Academic literature on the topic 'Brain functional Network'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Brain functional Network.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Brain functional Network"
Chan, John S. Y., Yifeng Wang, Jin H. Yan, and Huafu Chen. "Developmental implications of children’s brain networks and learning." Reviews in the Neurosciences 27, no. 7 (October 1, 2016): 713–27. http://dx.doi.org/10.1515/revneuro-2016-0007.
Full textWang, Zhongyang, Junchang Xin, Qi Chen, Zhiqiong Wang, and Xinlei Wang. "NDCN-Brain: An Extensible Dynamic Functional Brain Network Model." Diagnostics 12, no. 5 (May 23, 2022): 1298. http://dx.doi.org/10.3390/diagnostics12051298.
Full textZheng, Weihao, Choong-Wan Woo, Zhijun Yao, Pavel Goldstein, Lauren Y. Atlas, Mathieu Roy, Liane Schmidt, et al. "Pain-Evoked Reorganization in Functional Brain Networks." Cerebral Cortex 30, no. 5 (December 9, 2019): 2804–22. http://dx.doi.org/10.1093/cercor/bhz276.
Full textCarnevale, Lorenzo, Angelo Maffei, Alessandro Landolfi, Giovanni Grillea, Daniela Carnevale, and Giuseppe Lembo. "Brain Functional Magnetic Resonance Imaging Highlights Altered Connections and Functional Networks in Patients With Hypertension." Hypertension 76, no. 5 (November 2020): 1480–90. http://dx.doi.org/10.1161/hypertensionaha.120.15296.
Full textGleiser, Pablo M., and Victor I. Spoormaker. "Modelling hierarchical structure in functional brain networks." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368, no. 1933 (December 28, 2010): 5633–44. http://dx.doi.org/10.1098/rsta.2010.0279.
Full textHahn, Andreas, Georg S. Kranz, Ronald Sladky, Sebastian Ganger, Christian Windischberger, Siegfried Kasper, and Rupert Lanzenberger. "Individual Diversity of Functional Brain Network Economy." Brain Connectivity 5, no. 3 (April 2015): 156–65. http://dx.doi.org/10.1089/brain.2014.0306.
Full textLi, Han, Qizhong Zhang, Ziying Lin, and Farong Gao. "Prediction of Epilepsy Based on Tensor Decomposition and Functional Brain Network." Brain Sciences 11, no. 8 (August 13, 2021): 1066. http://dx.doi.org/10.3390/brainsci11081066.
Full textLi, Gang, Yanting Xu, Yonghua Jiang, Weidong Jiao, Wanxiu Xu, and Jianhua Zhang. "Mental Fatigue Has Great Impact on the Fractal Dimension of Brain Functional Network." Neural Plasticity 2020 (November 12, 2020): 1–11. http://dx.doi.org/10.1155/2020/8825547.
Full textBetzel, Richard F. "Organizing principles of whole-brain functional connectivity in zebrafish larvae." Network Neuroscience 4, no. 1 (January 2020): 234–56. http://dx.doi.org/10.1162/netn_a_00121.
Full textMizuno, Megumi, Tomoyuki Hiroyasu, and Satoru Hiwa. "A Functional NIRS Study of Brain Functional Networks Induced by Social Time Coordination." Brain Sciences 9, no. 2 (February 15, 2019): 43. http://dx.doi.org/10.3390/brainsci9020043.
Full textDissertations / Theses on the topic "Brain functional Network"
Deshpande, Gopikrishna. "Nonlinear and network characterization of brain function using functional MRI." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/24760.
Full textCommittee Chair: Hu, Xiaoping; Committee Member: Brummer, Marijn; Committee Member: Butera, Robert; Committee Member: Oshinski, John; Committee Member: Sathian, Krish.
SALA, SARA. "Statistical analysis of brain network." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2013. http://hdl.handle.net/10281/43723.
Full textJao, Tun. "Functional brain network organization in altered states of consciousness." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709230.
Full textCole, David Michael. "Functional network analysis of human brain systems under pharmacological modulation." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/10933.
Full textGarcía-García, Isabel, María Ángeles Jurado, Maite Garolera, Idoia Marqués-Iturria, Annette Horstmann, Bàrbara Segura, Roser Pueyo, et al. "Functional network centrality in obesity." Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-205556.
Full textGozdas, Elveda. "Quantitative Trends and Topology in Developing Functional Brain Networks." University of Cincinnati / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1535381148527108.
Full textMcColgan, Peter. "Structural brain network degeneration and functional up-regulation in Huntington's disease." Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10041942/.
Full textHart, Michael Gavin. "Network approaches to understanding the functional effects of focal brain lesions." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/274018.
Full textElkin-Frankston, Seth. "Anatomical and functional impact of critical brain areas to network activity and basic visual function." Thesis, Boston University, 2013. https://hdl.handle.net/2144/12752.
Full textA set of widely distributed brain areas, collectively known as the fronto-parietal network, serve to modulate aspects of visual perception. However, the unique influence exerted by these regions on low-level visual processing remains unclear. The goals of this thesis were (1) to examine how right frontal, parietal and occipital brain areas interact to process and modulate visual function and (2) to investigate the ability to improve foveal visual performance by means of noninvasive neurostimulation. In a first set of experiments, visual percepts known as 'phosphenes' were measured following low-frequency neurostimulation of the right occipital pole, Intraparietal Sulcus (IPS) or Frontal Eye Fields (FEF). Stimulation of the occipital pole and IPS were capable of evoking phosphenes with similar appearances. Furthermore, occipital or IPS stimulation decreased the excitability of the locally stimulated region but had no effect on the non-stimulated brain area. These results indicate a lack of sufficient inter-regional interactions capable of supporting long-range changes in brain activity. In a second set of experiments, contrast sensitivity and reaction times were assessed as the capacity to detect centrally located, high or low spatial frequency stimuli. Low-frequency rTMS to the FEF, but not the occipital pole or IPS improved contrast sensitivity for high spatial frequency stimuli. Stimulation of the occipital pole decreased reaction times for low spatial frequency stimuli and was shown to depend on transcollicular projections. Finally, stimulation of the IPS decreased reaction times for both types of stimuli. These effects however did not appear to depend on transcollicular pathways, indicating that performance was enhanced through cortico-cortical connections. In a final set of experiments, we investigated whether patterns of individual white matter connectivity linking stimulated brain regions could predict the effects of neurostimulation on visual processing and performance. None of the probability measures however correlated with changes in visual performance. Overall, these data suggest that occipital, parietal, frontal and tectal areas uniquely contribute to the modulation of visual perception. Moreover, results show that targeted stimulation to these brain regions serves to generate lasting improvements in visual performance, which could be used to enhance aspects of vision in healthy and clinical populations.
Ghumman, Sukhmanjit. "Functional connectivity in patients with brain tumours." Mémoire, Université de Sherbrooke, 2018. http://hdl.handle.net/11143/12001.
Full textLe mode de fonctionement par défaut du cerveau est un réseau cérébral associé à la rêverie et à l’introspection. Des études récentes sur ce réseau ont découvert qu’il est perturbé dans plusieurs pathologies cérébrales. Par example, le mode de fonctionnement par défaut est modulé en démence, TDAH, dépression, schizophrénie et plusieurs autres maladies liés au cerveau. Ceci a mené à l’hypothèse que le mode de fonctionnement par défaut pourrait avoir un rôle dans la physiopathologie des maladies du système nerveux, ou pourrait être un marqueur utile du fonctionnement cérébral. Par contre, très peu d’études ont investigué l’effet de lésions chirurgicaux comme les tumeurs cérébrales sur le mode de fonctionnement par défaut. Par conséquent, le but de ce projet était de caractériser l’importance de l’histologie, de la localisation et de plusieurs autres paramètres de l’effet d’une tumeur cérébrale sur le mode de fonctionnement par défaut.
Books on the topic "Brain functional Network"
Alessandro, Treves, ed. Neural networks and brain function. Oxford: Oxford University Press, 1998.
Find full textW, Thatcher Robert, ed. Functional neuroimaging: Technical foundations. San Diego: Academic Press, 1994.
Find full textDe Vico Fallani, Fabrizio, and Fabio Babiloni. The Graph Theoretical Approach in Brain Functional Networks. Cham: Springer International Publishing, 2010. http://dx.doi.org/10.1007/978-3-031-01644-8.
Full text1933-, Cotterill Rodney, ed. Models of brain function. Cambridge: Cambridge University Press, 1989.
Find full textBaev, Konstantin V. Biological Neural Networks: Hierarchical Concept of Brain Function. Boston, MA: Birkhäuser Boston, 1996. http://dx.doi.org/10.1007/978-1-4612-4100-3.
Full textBiological neural networks: Hierarchical concept of brain function. Boston: Birkhäuser, 1998.
Find full textModeling brain function: The world of attractor neural networks. Cambridge [England]: Cambridge University Press, 1989.
Find full textThe metaphorical brain 2: Neural networks and beyond. New York, N.Y: Wiley, 1989.
Find full textPaul, Cisek, Drew Trevor, and Kalaska John F, eds. Computational neuroscience: Theoretical insights into brain function. Amsterdam: Elsevier, 2007.
Find full textE, Raichle Marcus, ed. Images of mind. New York: Scientific American Library, 1994.
Find full textBook chapters on the topic "Brain functional Network"
Moorthigari, Vishnu, Emily Carlson, Petri Toiviainen, Elvira Brattico, and Vinoo Alluri. "Differential Effects of Trait Empathy on Functional Network Centrality." In Brain Informatics, 107–17. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59277-6_10.
Full textFiddyment, Grant M., Stefania Sokolowski, and Mark Kramer. "Functional Network Observations of Diseased Brain States." In Encyclopedia of Computational Neuroscience, 1234–36. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-6675-8_440.
Full textKe, Ming, Hui Shen, Zongtan Zhou, Xiaolin Zhou, Dewen Hu, and Xuhui Chen. "Brain Functional Network for Chewing of Gum." In Studies in Computational Intelligence, 169–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21378-6_13.
Full textFiddyment, Grant M., Stefania Sokolowski, and Mark Kramer. "Functional Network Observations of Diseased Brain States." In Encyclopedia of Computational Neuroscience, 1–3. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-7320-6_440-2.
Full textYu, Qingbao, and Vince D. Calhoun. "Resting-State Functional Network Disturbances in Schizophrenia." In Brain Network Dysfunction in Neuropsychiatric Illness, 187–215. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-59797-9_10.
Full textRey, Gwladys, Camille Piguet, and Patrik Vuilleumier. "Functional Resting-State Network Disturbances in Bipolar Disorder." In Brain Network Dysfunction in Neuropsychiatric Illness, 273–95. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-59797-9_13.
Full textMüller, Ralph-Axel, and Annika Linke. "Functional Connectivity in Autism Spectrum Disorders: Challenges and Perspectives." In Brain Network Dysfunction in Neuropsychiatric Illness, 239–72. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-59797-9_12.
Full textZhang, Xiaofei, Yang Yang, Ruohao Liu, and Ning Zhong. "Route Adjustment of Functional Brain Network in Mental Arithmetic Using Task-Evoked FMRI." In Brain Informatics, 51–61. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-37078-7_6.
Full textZhang, Xiaofei, Yang Yang, Ming-Hui Zhang, and Ning Zhong. "Network Analysis of Brain Functional Connectivity in Mental Arithmetic Using Task-Evoked fMRI." In Brain Informatics, 141–52. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-05587-5_14.
Full textLai, Chien-Han. "Task MRI-Based Functional Brain Network of Anxiety." In Advances in Experimental Medicine and Biology, 3–20. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-32-9705-0_1.
Full textConference papers on the topic "Brain functional Network"
Li, Hongming, and Yong Fan. "Functional brain atlas construction for brain network analysis." In SPIE Medical Imaging, edited by Sebastien Ourselin and David R. Haynor. SPIE, 2013. http://dx.doi.org/10.1117/12.2007394.
Full textSalsabilian, Shiva, Elena Bibineyshvili, David J. Margolis, and Laleh Najafizadeh. "Study of Functional Network Topology Alterations after Injury via Embedding Methods." In Optics and the Brain. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/brain.2020.bw4c.3.
Full textRen, Dehua, Yu Zhao, Hanbo Chen, Qinglin Dong, Jinglei Lv, and Tianming Liu. "3-D functional brain network classification using Convolutional Neural Networks." In 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017). IEEE, 2017. http://dx.doi.org/10.1109/isbi.2017.7950736.
Full textGonuguntla, V., K. C. Veluvolu, and Jae-Hun Kim. "Recognition of Event-associated Brain Functional Networks in EEG for Brain Network Based Applications." In 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI). IEEE, 2020. http://dx.doi.org/10.1109/isbi45749.2020.9098708.
Full textWang, Zhongmin, Yue Tong, and Xia Heng. "Emotional Analysis Based on Dynamic Functional Brain Network." In 2019 International Conference on Networking and Network Applications (NaNA). IEEE, 2019. http://dx.doi.org/10.1109/nana.2019.00044.
Full textPitsik, Elena N., and Nikita Frolov. "Artificial neural network predicts inter-areal functional connectivity." In Computations and Data Analysis: from Molecular Processes to Brain Functions, edited by Dmitry E. Postnov. SPIE, 2021. http://dx.doi.org/10.1117/12.2591376.
Full textGuo, Miaomiao, Guizhi Xu, Lei Wang, and Lingdi Fu. "Functional brain network analysis during auditory oddball task." In 2016 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC). IEEE, 2016. http://dx.doi.org/10.1109/apemc.2016.7522955.
Full textSun, Xiaofang, Bin Hu, Xiangwei Zheng, Yongqiang Yin, and Cun Ji. "Emotion Classification Based on Brain Functional Connectivity Network." In 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2020. http://dx.doi.org/10.1109/bibm49941.2020.9313522.
Full textChen, Zikuan, and Vince Calhoun. "Brain functional mapping and network connectivity of reconstructed magnetic susceptibility data." In Biomedical Applications in Molecular, Structural, and Functional Imaging, edited by Barjor Gimi and Andrzej Krol. SPIE, 2018. http://dx.doi.org/10.1117/12.2292988.
Full textZhou, Zhiguo, Rongfang Wang, Jing Yang, Rongbin Xu, and Jinkun Guo. "Multimodal weighted network for 3D brain tumor segmentation in MRI images." In Biomedical Applications in Molecular, Structural, and Functional Imaging, edited by Barjor S. Gimi and Andrzej Krol. SPIE, 2021. http://dx.doi.org/10.1117/12.2580879.
Full textReports on the topic "Brain functional Network"
Dale, Naomi, Aneesa Khan, and Sophie Dale. Early intervention for vision and neurodevelopment in infants and very young children with visual impairment: a systematicreview. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, August 2022. http://dx.doi.org/10.37766/inplasy2022.8.0080.
Full text