Academic literature on the topic 'Brain damage'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Brain damage.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Brain damage"

1

Larsson, L. "BRAIN DAMAGE, BRAIN REPAIR." Brain 125, no. 12 (December 1, 2002): 2785–86. http://dx.doi.org/10.1093/brain/awf266.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Raisman, Geoffrey. "Brain Damage, Brain Repair." Journal of the Royal Society of Medicine 96, no. 5 (May 2003): 249–50. http://dx.doi.org/10.1177/014107680309600517.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lanham, Richard A. "Brain Damage, Brain Repair." Journal of Head Trauma Rehabilitation 17, no. 3 (June 2002): 270–72. http://dx.doi.org/10.1097/00001199-200206000-00012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jellinger, K. A. "Brain Damage, Brain Repair." European Journal of Neurology 10, no. 3 (May 2003): 335. http://dx.doi.org/10.1046/j.1468-1331.2003.00557.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Raisman, G. "Brain Damage, Brain Repair." JRSM 96, no. 5 (May 1, 2003): 249–50. http://dx.doi.org/10.1258/jrsm.96.5.249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Toledo, C. A. B. "Brain Damage, Brain Repair." Journal of Chemical Neuroanatomy 27, no. 2 (May 2004): 139. http://dx.doi.org/10.1016/j.jchemneu.2004.01.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Floyd, Pink. "Brain Damage." Academic Medicine 83, no. 8 (August 2008): 742. http://dx.doi.org/10.1097/acm.0b013e318181d965.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Volpe, Joseph J., A. Ernest, and Jane G. Stein. "BRAIN DAMAGE." Pediatric Research 20, no. 10 (October 1986): 1024–25. http://dx.doi.org/10.1203/00006450-198610000-00039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rothwell, Nancy J., and Giamal N. Luheshi. "Brain TNF: Damage limitation or damaged reputation?" Nature Medicine 2, no. 7 (July 1996): 746–47. http://dx.doi.org/10.1038/nm0796-746.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lakatos, Andras. "Brain Damage and Brain Repair." Neuropathology and Applied Neurobiology 27, no. 3 (June 2001): 252–53. http://dx.doi.org/10.1046/j.1365-2990.2001.00336-2.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Brain damage"

1

Sebastián, Romagosa Marc. "Brain computer interfaces for brain acquired damage." Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/670835.

Full text
Abstract:
El terme Interfície Cervell-Ordinador (ICC), va sorgir als anys 70 pel Dr. Jacques J. Vidal, que mitjançant l’ús de l’electroencefalografia (EEG) fou el primer a intentar proporcionar una sortida alternativa als senyals cerebrals per controlar un dispositiu extern. L’objectiu principal d’aquesta fita era ajudar als pacients amb problemes de moviment i comunicació a relacionar-se amb el seu entorn. Des de llavors, molts neurocientífics han emprat aquesta idea i han intentat posar-la en pràctica utilitzant diferents mètodes d’adquisició i processament del senyal, nous dispositius d’interacció, noves metes i objectius. Tot això ha facilitat l’aplicació d’aquesta tecnologia en moltes àrees, i actualment les ICC s’utilitzen per jugar a videojocs, moure cadires de rodes, facilitar l’escriptura en persones sense mobilitat, definir criteris i preferències en el món del comerç i el consum, o inclús poden servir com a detector de mentides. Tot i així, el sector que presenta un major avenç en el desenvolupament de les ICC, és el sector biomèdic. A grans trets, podem utilitzar les ICC amb dues finalitats diferents dins de la neurorehabilitació; substituint una funció perduda o induint canvis en la plasticitat neuronal amb l’objectiu de restaurar o compensar la funció perduda. Existeixen diferents principis per al registre dels senyals del cervell; de manera invasiva, col·locant els elèctrodes de registre dintre de la cavitat cranial, o de manera no invasiva, col·locant els elèctrodes de registre fora de la cavitat cranial. El mètode més conegut i difós és l’EEG. El seu ús és molt adequat en entorns clínics, té una resolució temporal molt precisa i és possible obtenir una retroalimentació en temps real que pot induir la plasticitat cortical i el restabliment de la funció motora normal. En aquesta tesi presentem tres objectius diferents: (1) avaluar els afectes clínics de la rehabilitació mitjançant les ICC en pacients amb ictus, ja sigui realitzant un meta-anàlisi dels estudis publicats o avaluant els canvis funcionals dels pacients amb ictus després de la teràpia d’ICC; (2) explorar paràmetres alternatius per quantificar els efectes de les ICC en pacients amb ictus, avaluant diferents biomarcadors de l’EEG en pacients amb aquesta patologia i correlacionant aquests marcadors amb els resultats de les escales funcionals; (3) optimitzar el sistema ICC mitjançant la gamificació d’un avatar.
El término Interfaz Cerebro-Computadora (ICC) surgió en los años 70 por el Dr. Jacques J. Vidal, que mediante el uso de la electroencefalografía (EEG) trató de dar una salida alternativa a las señales del cerebro para controlar un dispositivo externo. El objetivo principal de esta hazaña era ayudar a los pacientes con problemas de movimiento o comunicación a relacionarse con el entorno. Desde entonces, muchos neurocientíficos han utilizado esta idea y han tratado de ponerla en práctica utilizando diferentes métodos de adquisición y procesamiento de señales, nuevos dispositivos de interacción y nuevas metas y objetivos. Todo ello ha facilitado la aplicación de esta tecnología en muchas áreas y actualmente las ICC se utilizan para jugar a videojuegos, mover sillas de ruedas, facilitar la escritura en personas sin movilidad, establecer criterios y preferencias de compra en el mundo del comercio y el consumo, o incluso pueden servir como detector de mentiras. Sin embargo, el sector que presenta un mayor avance y desarrollo de las ICC es el sector biomédico. A grandes rasgos podemos utilizar las ICC con dos finalidades distintas dentro de la neurorehabilitación; sustituir una función perdida o inducir cambios en la plasticidad neuronal con el objetivo de restaurar o compensar dicha función perdida. Hay diferentes principios para el registro de las señales del cerebro; de forma invasiva, colocando los electrodos de registro dentro de la cavidad craneal, o no invasiva, colocando los electrodos de registro fuera de la cavidad craneal. El método más conocido y difundido es la EEG. Su uso es adecuado para entornos clínicos, tiene una resolución temporal muy precisa y su retroalimentación en tiempo real puede inducir la plasticidad cortical y el restablecimiento de la función motora normal. En esta tesis presentamos tres objetivos diferentes: (1) evaluar los efectos clínicos de la rehabilitación mediante las ICC en pacientes con ictus, ya sea realizando un meta-análisis de los estudios publicados o evaluando los cambios funcionales en los pacientes con ictus después de la terapia de ICC; (2) explorar parámetros alternativos para cuantificar los efectos de las ICC en pacientes con ictus, evaluando diferentes biomarcadores de electroencefalografía en pacientes con esta patología y correlacionando los posibles cambios en estos parámetros con los resultados en las escalas funcionales; (3) optimizar el sistema ICC utilizando mediante la gamificación de un avatar.
The term Brain Computer Interface (BCI) emerged in the 70's by Dr. Jacques J Vidal, who by using electroencephalography (EEG) tried to give an alternative output to the brain signals in order to control an external device. The main objective of this feat was to help patients with impaired movement or communication to relate themselves to the environment. Since then many neuroscientists have used this idea and have tried to implement it using different methods of signal acquisition and processing, new interaction devices, new goals and objectives. All this has facilitated the implementation of this technology in many areas and currently BCI is used to play video games, move wheelchairs, facilitate writing in people without mobility, establish criteria and purchase preferences in the world of marketing and consumption, or even serve as a lie detector. However, the sector that presents the most marked progress and development of BCI is the biomedical sector. In rough outlines we can use BCI with two different purposes within the neurorehabilitation; to substitute a lost function or to induce neural plasticity changes with the aim to restore or compensate the lost function. To restore a lost function by inducing neuroplastic changes in the brain is undoubtedly a challenging strategy but a feasible goal through BCI technology. This type of intervention requires that the patient invests time and effort in a therapy based on the practice of motor image and feedback mechanisms in real time. There are different principles to record the brain signals; invasively, placing the recording electrodes inside the cranial cavity, or non-invasive, placing the recording electrodes outside of the cranial cavity. The best known and most widespread one is EEG, since they are suitable for clinical environments, have a highly accurate temporal resolution and their real-time feedback can induce cortical plasticity and the restoration of normal motor function. On this thesis we present three different objectives: (1) to evaluate the clinical effects of rehabilitation based on BCI system in stroke patients, either by performing a meta-analysis of published studies or by evaluating functional changes in stroke patients after BCI training; (2) to explore alternative parameters to quantify effects of BCI in stroke patients, by evaluating different electroencephalography biomarkers in stroke patients and correlating potential changes in these parameters with functional scales; (3) to optimize the BCI system by using a new gamified avatar.
APA, Harvard, Vancouver, ISO, and other styles
2

Rolheiser, Tyler M. "Functional implications of cortical damage /." Connect to title online (Scholars' Bank) Connect to title online (ProQuest), 2008. http://hdl.handle.net/1794/9494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jones, Margaret A. "Caregiving for children who have had a traumatic brain injury structuring for security : a thesis submitted to Auckland University of Technology in partial fulfilment of the degree of Master of Health Science, December 2003." Full thesis. Abstract, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

McKinnon, Elaine E. "Relation of family characteristics and survivor characteristics to outcome after acquired brain injury in adolescents." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0022/NQ39290.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hornich, Agnieszka Apolonia. "Examination of self-efficacy and locus of control in predicting community integration following moderate to severe traumatic brain injury." [Huntington, WV : Marshall University Libraries], 2008. http://www.marshall.edu/etd/descript.asp?ref=871.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Morriss, Elissa. "Long term neuropsychological and psychosocial outcome following severe traumatic brain injury /." [St. Lucia, Qld.], 2004. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe17593.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Burke, Christopher. "Uteroplacental insufficiency and prenatal brain damage /." [St. Lucia, Qld.], 2005. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe19395.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kastuk, Donald John. "Social skills training for the traumatic brain injured." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape10/PQDD_0002/NQ43434.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cherry, Nicola. "Organic brain damage and occupational solvent exposure." Thesis, McGill University, 1991. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=60012.

Full text
Abstract:
309 cases of organic dementia, cerebral atrophy or psycho-organic syndrome, admitted for 5 days or more to one of 18 Quebec hospitals, were individually matched to a psychiatric referent, admitted with some other diagnosis, and a general hospital referent. Lifetime occupational history was obtained by telephone. Occupational solvent exposure was assessed by (i) individual ratings blind to case status and (ii) a job-exposure matrix. Subjects working with moderate or high solvent concentrations for at least 10 years were considered exposed. With the psychiatric referent series an odds ratio of 1.44 (90% CI 1.03-2.01) was calculated for individual exposure ratings and 1.41 (90% CI 0.89-2.23) for the job matrix. The increased risk was found largely in those with diagnoses of both organic dementia or cerebral atrophy and an alcohol related condition. A similar pattern of risk was found with the general hospital referents. Adjustment for possible confounders did not appreciably alter the risk estimates.
APA, Harvard, Vancouver, ISO, and other styles
10

McCracken, Eileen. "White matter damage after acute brain injury." Thesis, University of Glasgow, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340812.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Brain damage"

1

Burkholz, Herbert. Brain damage. New York: Atheneum, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Burkholz, Herbert. Brain damage. Glasgow, Great Britain: Headline, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

1950-, Fawcett James W., Rosser Anne E, and Dunnett S. B, eds. Brain damage, brain repair. Oxford: Oxford University Press, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Great Britain. Department of Health. Acquired brain injury. London: Department of Health, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

A, Hunt W., Nixon Sara Jo 1955-, and National Institute on Alcohol Abuse and Alcoholism (U.S.), eds. Alcohol-induced brain damage. Rockville, MD (5600 Fishers Lane, Rockville 20857): The Institute, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Coca, Antonio, ed. Hypertension and Brain Damage. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32074-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rose, F. D., and D. A. Johnson, eds. Recovery from Brain Damage. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3420-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Herdegen, T., and J. Delgado-García, eds. Brain Damage and Repair. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-2541-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

A, Hunt W., Nixon Sara Jo 1955-, and National Institute on Alcohol Abuse and Alcoholism (U.S.), eds. Alcohol-induced brain damage. Rockville, MD (5600 Fishers Lane, Rockville 20857): The Institute, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hunt, W. A. Alcohol-induced brain damage. Rockville, Md: National Inst. of Health, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Brain damage"

1

Spiers, Mary. "Brain Damage." In Encyclopedia of Behavioral Medicine, 291. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39903-0_1325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wideman, Timothy H., Michael J. L. Sullivan, Shuji Inada, David McIntyre, Masayoshi Kumagai, Naoya Yahagi, J. Rick Turner, et al. "Brain Damage." In Encyclopedia of Behavioral Medicine, 252. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-1005-9_1325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

McKinlay, Audrey. "Brain Damage." In Encyclopedia of Child Behavior and Development, 284–86. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-79061-9_408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Morgan, Michael M., MacDonald J. Christie, Thomas Steckler, Ben J. Harrison, Christos Pantelis, Christof Baltes, Thomas Mueggler, et al. "Minimal Brain Damage." In Encyclopedia of Psychopharmacology, 785. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-68706-1_3399.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Auer, Roland N. "Hypoglycemic Brain Damage." In Metabolic Encephalopathy, 31–39. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-79112-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ream, Derek, and Isaac Tourgeman. "Specific Brain Damage." In Encyclopedia of Evolutionary Psychological Science, 1–7. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-16999-6_3447-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hutchins, Tiffany, Giacomo Vivanti, Natasa Mateljevic, Roger J. Jou, Frederick Shic, Lauren Cornew, Timothy P. L. Roberts, et al. "Minimal Brain Damage." In Encyclopedia of Autism Spectrum Disorders, 1867. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-1698-3_100884.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Laureys, Steven. "Traumatic Brain Damage." In Neuroscience in the 21st Century, 2499–528. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-1997-6_95.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Auer, Roland N. "Hypoglycemic Brain Damage." In Acute Neuronal Injury, 203–10. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-73226-8_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ream, Derek, and Isaac Tourgeman. "Specific Brain Damage." In Encyclopedia of Evolutionary Psychological Science, 7847–53. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-319-19650-3_3447.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Brain damage"

1

Cote, Francois, Joel Crepeau, Nicolas Lapointe, Damon DePaoli, Cleophace Akitegetse, Martin Levesque, and Daniel C. Cote. "Fluorescence Endoscope for Deep Brain Imaging With Minimal Tissue Damage Using a Singlemode Fiber." In Optics and the Brain. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/brain.2018.bf3c.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lebedev, Vadim, and Victor Lempitsky. "Fast ConvNets Using Group-Wise Brain Damage." In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016. http://dx.doi.org/10.1109/cvpr.2016.280.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kanibolotskiy, A. A., I. P. Papyshev, and I. E. Goncharova. "X-ray morphological comparisons in brain damage." In ЛУЧЕВАЯ ДИАГНОСТИКА ДЛЯ ПАТОЛОГИЧЕСКОЙ АНАТОМИИ И СУДЕБНО-МЕДИЦИНСКОЙ ЭКСПЕРТИЗЫ: ОТ ПРИЖИЗНЕННОЙ К ПОСМЕРТНОЙ. Москва: Межрегиональная общественная организация «Межрегиональное Танаторадиологическое Общество», 2022. http://dx.doi.org/10.54182/9785988117094_2022_54.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Liu, Chao, Zhiyong Zhang, and Dong Wang. "Pruning deep neural networks by optimal brain damage." In Interspeech 2014. ISCA: ISCA, 2014. http://dx.doi.org/10.21437/interspeech.2014-281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Matejkova, Andrea. "COORDINATED REHABILITATION FROM PATIENT'S PERSPECTIVE AFTER BRAIN DAMAGE." In 5th SGEM International Multidisciplinary Scientific Conferences on SOCIAL SCIENCES and ARTS SGEM2018. STEF92 Technology, 2018. http://dx.doi.org/10.5593/sgemsocial2018h/31/s13.076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bartova, Marie. "NEEDS OF FAMILIES OF PATIENTS AFTER BRAIN DAMAGE." In 5th SGEM International Multidisciplinary Scientific Conferences on SOCIAL SCIENCES and ARTS SGEM2018. STEF92 Technology, 2018. http://dx.doi.org/10.5593/sgemsocial2018h/31/s13.085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jarusek, Robert, Martin Prasek, Martin Kotyrba, and Vladena Jaremova. "Automated diagnostics of patients with severe brain damage." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2020. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0085878.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chernavsky, Nicole E., Nuri Hong, Michael Lamont, Lianne J. Trigiani, Nozomi Nishimura, and Chris B. Schaffer. "Label-Free Tracking of Myelin Dynamics in Subcortical White Matter of a Mouse Model of Multiple Sclerosis using Third Harmonic Generation Microscopy." In Optics and the Brain. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/brain.2024.bm1c.3.

Full text
Abstract:
Third harmonic generation with 1320-nm, femtosecond pulses can visualize individual myelinated axons in subcortical white matter through intact cortex of live mice. In a cuprizone multiple sclerosis model, this enabled longitudinal tracking of myelin damage.
APA, Harvard, Vancouver, ISO, and other styles
9

Kwon, Jiwoon, Sung J. Lee, Ghatu Subhash, Michael King, and Malisa Sarntinoranont. "Shock Induced Deformation and Damage in Rat Brain Slices." In ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19448.

Full text
Abstract:
Shock-induced traumatic brain injury (TBI) and post traumatic stress disorder (PTSD) have received increasing attention because many soldiers returning from Iraq and Afghanistan suffer from these disorders. The shock loading duration is typically on the order of few hundred microseconds and hence the strain rate of deformation is very high. Therefore, in the current study, high-rate loading experiments were conducted on brain tissue slices which mimic loading durations encountered in shock loading [1]. The polymer split Hopkinson pressure bar (PSHPB) was used to generate high rate loading as a high speed digital camera captured the deformation of brain tissue. To further clarify initial injury events, post-test damage was assessed through histological studies. This experimental model provides the opportunity for time-resolved visualization of actual tissue deformation thus allowing improved ability to isolate damage-sensitive tissue regions.
APA, Harvard, Vancouver, ISO, and other styles
10

Assari, Soroush, and Kurosh Darvish. "Brain Tissue Material and Damage Properties for Blast Trauma." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-88419.

Full text
Abstract:
The aim of this study was to develop a test method to characterize the material behavior of bovine brain samples in large shear deformations and high strain rates relevant to blast-induced neurotrauma (BINT) and evaluate tissue damage. A novel shear test setup was designed and built capable of applying strain rates ranging from 300 to 1000 s−1. Based on the shear force time history and propagation of shear waves, it was found that the instantaneous shear modulus (about 6 kPa) was more than 3 times higher than the values previously reported in the literature. The shear wave velocity was found to be strain path dependent which is an indication of tissue damage at strains greater than 10%. The results of this study can help in improving finite element models of the brain for simulating tissue injury during BINT.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Brain damage"

1

Bramlett, Helen M. Mechanisms and Treatment of Progressive Damage After Traumatic Brain Injury. Fort Belvoir, VA: Defense Technical Information Center, February 2003. http://dx.doi.org/10.21236/ada413329.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bruhn, Arnold. Simulation of Brain Damage on Bender-gestalt Test by College Subjects. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.1579.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Subhash, Ghatu. Cavitation Induced Structural and Neural Damage in Live Brain Tissue Slices: Relevance to TBI. Fort Belvoir, VA: Defense Technical Information Center, September 2014. http://dx.doi.org/10.21236/ada612616.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Song, Yaowen, Shuiyu Lin, Jun Chen, Silu Ding, and Jun Dang. First-line treatment with TKI plus brain radiotherapy vs TKI alone in EGFR-mutated non-small-cell lung cancer with brain metastases: a systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, January 2023. http://dx.doi.org/10.37766/inplasy2023.1.0013.

Full text
Abstract:
Review question / Objective: It remains uncertain whether first-line treatment with upfront brain radiotherapy (RT) in combination with epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) is superior to EGFR-TKIs alone in EGFR-mutated non-small-cell lung cancer with newly diagnosed brain metastases (BMs). We performed a meta-analysis to address this issue. Condition being studied: Brain radiotherapy (RT) has been shown to damage the blood-brain barrier (BBB) and improve the concentration of EGFR-TKIs in the CSF. Additionally, RT can result in a reduction of EGFR-TKIs resistance. Therefore, EGFR-TKIs in combination with brain RT should be more effective than EGFR-TKIs alone theoretically. However, results from retrospective studies are inconsistent. There is the possibility that patients characteristics or brain RT technique affect the efficacy of treatments. To date, there is still no randomized controlled trials (RCTs) comparing the two treatment strategies.
APA, Harvard, Vancouver, ISO, and other styles
5

Sharma, Pushpa, Neil Grunberg, He Li, Erin Berry, and Brandi Benford. Mitochondrial Damage: A Diagnostic and Metabolic Approach in Traumatic Brain Injury and Post-Traumatic Disorder. Fort Belvoir, VA: Defense Technical Information Center, January 2013. http://dx.doi.org/10.21236/ada579698.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

liu, qing, peng Wang, shufan Li, xiaojing Zhou, xing Wang, and zhichao Cao. A meta-analysis of the effects of MOTOmed intelligent exercise training on balance function and neurological function in patients with hemiplegia with stroke. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, March 2023. http://dx.doi.org/10.37766/inplasy2023.3.0045.

Full text
Abstract:
Review question / Objective: This study aimed to systematically evaluate the effects of MOTOmed intelligent exercise training on balance function, neurological function and activities of daily living ability in patients with hemiplegia after stroke. Condition being studied: Stroke is a neurological disease caused by abnormal blood supply to the brain and is the third leading cause of death and disability in humans. Stroke-related disability-adjusted life-years are lost in 5.7 percent of the total, and 25 million new patients are expected each year by 2050. Hemiplegia is one of the most common sequelae of stroke ,and its clinical symptoms are often accompanied by neurological deficits in addition to common motor dysfunction, and due to damage to the central nervous system, proprioceptive and motor function is weakened, resulting in imbalance and increasing the risk of falls, seriously affecting the quality of daily life of patients .
APA, Harvard, Vancouver, ISO, and other styles
7

Zhuo, Guifeng, Hengwang Yu, Ran Liao, Xuexia Zheng, Dongmin Liu, Libing Mei, and Guiling Wu. Auricular point pressing therapy for obstructive sleep apnea hypoventilation syndrome: A protocol for systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, May 2022. http://dx.doi.org/10.37766/inplasy2022.5.0015.

Full text
Abstract:
Review question / Objective: Patients with obstructive sleep apnea hypoventilation syndrome (OSAHS) suffer from repeated hypoxemia, hypercapnia, and sleep structure disorders at night, leading to daytime lethargy and complications of heart, brain, lung, and blood vessel damage, which seriously affect their quality of life and life span. Clinical studies have shown that auricular point pressing therapy has an excellent therapeutic effect on OSAHS, and has the potential to be a complementary and alternative therapy for patients with OSAHS. Currently, systematic reviews and meta-analyses evaluating the efficacy and safety of electroacupuncture for the treatment of OSAHS are lacking. This study aimed to address this deficiency. Information sources: RCTs of auricular point pressing therapy in the treatment of OSAHS were searched in the Web of Science, PubMed, Cochrane Library, Embase, Allied and Complementary Medicine Database (AMED), China Science and Technology Journal Database (VIP), China National Knowledge Infrastructure (CNKI), and Wan-Fang Database. The retrieval time is from database construction to the present.
APA, Harvard, Vancouver, ISO, and other styles
8

Ling, Douglas S. F., Lie Yang, Sonia Afroz, and ChangChi Hsieh. The Brain Tourniquet: Physiological Isolation of Brain Regions Damaged by Traumatic Head Injury. Fort Belvoir, VA: Defense Technical Information Center, June 2008. http://dx.doi.org/10.21236/ada483617.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Caldwell, Kevin K. Prenatal Alcohol Exposure Damages Brain Signal Transduction Systems. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada398260.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Caldwell, Kevin K. Prenatal Alcohol Exposure Damages Brain Signal Transduction System. Fort Belvoir, VA: Defense Technical Information Center, September 2004. http://dx.doi.org/10.21236/ada435060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography