approach which is ideally suited to microscopic applications. The method employs an indium antimonide (InSb) focal-plane array detector and a commercially available step-scan Fourier transform infrared spectrometer (FT-IR). With either a KBr or a CaF2 beamsplitter, images from 1 to 5.5 μm (10,000-1818 cm−1) can be rapidly acquired with the use of all the available pixels on the detector. The spectral resolution for each image is easily varied by changing the number of acquired images during the interferometer scan. We apply this technique to noninvasively generate image contrast in sections of monkey brain tissue and to relate these data to specific lipid and protein fractions. In addition, we describe several computational methods to highlight the spatial distributions of components within a sample.
APA, Harvard, Vancouver, ISO, and other styles
46

Chang, L. H., Y. Cohen, P. R. Weinstein, L. Chileuitt, and T. L. James. "Interleaved 1H and 31P spectroscopic imaging for studying regional brain injury." Magnetic Resonance Imaging 9, no. 2 (January 1991): 223–27. http://dx.doi.org/10.1016/0730-725x(91)90014-d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Kirsch, Matthias, Gabriele Schackert, Reiner Salzer, and Christoph Krafft. "Raman spectroscopic imaging for in vivo detection of cerebral brain metastases." Analytical and Bioanalytical Chemistry 398, no. 4 (August 24, 2010): 1707–13. http://dx.doi.org/10.1007/s00216-010-4116-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Laino, Maria Elena, Robert Young, Kathryn Beal, Sofia Haque, Yousef Mazaheri, Giuseppe Corrias, Almir GV Bitencourt, Sasan Karimi, and Sunitha B. Thakur. "Magnetic resonance spectroscopic imaging in gliomas: clinical diagnosis and radiotherapy planning." BJR|Open 2, no. 1 (November 2020): 20190026. http://dx.doi.org/10.1259/bjro.20190026.

Full text
Abstract:
The reprogramming of cellular metabolism is a hallmark of cancer diagnosis and prognosis. Proton magnetic resonance spectroscopic imaging (MRSI) is a non-invasive diagnostic technique for investigating brain metabolism to establish cancer diagnosis and IDH gene mutation diagnosis as well as facilitate pre-operative planning and treatment response monitoring. By allowing tissue metabolism to be quantified, MRSI provides added value to conventional MRI. MRSI can generate metabolite maps from a single volume or multiple volume elements within the whole brain. Metabolites such as NAA, Cho and Cr, as well as their ratios Cho:NAA ratio and Cho:Cr ratio, have been used to provide tumor diagnosis and aid in radiation therapy planning as well as treatment assessment. In addition to these common metabolites, 2-hydroxygluterate (2HG) has also been quantified using MRSI following the recent discovery of IDH mutations in gliomas. This has opened up targeted drug development to inhibit the mutant IDH pathway. This review provides guidance on MRSI in brain gliomas, including its acquisition, analysis methods, and evolving clinical applications.
APA, Harvard, Vancouver, ISO, and other styles
49

Woermann, Friedrich G., Mary A. McLean, Philippa A. Bartlett, Gareth J. Barker, and John S. Duncan. "Quantitative short echo time proton magnetic resonance spectroscopic imaging study of malformations of cortical development causing epilepsy." Brain 124, no. 2 (February 2001): 427–36. http://dx.doi.org/10.1093/brain/124.2.427.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Du, Weiliang, Gregory S. Karczmar, Stephen J. Uftring, and Yiping P. Du. "Anatomical and functional brain imaging using high-resolution echo-planar spectroscopic imaging at 1.5 Tesla." NMR in Biomedicine 18, no. 4 (June 2005): 235–41. http://dx.doi.org/10.1002/nbm.952.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography