Academic literature on the topic 'Brain damage'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Brain damage.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Brain damage"
Larsson, L. "BRAIN DAMAGE, BRAIN REPAIR." Brain 125, no. 12 (December 1, 2002): 2785–86. http://dx.doi.org/10.1093/brain/awf266.
Full textRaisman, Geoffrey. "Brain Damage, Brain Repair." Journal of the Royal Society of Medicine 96, no. 5 (May 2003): 249–50. http://dx.doi.org/10.1177/014107680309600517.
Full textLanham, Richard A. "Brain Damage, Brain Repair." Journal of Head Trauma Rehabilitation 17, no. 3 (June 2002): 270–72. http://dx.doi.org/10.1097/00001199-200206000-00012.
Full textJellinger, K. A. "Brain Damage, Brain Repair." European Journal of Neurology 10, no. 3 (May 2003): 335. http://dx.doi.org/10.1046/j.1468-1331.2003.00557.x.
Full textRaisman, G. "Brain Damage, Brain Repair." JRSM 96, no. 5 (May 1, 2003): 249–50. http://dx.doi.org/10.1258/jrsm.96.5.249.
Full textToledo, C. A. B. "Brain Damage, Brain Repair." Journal of Chemical Neuroanatomy 27, no. 2 (May 2004): 139. http://dx.doi.org/10.1016/j.jchemneu.2004.01.001.
Full textFloyd, Pink. "Brain Damage." Academic Medicine 83, no. 8 (August 2008): 742. http://dx.doi.org/10.1097/acm.0b013e318181d965.
Full textVolpe, Joseph J., A. Ernest, and Jane G. Stein. "BRAIN DAMAGE." Pediatric Research 20, no. 10 (October 1986): 1024–25. http://dx.doi.org/10.1203/00006450-198610000-00039.
Full textRothwell, Nancy J., and Giamal N. Luheshi. "Brain TNF: Damage limitation or damaged reputation?" Nature Medicine 2, no. 7 (July 1996): 746–47. http://dx.doi.org/10.1038/nm0796-746.
Full textLakatos, Andras. "Brain Damage and Brain Repair." Neuropathology and Applied Neurobiology 27, no. 3 (June 2001): 252–53. http://dx.doi.org/10.1046/j.1365-2990.2001.00336-2.x.
Full textDissertations / Theses on the topic "Brain damage"
Sebastián, Romagosa Marc. "Brain computer interfaces for brain acquired damage." Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/670835.
Full textEl término Interfaz Cerebro-Computadora (ICC) surgió en los años 70 por el Dr. Jacques J. Vidal, que mediante el uso de la electroencefalografía (EEG) trató de dar una salida alternativa a las señales del cerebro para controlar un dispositivo externo. El objetivo principal de esta hazaña era ayudar a los pacientes con problemas de movimiento o comunicación a relacionarse con el entorno. Desde entonces, muchos neurocientíficos han utilizado esta idea y han tratado de ponerla en práctica utilizando diferentes métodos de adquisición y procesamiento de señales, nuevos dispositivos de interacción y nuevas metas y objetivos. Todo ello ha facilitado la aplicación de esta tecnología en muchas áreas y actualmente las ICC se utilizan para jugar a videojuegos, mover sillas de ruedas, facilitar la escritura en personas sin movilidad, establecer criterios y preferencias de compra en el mundo del comercio y el consumo, o incluso pueden servir como detector de mentiras. Sin embargo, el sector que presenta un mayor avance y desarrollo de las ICC es el sector biomédico. A grandes rasgos podemos utilizar las ICC con dos finalidades distintas dentro de la neurorehabilitación; sustituir una función perdida o inducir cambios en la plasticidad neuronal con el objetivo de restaurar o compensar dicha función perdida. Hay diferentes principios para el registro de las señales del cerebro; de forma invasiva, colocando los electrodos de registro dentro de la cavidad craneal, o no invasiva, colocando los electrodos de registro fuera de la cavidad craneal. El método más conocido y difundido es la EEG. Su uso es adecuado para entornos clínicos, tiene una resolución temporal muy precisa y su retroalimentación en tiempo real puede inducir la plasticidad cortical y el restablecimiento de la función motora normal. En esta tesis presentamos tres objetivos diferentes: (1) evaluar los efectos clínicos de la rehabilitación mediante las ICC en pacientes con ictus, ya sea realizando un meta-análisis de los estudios publicados o evaluando los cambios funcionales en los pacientes con ictus después de la terapia de ICC; (2) explorar parámetros alternativos para cuantificar los efectos de las ICC en pacientes con ictus, evaluando diferentes biomarcadores de electroencefalografía en pacientes con esta patología y correlacionando los posibles cambios en estos parámetros con los resultados en las escalas funcionales; (3) optimizar el sistema ICC utilizando mediante la gamificación de un avatar.
The term Brain Computer Interface (BCI) emerged in the 70's by Dr. Jacques J Vidal, who by using electroencephalography (EEG) tried to give an alternative output to the brain signals in order to control an external device. The main objective of this feat was to help patients with impaired movement or communication to relate themselves to the environment. Since then many neuroscientists have used this idea and have tried to implement it using different methods of signal acquisition and processing, new interaction devices, new goals and objectives. All this has facilitated the implementation of this technology in many areas and currently BCI is used to play video games, move wheelchairs, facilitate writing in people without mobility, establish criteria and purchase preferences in the world of marketing and consumption, or even serve as a lie detector. However, the sector that presents the most marked progress and development of BCI is the biomedical sector. In rough outlines we can use BCI with two different purposes within the neurorehabilitation; to substitute a lost function or to induce neural plasticity changes with the aim to restore or compensate the lost function. To restore a lost function by inducing neuroplastic changes in the brain is undoubtedly a challenging strategy but a feasible goal through BCI technology. This type of intervention requires that the patient invests time and effort in a therapy based on the practice of motor image and feedback mechanisms in real time. There are different principles to record the brain signals; invasively, placing the recording electrodes inside the cranial cavity, or non-invasive, placing the recording electrodes outside of the cranial cavity. The best known and most widespread one is EEG, since they are suitable for clinical environments, have a highly accurate temporal resolution and their real-time feedback can induce cortical plasticity and the restoration of normal motor function. On this thesis we present three different objectives: (1) to evaluate the clinical effects of rehabilitation based on BCI system in stroke patients, either by performing a meta-analysis of published studies or by evaluating functional changes in stroke patients after BCI training; (2) to explore alternative parameters to quantify effects of BCI in stroke patients, by evaluating different electroencephalography biomarkers in stroke patients and correlating potential changes in these parameters with functional scales; (3) to optimize the BCI system by using a new gamified avatar.
Rolheiser, Tyler M. "Functional implications of cortical damage /." Connect to title online (Scholars' Bank) Connect to title online (ProQuest), 2008. http://hdl.handle.net/1794/9494.
Full textJones, Margaret A. "Caregiving for children who have had a traumatic brain injury structuring for security : a thesis submitted to Auckland University of Technology in partial fulfilment of the degree of Master of Health Science, December 2003." Full thesis. Abstract, 2003.
Find full textMcKinnon, Elaine E. "Relation of family characteristics and survivor characteristics to outcome after acquired brain injury in adolescents." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0022/NQ39290.pdf.
Full textHornich, Agnieszka Apolonia. "Examination of self-efficacy and locus of control in predicting community integration following moderate to severe traumatic brain injury." [Huntington, WV : Marshall University Libraries], 2008. http://www.marshall.edu/etd/descript.asp?ref=871.
Full textMorriss, Elissa. "Long term neuropsychological and psychosocial outcome following severe traumatic brain injury /." [St. Lucia, Qld.], 2004. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe17593.pdf.
Full textBurke, Christopher. "Uteroplacental insufficiency and prenatal brain damage /." [St. Lucia, Qld.], 2005. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe19395.pdf.
Full textKastuk, Donald John. "Social skills training for the traumatic brain injured." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape10/PQDD_0002/NQ43434.pdf.
Full textCherry, Nicola. "Organic brain damage and occupational solvent exposure." Thesis, McGill University, 1991. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=60012.
Full textMcCracken, Eileen. "White matter damage after acute brain injury." Thesis, University of Glasgow, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340812.
Full textBooks on the topic "Brain damage"
Burkholz, Herbert. Brain damage. New York: Atheneum, 1992.
Find full textBurkholz, Herbert. Brain damage. Glasgow, Great Britain: Headline, 1992.
Find full text1950-, Fawcett James W., Rosser Anne E, and Dunnett S. B, eds. Brain damage, brain repair. Oxford: Oxford University Press, 2001.
Find full textGreat Britain. Department of Health. Acquired brain injury. London: Department of Health, 2004.
Find full textA, Hunt W., Nixon Sara Jo 1955-, and National Institute on Alcohol Abuse and Alcoholism (U.S.), eds. Alcohol-induced brain damage. Rockville, MD (5600 Fishers Lane, Rockville 20857): The Institute, 1993.
Find full textCoca, Antonio, ed. Hypertension and Brain Damage. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32074-8.
Full textRose, F. D., and D. A. Johnson, eds. Recovery from Brain Damage. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3420-4.
Full textHerdegen, T., and J. Delgado-García, eds. Brain Damage and Repair. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-2541-6.
Full textA, Hunt W., Nixon Sara Jo 1955-, and National Institute on Alcohol Abuse and Alcoholism (U.S.), eds. Alcohol-induced brain damage. Rockville, MD (5600 Fishers Lane, Rockville 20857): The Institute, 1993.
Find full textHunt, W. A. Alcohol-induced brain damage. Rockville, Md: National Inst. of Health, 1993.
Find full textBook chapters on the topic "Brain damage"
Spiers, Mary. "Brain Damage." In Encyclopedia of Behavioral Medicine, 291. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39903-0_1325.
Full textWideman, Timothy H., Michael J. L. Sullivan, Shuji Inada, David McIntyre, Masayoshi Kumagai, Naoya Yahagi, J. Rick Turner, et al. "Brain Damage." In Encyclopedia of Behavioral Medicine, 252. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-1005-9_1325.
Full textMcKinlay, Audrey. "Brain Damage." In Encyclopedia of Child Behavior and Development, 284–86. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-79061-9_408.
Full textMorgan, Michael M., MacDonald J. Christie, Thomas Steckler, Ben J. Harrison, Christos Pantelis, Christof Baltes, Thomas Mueggler, et al. "Minimal Brain Damage." In Encyclopedia of Psychopharmacology, 785. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-68706-1_3399.
Full textAuer, Roland N. "Hypoglycemic Brain Damage." In Metabolic Encephalopathy, 31–39. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-79112-8_3.
Full textReam, Derek, and Isaac Tourgeman. "Specific Brain Damage." In Encyclopedia of Evolutionary Psychological Science, 1–7. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-16999-6_3447-1.
Full textHutchins, Tiffany, Giacomo Vivanti, Natasa Mateljevic, Roger J. Jou, Frederick Shic, Lauren Cornew, Timothy P. L. Roberts, et al. "Minimal Brain Damage." In Encyclopedia of Autism Spectrum Disorders, 1867. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-1698-3_100884.
Full textLaureys, Steven. "Traumatic Brain Damage." In Neuroscience in the 21st Century, 2499–528. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-1997-6_95.
Full textAuer, Roland N. "Hypoglycemic Brain Damage." In Acute Neuronal Injury, 203–10. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-73226-8_13.
Full textReam, Derek, and Isaac Tourgeman. "Specific Brain Damage." In Encyclopedia of Evolutionary Psychological Science, 7847–53. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-319-19650-3_3447.
Full textConference papers on the topic "Brain damage"
Cote, Francois, Joel Crepeau, Nicolas Lapointe, Damon DePaoli, Cleophace Akitegetse, Martin Levesque, and Daniel C. Cote. "Fluorescence Endoscope for Deep Brain Imaging With Minimal Tissue Damage Using a Singlemode Fiber." In Optics and the Brain. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/brain.2018.bf3c.4.
Full textLebedev, Vadim, and Victor Lempitsky. "Fast ConvNets Using Group-Wise Brain Damage." In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016. http://dx.doi.org/10.1109/cvpr.2016.280.
Full textKanibolotskiy, A. A., I. P. Papyshev, and I. E. Goncharova. "X-ray morphological comparisons in brain damage." In ЛУЧЕВАЯ ДИАГНОСТИКА ДЛЯ ПАТОЛОГИЧЕСКОЙ АНАТОМИИ И СУДЕБНО-МЕДИЦИНСКОЙ ЭКСПЕРТИЗЫ: ОТ ПРИЖИЗНЕННОЙ К ПОСМЕРТНОЙ. Москва: Межрегиональная общественная организация «Межрегиональное Танаторадиологическое Общество», 2022. http://dx.doi.org/10.54182/9785988117094_2022_54.
Full textLiu, Chao, Zhiyong Zhang, and Dong Wang. "Pruning deep neural networks by optimal brain damage." In Interspeech 2014. ISCA: ISCA, 2014. http://dx.doi.org/10.21437/interspeech.2014-281.
Full textMatejkova, Andrea. "COORDINATED REHABILITATION FROM PATIENT'S PERSPECTIVE AFTER BRAIN DAMAGE." In 5th SGEM International Multidisciplinary Scientific Conferences on SOCIAL SCIENCES and ARTS SGEM2018. STEF92 Technology, 2018. http://dx.doi.org/10.5593/sgemsocial2018h/31/s13.076.
Full textBartova, Marie. "NEEDS OF FAMILIES OF PATIENTS AFTER BRAIN DAMAGE." In 5th SGEM International Multidisciplinary Scientific Conferences on SOCIAL SCIENCES and ARTS SGEM2018. STEF92 Technology, 2018. http://dx.doi.org/10.5593/sgemsocial2018h/31/s13.085.
Full textJarusek, Robert, Martin Prasek, Martin Kotyrba, and Vladena Jaremova. "Automated diagnostics of patients with severe brain damage." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2020. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0085878.
Full textChernavsky, Nicole E., Nuri Hong, Michael Lamont, Lianne J. Trigiani, Nozomi Nishimura, and Chris B. Schaffer. "Label-Free Tracking of Myelin Dynamics in Subcortical White Matter of a Mouse Model of Multiple Sclerosis using Third Harmonic Generation Microscopy." In Optics and the Brain. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/brain.2024.bm1c.3.
Full textKwon, Jiwoon, Sung J. Lee, Ghatu Subhash, Michael King, and Malisa Sarntinoranont. "Shock Induced Deformation and Damage in Rat Brain Slices." In ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19448.
Full textAssari, Soroush, and Kurosh Darvish. "Brain Tissue Material and Damage Properties for Blast Trauma." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-88419.
Full textReports on the topic "Brain damage"
Bramlett, Helen M. Mechanisms and Treatment of Progressive Damage After Traumatic Brain Injury. Fort Belvoir, VA: Defense Technical Information Center, February 2003. http://dx.doi.org/10.21236/ada413329.
Full textBruhn, Arnold. Simulation of Brain Damage on Bender-gestalt Test by College Subjects. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.1579.
Full textSubhash, Ghatu. Cavitation Induced Structural and Neural Damage in Live Brain Tissue Slices: Relevance to TBI. Fort Belvoir, VA: Defense Technical Information Center, September 2014. http://dx.doi.org/10.21236/ada612616.
Full textSong, Yaowen, Shuiyu Lin, Jun Chen, Silu Ding, and Jun Dang. First-line treatment with TKI plus brain radiotherapy vs TKI alone in EGFR-mutated non-small-cell lung cancer with brain metastases: a systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, January 2023. http://dx.doi.org/10.37766/inplasy2023.1.0013.
Full textSharma, Pushpa, Neil Grunberg, He Li, Erin Berry, and Brandi Benford. Mitochondrial Damage: A Diagnostic and Metabolic Approach in Traumatic Brain Injury and Post-Traumatic Disorder. Fort Belvoir, VA: Defense Technical Information Center, January 2013. http://dx.doi.org/10.21236/ada579698.
Full textliu, qing, peng Wang, shufan Li, xiaojing Zhou, xing Wang, and zhichao Cao. A meta-analysis of the effects of MOTOmed intelligent exercise training on balance function and neurological function in patients with hemiplegia with stroke. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, March 2023. http://dx.doi.org/10.37766/inplasy2023.3.0045.
Full textZhuo, Guifeng, Hengwang Yu, Ran Liao, Xuexia Zheng, Dongmin Liu, Libing Mei, and Guiling Wu. Auricular point pressing therapy for obstructive sleep apnea hypoventilation syndrome: A protocol for systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, May 2022. http://dx.doi.org/10.37766/inplasy2022.5.0015.
Full textLing, Douglas S. F., Lie Yang, Sonia Afroz, and ChangChi Hsieh. The Brain Tourniquet: Physiological Isolation of Brain Regions Damaged by Traumatic Head Injury. Fort Belvoir, VA: Defense Technical Information Center, June 2008. http://dx.doi.org/10.21236/ada483617.
Full textCaldwell, Kevin K. Prenatal Alcohol Exposure Damages Brain Signal Transduction Systems. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada398260.
Full textCaldwell, Kevin K. Prenatal Alcohol Exposure Damages Brain Signal Transduction System. Fort Belvoir, VA: Defense Technical Information Center, September 2004. http://dx.doi.org/10.21236/ada435060.
Full text