Academic literature on the topic 'Brain language processing'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Brain language processing.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Brain language processing":

1

Bick, Atira S., Gadi Goelman, and Ram Frost. "Hebrew Brain vs. English Brain: Language Modulates the Way It Is Processed." Journal of Cognitive Neuroscience 23, no. 9 (September 2011): 2280–90. http://dx.doi.org/10.1162/jocn.2010.21583.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Is language processing universal? How do the specific properties of each language influence the way it is processed? In this study, we compare the neural correlates of morphological processing in Hebrew—a Semitic language with a rich and systematic morphology, to those revealed in English—an Indo-European language with a linear morphology. Using fMRI, we show that while in the bilingual brain both languages involve a common neural circuitry in processing morphological structure, this activation is significantly modulated by the different aspects of language. Whereas in Hebrew, morphological processing is independent of semantics, in English, morphological activation is clearly modulated by semantic overlap. These findings suggest that the processes involved in reading words are not universal, and therefore impose important constraints on current models of visual word recognition.
2

Buchweitz, Augusto. "Brain and Language: an overview of neuroimaging studies of bilingual language processing." Revista Brasileira de Linguística Aplicada 5, no. 2 (2005): 87–99. http://dx.doi.org/10.1590/s1984-63982005000200004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Six articles combining the study of bilinguals and neuroimaging techniques are discussed. The objective is to seek for contributions from neuroimaging studies for the understanding of what goes on in the bilingual brain that processes two languages, and of what goes on, comparatively, in terms of brain activation of each language. Studies show that highly proficient bilinguals activate the same areas in the brain for both the first and second languages. This indicates that the second language becomes part of the speaker's procedural knowledge.
3

Malaia, Evie, and Ronnie B. Wilbur. "Early acquisition of sign language." Sign Language and Linguistics 13, no. 2 (December 31, 2010): 183–99. http://dx.doi.org/10.1075/sll.13.2.03mal.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Early acquisition of a natural language, signed or spoken, has been shown to fundamentally impact both one’s ability to use the first language, and the ability to learn subsequent languages later in life (Mayberry 2007, 2009). This review summarizes a number of recent neuroimaging studies in order to detail the neural bases of sign language acquisition. The logic of this review is to present research reports that contribute to the bigger picture showing that people who acquire a natural language, spoken or signed, in the normal way possess specialized linguistic abilities and brain functions that are missing or deficient in people whose exposure to natural language is delayed or absent. Comparing the function of each brain region with regards to the processing of spoken and sign languages, we attempt to clarify the role each region plays in language processing in general, and to outline the challenges and remaining questions in understanding language processing in the brain.
4

Mengotti, Paola, Corrado Corradi-Dell’Acqua, Gioia A. L. Negri, Maja Ukmar, Valentina Pesavento, and Raffaella I. Rumiati. "Selective imitation impairments differentially interact with language processing." Brain 136, no. 8 (July 23, 2013): 2602–18. http://dx.doi.org/10.1093/brain/awt194.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

DE BOT, KEES, and CAROL JAENSCH. "What is special about L3 processing?" Bilingualism: Language and Cognition 18, no. 2 (October 8, 2013): 130–44. http://dx.doi.org/10.1017/s1366728913000448.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
While research on third language (L3) and multilingualism has recently shown remarkable growth, the fundamental question of what makes trilingualism special compared to bilingualism, and indeed monolingualism, continues to be evaded. In this contribution we consider whether there is such a thing as a true monolingual, and if there is a difference between dialects, styles, registers and languages. While linguistic and psycholinguistic studies suggest differences in the processing of a third, compared to the first or second language, neurolinguistic research has shown that generally the same areas of the brain are activated during language use in proficient multilinguals. It is concluded that while from traditional linguistic and psycholinguistic perspectives there are grounds to differentiate monolingual, bilingual and multilingual processing, a more dynamic perspective on language processing in which development over time is the core issue, leads to a questioning of the notion of languages as separate entities in the brain.
6

Ibrayeva, Zh. "THE ROLE OF NEUROLINGUISTIC RESEARCH IN THE STUDY OF BILINGUALISM." BULLETIN Series of Philological Sciences 75, no. 1 (April 12, 2021): 66–71. http://dx.doi.org/10.51889/2021-1.1728-7804.11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The use of two or more languages is common in most countries of the world. However, until recently, bilingualism was considered as a factor that complicates the processing of speech, cognition and the brain. In the past 25 years there have been a surge in research on bilingualism, including the study, mastery and processing of languages, their cognitive and neural foundations, and the lifelong implications of bilingualism for cognition and the brain. Contrary to the belief that bilingualism complicates the language system, new research demonstrates that all known and used languages ​​become part of the same language system. The interactions that occur when using the two languages ​​have consequences for mind and the brain and indeed for language processing itself but these implications are not additive. Thus, bilingualism helps to uncover the fundamental architecture and language processing mechanisms that locates differently in monolingual speakers.
7

Christiansen, Morten H., and Nick Chater. "Language as shaped by the brain." Behavioral and Brain Sciences 31, no. 5 (October 2008): 489–509. http://dx.doi.org/10.1017/s0140525x08004998.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
AbstractIt is widely assumed that human learning and the structure of human languages are intimately related. This relationship is frequently suggested to derive from a language-specific biological endowment, which encodes universal, but communicatively arbitrary, principles of language structure (a Universal Grammar or UG). How might such a UG have evolved? We argue that UG could not have arisen either by biological adaptation or non-adaptationist genetic processes, resulting in alogical problem of language evolution. Specifically, as the processes of language change are much more rapid than processes of genetic change, language constitutes a “moving target” both over time and across different human populations, and, hence, cannot provide a stable environment to which language genes could have adapted. We conclude that a biologically determined UG is not evolutionarily viable. Instead, the original motivation for UG – the mesh between learners and languages – arises because language has been shaped to fit the human brain, rather than vice versa. Following Darwin, we view language itself as a complex and interdependent “organism,” which evolves under selectional pressures from human learning and processing mechanisms. That is, languages themselves are shaped by severe selectional pressure from each generation of language users and learners. This suggests that apparently arbitrary aspects of linguistic structure may result from general learning and processing biases deriving from the structure of thought processes, perceptuo-motor factors, cognitive limitations, and pragmatics.
8

Proverbio, Alice Mado, Barbara Čok, and Alberto Zani. "Electrophysiological Measures of Language Processing in Bilinguals." Journal of Cognitive Neuroscience 14, no. 7 (October 1, 2002): 994–1017. http://dx.doi.org/10.1162/089892902320474463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The aim of the present study was to investigate how multiple languages are represented in the human brain. Event-related brain potentials (ERPs) were recorded from right-handed polyglots and monolinguals during a task involving silent reading. The participants in the experiment were nine Italian monolinguals and nine Italian/Slovenian bilinguals of a Slovenian minority in Trieste; the bilinguals, highly fluent in both languages, had spoken both languages since birth. The stimuli were terminal words that would correctly complete a short, meaningful, previously shown sentence, or else were semantically or syntactically incorrect. The task consisted in deciding whether the sentences were well formed or not, giving the response by pressing a button. Both groups read the same set of 200 Italian sentences to compare the linguistic processing, while the bilinguals also received a set of 200 Slovenian sentences, comparable in complexity and length, to compare the processing of the two languages within the group. For the bilinguals, the ERP results revealed a strong, left-sided activation, reflected by the N1 component, of the occipito-temporal regions dedicated to orthographic processing, with a latency of about 150 msec for Slovenian words, but bilateral activation of the same areas for Italian words, which was also displayed by topographical mapping. In monolinguals, semantic error produced a long-lasting negative response (N2 and N4) that was greater over the right hemisphere, whereas syntactic error activated mostly the left hemisphere. Conversely, in the bilinguals, semantic incongruence resulted in greater response over the left hemisphere than over the right. In this group, the P615 syntactical error responses were of equal amplitude on both hemispheres for Italian words and greater on the right side for Slovenian words. The present findings support the view that there are inter- and intrahemispheric brain activation asymmetries when monolingual and bilingual speakers comprehend written language. The fact that the bilingual speakers in the present study were highly fluent and had acquired both languages in early infancy suggests that the brain activation patterns do not depend on the age of acquisition or the fluency level, as in the case of late, not-so-proficient L2 language learners, but on the functional organization of the bilinguals' brain due to polyglotism and based on brain plasticity.
9

Harasty, J., J. R. Binder, J. A. Frost, T. A. Hammeke, P. S. F. Bellgowan, S. M. Rao, and R. W. Cox. "Language processing in both sexes: evidence from brain studies." Brain 123, no. 2 (February 1, 2000): 404–6. http://dx.doi.org/10.1093/brain/123.2.404.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ge, Jianqiao, Gang Peng, Bingjiang Lyu, Yi Wang, Yan Zhuo, Zhendong Niu, Li Hai Tan, Alexander P. Leff, and Jia-Hong Gao. "Cross-language differences in the brain network subserving intelligible speech." Proceedings of the National Academy of Sciences 112, no. 10 (February 23, 2015): 2972–77. http://dx.doi.org/10.1073/pnas.1416000112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
How is language processed in the brain by native speakers of different languages? Is there one brain system for all languages or are different languages subserved by different brain systems? The first view emphasizes commonality, whereas the second emphasizes specificity. We investigated the cortical dynamics involved in processing two very diverse languages: a tonal language (Chinese) and a nontonal language (English). We used functional MRI and dynamic causal modeling analysis to compute and compare brain network models exhaustively with all possible connections among nodes of language regions in temporal and frontal cortex and found that the information flow from the posterior to anterior portions of the temporal cortex was commonly shared by Chinese and English speakers during speech comprehension, whereas the inferior frontal gyrus received neural signals from the left posterior portion of the temporal cortex in English speakers and from the bilateral anterior portion of the temporal cortex in Chinese speakers. Our results revealed that, although speech processing is largely carried out in the common left hemisphere classical language areas (Broca’s and Wernicke’s areas) and anterior temporal cortex, speech comprehension across different language groups depends on how these brain regions interact with each other. Moreover, the right anterior temporal cortex, which is crucial for tone processing, is equally important as its left homolog, the left anterior temporal cortex, in modulating the cortical dynamics in tone language comprehension. The current study pinpoints the importance of the bilateral anterior temporal cortex in language comprehension that is downplayed or even ignored by popular contemporary models of speech comprehension.

Dissertations / Theses on the topic "Brain language processing":

1

König, Thomas Koenig Thomas. "Brain electric microstates and the processing of language /." [S.l.] : [s.n.], 1995. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=11153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vaquero, Zamora Lucía. "Brain structural predispositions for music and language processing." Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/665548.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
It has been shown that music and language training can elicit plastic changes on brain structure and function bringing along behavioural benefits. For instance, musicians have been reported to have better auditory discrimination including pitch and speech-in-noise perception, motor-synchronization, verbal memory and general IQ than individuals without formal musical background. Also, bilinguals have shown higher executive function and attention-related abilities than monolinguals. Furthermore, altered functional and structural connectivity can be tracked to brain areas related to the activities most frequently performed by both musicians (instrumentalists and singers) and linguistic experts (such as bilinguals or professional phoneticians). While research in the last decade has devoted important effort to the study of brain plasticity, only a few investigations have addressed the connection between the initial functional or structural properties of brain networks related to auditory-motor function and subsequent language or musical training. Indeed, brain structural markers such as grey matter volume/density or white-matter diffusivity measurements from diffusion tensor imaging (DTI) data, as well as functional measurements from task- related activity or resting-state data from magnetic resonance imaging (MRI) or electroenceplhalography (EEG) have been demonstrated to correlate with consecutive performance and learning in the auditory-motor domain. The main goal of the present dissertation was twofold: we aimed to further the existing knowledge regarding brain plasticity elicited during putative sensitive periods and after long-term music practice, and to explore the white-matter pathways that predict linguistic or musical skills at baseline . Our secondary goals were to confirm previous findings regarding the brain structures involved in music and language processing, as well as to provide evidence of the benefits of usingstructural measurements and correlational analyses between imaging and behavioural data to study inter-individual differences. Study I focused on the comparison between professional pianists and non- musicians observing a complex pattern of increases and decreases in grey matter volume. In comparison to non-musician individuals, pianists showed greater grey matter volume in areas related to motor skill and the automatization of learned movements, as well as reinforcement learning and emotional processing. On the other hand, regions associated to sensorimotor control, score reading and auditory and musical perception presented a reduction in grey matter volume. Study II explored the relationship between white-matter structural properties of the arcuate fasciculus (AF) and the performance of native German speakers in a foreign- language (Hindi) sentence and word imitation task. We found that a greater left lateralization of the AF volume predicted performance on the imitation task. This result was confirmed by using not only a manual deterministic approach but also an automatic atlas-based fibre-reconstruction method, which in addition pointed out to a specific region in the anterior half of the left AF as the most related to imitation ability. Study III aimed to investigate whether the white-matter structural connectivity of the pathways previously described as targets for plasticity mechanisms in professional musicians predicted musical abilities in non-musicians. We observed that the white- matter microstructural organization of the right hemisphere pathways involved in motor-control (corticospinal tract) and auditory-motor transformations (AF) correlated with the performance of non-musician individuals during the initial stages of rhythmic and melodic learning. The present work confirmed the involvement of several brain structures previously described to display plastic effects associated to music and language training in the first stages of audio-motor learning. Furthermore, they challenge previous views regarding music-induced plasticity by showing that expertise is not always or uniquely correlated with increases in brain tissue. This raises the question of the role of efficiency mechanisms derived from professional-like practice. Most importantly, the results from these three studies converge in showing that a prediction-feedback-feedforward loop for auditory-motor processing may be crucially involved in both musical and language learning and skills. We thus suggest that brain auditory-motor systems previously described as participating in native language processing (cortical areas of the dorsal route for language processing and the AF that connects them) may also be recruited during exposure to new linguistic or musical material, being refined after sustained music practice.
Estudios previos muestran que la formación musical y lingüística provoca cambios plásticos en las estructuras y funciones cerebrales, acompañándose también de beneficios conductuales. Por ejemplo, se ha descrito que los músicos poseen mejores habilidades de discriminación auditiva (incluyendo la percepción tonal y la discriminación del habla en un ambiente ruidoso), una mayor capacidad de sincronización motora, así como mejor memoria verbal y coeficiente intelectual general en comparación con personas sin formación musical. Paralelamente, los bilingües muestran mejores funciones ejecutivas y habilidades relacionadas con la atención en comparación con individuos monolingües. Además, las alteraciones en la conectividad cerebral funcional y estructural pueden ser rastreadas estudiando las áreas cerebrales relacionadas con las actividades más utilizadas por músicos (instrumentistas y cantantes) y expertos lingüísticos (como bilingües o fonetistas profesionales). Pese a que en la última década se han dedicado esfuerzos importantes en el campo de la investigación sobre la plasticidad cerebral, sólo unos pocos estudios han tratado de investigar la conexión entre las propiedades iniciales del cerebro, en cuanto a las funciones y estructuras que se relacionan con las funciones auditivo-motoras, y el posterior aprendizaje musical o del lenguaje. Sin embargo, los marcadores estructurales cerebrales, tales como volumen/densidad de materia gris o medidas de difusividad en la sustancia blanca a partir de datos de imagen del tensor de difusión, así como medidas funcionales de la actividad relacionada con una tarea o datos de resting-state (estado de reposo) obtenidos por resonancia magnética o electroencefalografía, han demostrado que pueden correlacionar con el rendimiento y el aprendizaje en el dominio auditivo- motor. En la presente tesis pretendíamos ampliar nuestro conocimiento en cuanto a la plasticidad cerebral obtenida durante los supuestos “períodos sensibles” y después de la práctica musical mantenida en el tiempo, por un lado, y explorar las vías de sustancia blanca que pueden predecir habilidades lingüísticas o musicales al inicio del aprendizaje, por otro lado. Como objetivos secundarios, queríamos confirmar resultados previos con respecto a las estructuras cerebrales involucradas en el procesamiento de la música y el lenguaje, así como apoyar el uso de mediciones estructurales y enfoques correlacionales (entre datos de neuroimagen y conductuales) para estudiar las diferencias inter- individuales. El Estudio I se centró en la comparación entre pianistas profesionales y no músicos, observando un complejo patrón de aumentos y disminuciones en el volumen de materia gris. En comparación con los individuos no músicos, los pianistas mostraron mayor volumen de sustancia gris en áreas relacionadas con la habilidad motora y la automatización de movimientos aprendidos, así como el aprendizaje a través del refuerzo y el procesamiento emocional, mientras que las regiones asociadas al control sensoriomotor, lectura de partituras y percepción auditiva y musical presentaron una reducción del volumen de materia gris. El Estudio II exploró la relación entre las propiedades estructurales de la materia blanca del fascículo arqueado (AF por sus siglas en inglés) y el rendimiento de hablantes nativos de alemán en una tarea de imitación de frases y palabras en una lengua extranjera (hindi). Encontramos que una mayor lateralización del volumen de AF hacia la izquierda predecía el desempeño en la tarea de imitación. Este resultado se confirmó utilizando no sólo un enfoque determinístico-manual sino también una reconstrucción automática (basada en atlas anatómicos) de las fibras de sustancia blanca que, además, señalaba una región específica en la mitad anterior del AF izquierdo como la más relacionada con las capacidades de imitación. El Estudio III tenía como objetivo investigar si la conectividad estructural de vías de sustancia blanca anteriormente descritas como dianas para los mecanismos de plasticidad en músicos profesionales, podría predecir las habilidades musicales en los no músicos. Se observó que la organización micro-estructural de la materia blanca en el hemisferio derecho en vías involucradas en el control motor (tracto corticoespinal) y en transformaciones auditivo-motoras (AF) correlacionaba con el desempeño de individuos no músicos en las etapas iniciales del aprendizaje rítmico y melódico. El presente trabajo ha confirmado la implicación en las primeras etapas del aprendizaje audio-motor de varias estructuras cerebrales que previamente habían mostrado efectos plásticos asociados al aprendizaje musical y del lenguaje. Además, estos resultados desafían las opiniones anteriores sobre la plasticidad inducida por la experiencia musical al demostrar que la experiencia no se correlaciona siempre ni únicamente con un aumento del tejido cerebral, y planteando así preguntas sobre los mecanismos de eficiencia derivados de la práctica musical a nivel profesional. Más importante aún es que los resultados de estos tres estudios convergen mostrando que un bucle de predicción–retroalimentación (feedback)–alimentación directa (feedforward) para el procesamiento auditivo-motor puede estar implicado de manera crucial tanto en el aprendizaje musical como en el aprendizaje de idiomas. Por tanto, sugerimos que los sistemas auditivo-motrices del cerebro, que previamente se habían descrito como participantes en el procesamiento del lenguaje nativo (áreas corticales involucradas en la vía dorsal para el procesamiento del lenguaje, y el AF, que las conecta) también pueden ser reclutados durante la exposición a material lingüístico o musical nuevo, siendo refinado tras años de práctica musical activa.
3

Thomas, James David 1969. "Center-embedding and self-embedding in human language processing." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/33540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Huang, Song Anna, and 黄颂. "Brain processing of temporal information in language: an fMRI study." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B45159567.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ueno, Mieko. "Event-related brain potentials in the processing of Japanese wh-questions /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2003. http://wwwlib.umi.com/cr/ucsd/fullcit?p3112196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Allefeld, Carsten. "Phase synchronization analysis of event-related brain potentials in language processing." Phd thesis, [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=974114480.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kwok, Sze-wei. "Functional MRI research on language processing in Chinese children and adults." Click to view the E-thesis via HKUTO, 2004. http://sunzi.lib.hku.hk/hkuto/record/B31354932.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kwok, Sze-wei, and 郭思蔚. "Functional MRI research on language processing in Chinese children andadults." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2004. http://hub.hku.hk/bib/B31354932.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tivarus, Madalina E. "Functional magnetic resonance imaging of language processing and its pharmacological modulation." Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1138118630.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Joey, and 李穎文. "Sex-related differences in brain anatomy and brain functions associated with language processing : a MRI study with Chinese speakers." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hdl.handle.net/10722/192781.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Brain language processing":

1

A, Argenter Joan, and International Workshop on Language, Brain, and Verbal Behaviour: Neurobiological Aspects of Linguistic Capacities and Language Processing (1996 : Institut d'Estudis Catalans), eds. Language, brain, and verbal behavior: Neurobiological aspects of linguistic capacities and language processing. [Barcelona]: Institut d'Estudis Catalans, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Koivisto, Mika. Semantic priming in the cerebral hemispheres: Brain asymmetries in automatic, expectancy-based, and postlexical processing. Turku: Turun Yliopisto, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Smith, Curtis G. Ancestral voices: Language and the evolution of human consciousness. Englewood Cliffs, N.J: Prentice-Hall, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Klein, Louis T., and Vivian Amato. Language Processing: New Research. Nova Science Publishers, Incorporated, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Grodzinsky, Yosef, David Swinney, and Lewis P. Shapiro. Language and the Brain: Representation and Processing. Elsevier Science & Technology Books, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schütze, Ulf. Language Learning and the Brain: Lexical Processing in Second Language Acquisition. Cambridge University Press, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Schütze, Ulf. Language Learning and the Brain: Lexical Processing in Second Language Acquisition. Cambridge University Press, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Schütze, Ulf. Language Learning and the Brain: Lexical Processing in Second Language Acquisition. Cambridge University Press, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schütze, Ulf. Language Learning and the Brain: Lexical Processing in Second Language Acquisition. Cambridge University Press, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

(Editor), Yosef Grodzinsky, Lewis P. Shapiro (Editor), and David Swinney (Editor), eds. Language and the Brain: Representation and Processing (Foundations of Neuropsychology). Academic Press, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Brain language processing":

1

Grant, Patricia Ellen. "Language Processing: A Neuroanatomical Primer." In The Alphabet and the Brain, 246–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-662-01093-8_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pratt, Hillel. "Electrophysiological Functional Imaging of Auditory Processing in Humans." In Brain Research in Language, 111–24. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-74980-8_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kutas, Marta. "Electrical signs of language in the brain." In Human Cognitive Processing, 159. Amsterdam: John Benjamins Publishing Company, 1999. http://dx.doi.org/10.1075/hcp.3.14kut.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Leikin, Mark. "Processing the Grammatical function of Words in Sentence Reading." In Brain Research in Language, 187–203. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-74980-8_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Calabria, Marco. "Chapter 4. Bilingualism and language control." In Bilingual Processing and Acquisition, 130–58. Amsterdam: John Benjamins Publishing Company, 2023. http://dx.doi.org/10.1075/bpa.17.04cal.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The field of neuropsychology can contribute to bilingualism research from a multidisciplinary perspective that ranges from psycholinguistics and brain imaging studies. While the psycholinguistic approach provides the outlook on linguistic processes in experimental study of patients with brain damage, neural models define the underlying brain areas of such processes and help to predict language deficits in said patients. Current neural models of bilingualism do not provide accurate predictions of deficits in bilinguals with brain damage since they have not been tested in a systematic way. However, they do offer a roadmap for the underlying cognitive and linguistic processes of bilingual language control and speech production. In this chapter, I propose how a neurolinguistic approach to bilingualism might be implemented in neuropsychology by including: (a) the application of traditional methods of cognitive (neuro)psychology to the field of bilingualism, such as dissociations, (b) the use of psycholinguistic methods, and (c) how neurodegenerative diseases may be a neuropsychological paradigm in which one can study bilingual language processes.
6

Kutas, Marta, and Katherine A. Delong. "A Sampler of Event-Related Brain Potential (ERP) Analyses of Language Processing." In Brain Research in Language, 153–86. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-74980-8_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Beinborn, Lisa, Samira Abnar, and Rochelle Choenni. "Robust Evaluation of Language–Brain Encoding Experiments." In Computational Linguistics and Intelligent Text Processing, 44–61. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-24337-0_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Roldan-Palacios, Marisol, and Aurelio López-Lopez. "Feature Analysis and Classification of Impaired Language Caused by Brain Injury." In Natural Language Processing in Healthcare, 19–35. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003138013-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wilson, Benjamin, and Christopher I. Petkov. "From evolutionarily conserved frontal regions for sequence processing to human innovations for syntax." In How the Brain got Language, 318–35. Amsterdam: John Benjamins Publishing Company, 2020. http://dx.doi.org/10.1075/bct.112.20wil.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ranjan, Ashish, R. B. Mishra, and A. K. Singh. "Intelligent Computing Methods in Language Processing by Brain." In Communications in Computer and Information Science, 31–41. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5780-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Brain language processing":

1

Aasland, Wendi A., and Shari R. Baum. "Processing of temporal cues marking phrasal boundaries in individuals with brain damage." In 7th International Conference on Spoken Language Processing (ICSLP 2002). ISCA: ISCA, 2002. http://dx.doi.org/10.21437/icslp.2002-256.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ulas, C., and M. Cetin. "The first Brain-Computer Interface utilizing a Turkish language model." In 2013 21st Signal Processing and Communications Applications Conference (SIU). IEEE, 2013. http://dx.doi.org/10.1109/siu.2013.6531174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Themistocleous, Charalambos. "Open Brain AI: An AI Research Platform." In Huminfra Conference (HiC 2024). Linköping University Electronic Press, 2024. http://dx.doi.org/10.3384/ecp205001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Language assessment is pivotal in identifying therapeutic interventions for speech, language, and communication disorders stemming from neurogenic origins, developmental or acquired, and student performance in the classroom. Traditional assessment techniques, however, are predominantly manual, necessitating extensive time and effort for administration and scoring. Such procedures can exacerbate the stress experienced by patients. In response to these inherent challenges, we introduced Open Brain AI (https://openbrainai.com). This state-of-the-art computational platform leverages advanced AI methodologies, encompassing machine learning, natural language processing, large language models, and automated speech-to-text transcription. These capabilities enable Open Brain AI to autonomously analyze multilingual spoken and written language productions. This work aims to present the development and evolution of Open Brain AI, elucidating its AI-driven language processing components and the intricate linguistic metrics it employs to evaluate the overarching and granular discourse structures. Open Brain AI significantly reduces the workload on researchers, clinicians, and teachers by facilitating rapid and automated language analysis. It allows healthcare and education professionals to optimize their operational processes, reallocating precious time and resources to more personalized user interactions. Moreover, Open Brain AI provides clinicians, researchers, and educators the autonomy to undertake essential data analytics, freeing up more bandwidth to focus on other vital facets of therapeutic intervention and care.
4

Nakakoshi, Sachiko, Atsushi Mizobuchi, and Hiroto Katori. "Cognitive processes of speech sounds in a brain-damaged patient." In 3rd International Conference on Spoken Language Processing (ICSLP 1994). ISCA: ISCA, 1994. http://dx.doi.org/10.21437/icslp.1994-315.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Syed, Madiha Khalid, and Hong Wang. "EEG analysis of the Brain Language Processing oriented to Intelligent Teaching Robot." In 2018 IEEE International Conference on Intelligence and Safety for Robotics (ISR). IEEE, 2018. http://dx.doi.org/10.1109/iisr.2018.8535637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mitsuyoshi, Shunji, Kouichi Shibasaki, Yasuto Tanaka, Makoto Kato, Tsutomu Murata, Tetsuto Minami, Haruko Yagura, and Fuji Ren. "Emotion Voice Analysis System Connected to the Human Brain." In 2007 International Conference on Natural Language Processing and Knowledge Engineering. IEEE, 2007. http://dx.doi.org/10.1109/nlpke.2007.4368074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rugg, Michael D., Catherine J. C. Cox, and Michael C. Doyle. "Investigating word recognition and language comprehension with event-related brain potentials." In 3rd International Conference on Spoken Language Processing (ICSLP 1994). ISCA: ISCA, 1994. http://dx.doi.org/10.21437/icslp.1994-206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Maës, Eliot, Leonor Becerra-Bonache, Thierry Legou, and Philippe Blache. "Studying Common Ground Instantiation Using Audio, Video and Brain Behaviours: The BrainKT Corpus." In International Conference Recent Advances in Natural Language Processing. INCOMA Ltd., Shoumen, BULGARIA, 2023. http://dx.doi.org/10.26615/978-954-452-092-2_075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sekiyama, Kaoru, and Yoichi Sugita. "Auditory-visual speech perception examined by brain imaging and reaction time." In 7th International Conference on Spoken Language Processing (ICSLP 2002). ISCA: ISCA, 2002. http://dx.doi.org/10.21437/icslp.2002-428.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kumar, Sreejan, Theodore Sumers, Takateru Yamakoshi, Ariel Goldstein, Uri Hasson, Kenneth Norman, Thomas Griffiths, Robert Hawkins, and Samuel Nastase. "Reconstructing the cascade of language processing in the brain using the internal computations of transformer language models." In 2022 Conference on Cognitive Computational Neuroscience. San Francisco, California, USA: Cognitive Computational Neuroscience, 2022. http://dx.doi.org/10.32470/ccn.2022.1255-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography