Academic literature on the topic 'Brain-Computer Interfaces (BCIs)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Brain-Computer Interfaces (BCIs).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Brain-Computer Interfaces (BCIs)"
Berger, Theodore W. "Brain–Computer Interfaces (BCIs)." Journal of Neuroscience Methods 167, no. 1 (January 2008): 1. http://dx.doi.org/10.1016/j.jneumeth.2007.10.002.
Full textTang, Feifang, Feiyang Yan, Yushan Zhong, Jinqian Li, Hui Gong, and Xiangning Li. "Optogenetic Brain–Computer Interfaces." Bioengineering 11, no. 8 (August 12, 2024): 821. http://dx.doi.org/10.3390/bioengineering11080821.
Full textNijholt, Anton, and Chang S. Nam. "Arts and Brain-Computer Interfaces (BCIs)." Brain-Computer Interfaces 2, no. 2-3 (April 3, 2015): 57–59. http://dx.doi.org/10.1080/2326263x.2015.1100514.
Full textKlein, Eran, and C. S. Nam. "Neuroethics and brain-computer interfaces (BCIs)." Brain-Computer Interfaces 3, no. 3 (July 2, 2016): 123–25. http://dx.doi.org/10.1080/2326263x.2016.1210989.
Full textMa, Yixin, Anmin Gong, Wenya Nan, Peng Ding, Fan Wang, and Yunfa Fu. "Personalized Brain–Computer Interface and Its Applications." Journal of Personalized Medicine 13, no. 1 (December 26, 2022): 46. http://dx.doi.org/10.3390/jpm13010046.
Full textColman, Jason, and Paul Gnanayutham. "Accessible Button Interfaces." International Journal of Web-Based Learning and Teaching Technologies 7, no. 4 (October 2012): 40–52. http://dx.doi.org/10.4018/jwltt.2012100104.
Full textValeriani, Davide, Caterina Cinel, and Riccardo Poli. "Brain–Computer Interfaces for Human Augmentation." Brain Sciences 9, no. 2 (January 24, 2019): 22. http://dx.doi.org/10.3390/brainsci9020022.
Full textFerreira, Alessandro Luiz Stamatto, Leonardo Cunha de Miranda, Erica Esteves Cunha de Miranda, and Sarah Gomes Sakamoto. "A Survey of Interactive Systems based on Brain-Computer Interfaces." Journal on Interactive Systems 4, no. 1 (August 28, 2013): 1. http://dx.doi.org/10.5753/jis.2013.623.
Full textMikołajewska, Emilia, and Dariusz Mikołajewski. "Ethical considerations in the use of brain-computer interfaces." Open Medicine 8, no. 6 (December 1, 2013): 720–24. http://dx.doi.org/10.2478/s11536-013-0210-5.
Full textXu, Jiahong. "Optimizing Brain-Computer Interfaces through Spiking Neural Networks and Memristors." Highlights in Science, Engineering and Technology 85 (March 13, 2024): 184–90. http://dx.doi.org/10.54097/yk9r3d87.
Full textDissertations / Theses on the topic "Brain-Computer Interfaces (BCIs)"
Botrel, Loic [Verfasser], Andrea [Gutachter] Kübler, and Johannes [Gutachter] Hewig. "Brain-computer interfaces (BCIs) based on sensorimotor rhythms - Evaluating practical interventions to improve their performance and reduce BCI inefficiency / Loic Botrel ; Gutachter: Andrea Kübler, Johannes Hewig." Würzburg : Universität Würzburg, 2018. http://d-nb.info/1168146445/34.
Full textYamamoto, Maria Sayu. "Addressing the Large Variability of EEG Data with Riemannian Geometry : Toward Designing Reliable Brain-Computer Interfaces." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASG098.
Full textRiemannian geometry-based Brain-Computer Interfaces (BCIs) have gained momentum over the last decade, demonstrating significant improvements in various BCI classification contexts. Despite these advancements, BCI systems remain insufficiently reliable for practical applications. One of the obstacles facing BCIs is the considerable variability of electroencephalogram (EEG). This variability is expected to be even more pronounced when BCI systems are used over multiple days or outside controlled laboratory environments. This thesis tackled the large variability of EEG data from a variety of angles on the Riemannian manifold of symmetric positive definite (SPD) matrices. Our six contributions can be divided into three categories. In the first section, we proposed two approaches to mitigate the variability of intra-user data distribution on an SPD manifold. The first contribution is an automatic outlier detection method based on spectral clustering for EEG SPD matrices, which could detect outliers more accurately than existing methods in a fully data-driven manner. The second contribution proposed a classification model that accounts for multimodal distributions of SPD matrices on a manifold. Our classifier significantly improved accuracy for a highly variable dataset compared to a standard unimodal classifier. The second section tackled inter-user variability by proposing two personalized parameters selection methods. The first method involves dimensionality reduction to project SPD matrices into more class-discriminating low-dimensional subspaces, significantly enhancing classification accuracy from the original high-dimensional space. The second method is a discriminative frequency band and time window selection approach based on class distinctiveness on an SPD manifold. Our selection approach substantially improved classification accuracy over both a baseline without personalized parameters selection and a well-known conventional selection method. In the final section, we focused on designing less variable classification features derived from neurophysiological measurements that have been underutilized in BCI studies. We propose novel SPD matrix representations that exploit multiple cross-frequency coupling as classification features, significantly improving classification accuracy over conventional Riemannian SPD representations. Additionally, we explored the effectiveness of removing a highly variable component of neural signal based on periodic/aperiodic parameterization of EEG signals. This could contribute to the development of neuroscientifically interpretable strategies for addressing large variability in EEG/BCI. Our empirical findings from these six contributions collectively pave the way for algorithm developments that more effectively address significant EEG variability, advancing the design of reliable BCI applications
Mindermann, Björn [Verfasser], Axel [Akademischer Betreuer] Gräser, Axel [Gutachter] Gräser, and Canan [Gutachter] Basar-Eroglu. "Untersuchung eines hybriden Brain-Computer Interfaces (BCIs) zur optimalen Auslegung als Mensch-Maschine-Schnittstelle / Björn Mindermann ; Gutachter: Axel Gräser, Canan Basar-Eroglu ; Betreuer: Axel Gräser." Bremen : Staats- und Universitätsbibliothek Bremen, 2018. http://d-nb.info/1159699917/34.
Full textBhalotiya, Anuj Arun. "Brain Computer Interface (BCI) Applications: Privacy Threats and Countermeasures." Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc984122/.
Full textPetrucci, Maila. "Sistemi Brain Computer Interface: dalla macchina al paziente." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/10137/.
Full textDel, Monte Tamara. "Utilizzo dell'elettroencefalografia per la brain-computer interface." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/9220/.
Full textJeunet, Camille. "Understanding & Improving Mental-Imagery Based Brain-Computer Interface (Mi-Bci) User-Training : towards A New Generation Of Reliable, Efficient & Accessible Brain- Computer Interfaces." Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0221/document.
Full textMental-imagery based brain-computer interfaces (MI-BCIs) enable users to interact with theirenvironment using their brain-activity alone, by performing mental-imagery tasks. This thesisaims to contribute to the improvement of MI-BCIs in order to render them more usable. MIBCIsare bringing innovative prospects in many fields, ranging from stroke rehabilitation tovideo games. Unfortunately, most of the promising MI-BCI based applications are not yetavailable on the public market since an estimated 15 to 30% of users seem unable to controlthem. A lot of research has focused on the improvement of signal processing algorithms.However, the potential role of user training in MI-BCI performance seems to be mostlyneglected. Controlling an MI-BCI requires the acquisition of specific skills, and thus anappropriate training procedure. Yet, although current training protocols have been shown tobe theoretically inappropriate, very little research is done towards their improvement. Our mainobject is to understand and improve MI-BCI user-training. Thus, first we aim to acquire a betterunderstanding of the processes underlying MI-BCI user-training. Next, based on thisunderstanding, we aim at improving MI-BCI user-training so that it takes into account therelevant psychological and cognitive factors and complies with the principles of instructionaldesign. Therefore, we defined 3 research axes which consisted in investigating the impact of(1) cognitive factors, (2) personality and (3) feedback on MI-BCI performance. For each axis,we first describe the studies that enabled us to determine which factors impact MI-BCIperformance; second, we describe the design and validation of new training approaches; thethird part is dedicated to future work. Finally, we propose a solution that could enable theinvestigation of MI-BCI user-training using a multifactorial and dynamic approach: an IntelligentTutoring System
Sicbaldi, Marcello. "Brain-Computer Interface per riabilitazione motoria e cognitiva." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18556/.
Full textJUBIEN, Guillaume. "Decoding Electrocorticography Signals by Deep Learning for Brain-Computer Interface." Thesis, KTH, Skolan för kemi, bioteknologi och hälsa (CBH), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-243903.
Full textBodranghien, Florian. "A novel brain-computer interface (BCI) to assist upper limb pointing movements." Doctoral thesis, Universite Libre de Bruxelles, 2017. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/261534.
Full textCommuniquer avec un ordinateur par le biais de la pensée n'est plus un sujet de science-fiction et les progrès effectués dans le domaine sont ahurissants. Ce travail montre la création d'une nouvelle plateforme de mesure de la performance des mouvements de pointage verticaux (eCAM test) ainsi que sa validation sur une cohorte de sujets sains. Suite à cela, il montre que la stimulation électrique fonctionnelle (FES) améliore la performance de ces mouvements des membres supérieurs. En plus il démontre que la stimulation anodale trancranienne en courant continu (atDCS) du cervelet a un effet sur les rythmes des signaux cérébraux ainsi que sur le tremblement postural d'un patient. De plus des données IRM recueillies durant ce travail permettront de mieux cerner les mécanismes d'action de la stimulation tDCS. Suite à cela, il a été montré que la fréquence et la complexité d'une tâche de tapping augmentent le tremblement postural du membre controlatéral. Le même effet est constaté pour la fatigue musculaire. Toutes ces avancées installent les fondements à la création d'une interface cerveau-machine multimodale basée sur la fusion de senseurs. Une phase de développement est maintenant nécessaire pour établir cette interface et la tester sur des sujets sains et malades.
Doctorat en Sciences biomédicales et pharmaceutiques (Médecine)
info:eu-repo/semantics/nonPublished
Books on the topic "Brain-Computer Interfaces (BCIs)"
Pfurtscheller, Gert, Clemens Brunner, and Christa Neuper. EEG-Based Brain–Computer Interfaces. Edited by Donald L. Schomer and Fernando H. Lopes da Silva. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190228484.003.0047.
Full textKlein, Eran. Neuromodulation ethics: Preparing for brain–computer interface medicine. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198786832.003.0007.
Full textPaszkiel, Szczepan, and Wojciech P. Hunek. Biomedical Engineering and Neuroscience: Proceedings of the 3rd International Scientific Conference on Brain-Computer Interfaces, BCI 2018, March ... in Intelligent Systems and Computing). Springer, 2018.
Find full textBook chapters on the topic "Brain-Computer Interfaces (BCIs)"
Allison, Brendan Z. "Toward Ubiquitous BCIs." In Brain-Computer Interfaces, 357–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02091-9_19.
Full textBotti Benevides, Alessandro, Mario Sarcinelli-Filho, and Teodiano Freire Bastos-Filho. "Brain–Computer Interfaces (BCIs)." In Introduction to Non-Invasive EEG-Based Brain–Computer Interfaces for Assistive Technologies, 51–60. Boca Raton : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003049159-2.
Full textGunduz, Aysegul, and Gerwin Schalk. "ECoG-Based BCIs." In Brain–Computer Interfaces Handbook, 297–322. Boca Raton : Taylor & Francis, CRC Press, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/9781351231954-16.
Full textFlamary, Rémi, Alain Rakotomamonjy, and Michèle Sebag. "Statistical Learning for BCIs." In Brain-Computer Interfaces 1, 185–205. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119144977.ch9.
Full textJayaram, Vinay, Karl-Heinz Fiebig, Jan Peters, and Moritz Grosse-Wentrup. "Transfer Learning for BCIs." In Brain–Computer Interfaces Handbook, 425–42. Boca Raton : Taylor & Francis, CRC Press, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/9781351231954-22.
Full textTaylor, Dawn M. "Functional Electrical Stimulation and Rehabilitation Applications of BCIs." In Brain-Computer Interfaces, 81–94. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8705-9_6.
Full textTaylor, Dawn M., and Michael E. Stetner. "Intracortical BCIs: A Brief History of Neural Timing." In Brain-Computer Interfaces, 203–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02091-9_12.
Full textMüller-Putz, Gernot R., Reinhold Scherer, Gert Pfurtscheller, and Rüdiger Rupp. "Non Invasive BCIs for Neuroprostheses Control of the Paralysed Hand." In Brain-Computer Interfaces, 171–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02091-9_10.
Full textHuggins, Jane E. "BCIs Based on Signals from Between the Brain and Skull." In Brain-Computer Interfaces, 221–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02091-9_13.
Full textCabestaing, François, and Louis Mayaud. "Medical Applications of BCIs for Patient Communication." In Brain-Computer Interfaces 2, 43–63. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119332428.ch3.
Full textConference papers on the topic "Brain-Computer Interfaces (BCIs)"
Pal, Saptarsi, Shreyansh Mishra, Ajay Kumar, Utkarsh Tiwari, and Mahesh Kumar Singh. "Enhancing Brain Signal Acquisition in Brain-Computer Interfaces (BCIs)." In 2024 2nd International Conference on Disruptive Technologies (ICDT). IEEE, 2024. http://dx.doi.org/10.1109/icdt61202.2024.10489212.
Full textWolpaw, Jonathan R. "Brain-computer interfaces (BCIs) for communication and control." In the 9th international ACM SIGACCESS conference. New York, New York, USA: ACM Press, 2007. http://dx.doi.org/10.1145/1296843.1296845.
Full textYakovlev, Lev, Artemiy Berkmush Antipova, Nikolay Syrov, Maksimov Iaroslav, Daria Petrova, Matvey Bulat, Mikhail Lebedev, and Alexander Kaplan. "The effects of tactile stimulation and its imagery on sensorimotor EEG rhythms: incorporating somatic sensations in brain-computer interfaces." In 8th International Conference on Human Interaction and Emerging Technologies. AHFE International, 2022. http://dx.doi.org/10.54941/ahfe1002765.
Full textAl-Serkal, Abdulla, Nooruldeen Almohammed, Ahmad Qusai, and Jinane Mounsef. "EEG-Based Cognitive Digit Perception for Brain-Computer Interfaces (BCIs)." In 2023 IEEE Global Conference on Artificial Intelligence and Internet of Things (GCAIoT). IEEE, 2023. http://dx.doi.org/10.1109/gcaiot61060.2023.10385095.
Full textСметана, Владимир Васильевич. "BRAIN-COMPUTER INTERFACES (BCI) AND THE PHILOSOPHICAL HORIZONS OF DIGITAL IMMORTALITY." In Перспективные исследования: теория и практика: сборник статей международной научной конференции (Санкт-Петербург, Сентябрь 2024), 27–32. Crossref, 2024. http://dx.doi.org/10.58351/240903.2024.32.84.003.
Full textHeilala, Janne. "Bio-AI Metaverse Integration: Fusion of Surgical and Aerospace Engineering." In Intelligent Human Systems Integration (IHSI 2024) Integrating People and Intelligent Systems. AHFE International, 2024. http://dx.doi.org/10.54941/ahfe1004525.
Full textVieites Pérez, Pelayo, Adriana Dapena, and Francisco Laport. "Open Source Simulator of a Control System Based on EEG Signals." In VII Congreso XoveTIC: impulsando el talento científico, 73–80. Servizo de Publicacións. Universidade da Coruña, 2024. https://doi.org/10.17979/spudc.9788497498913.11.
Full textManuri, Federico, Andrea Sanna, Matteo Bosco, and Francesco De Pace. "A Comparison of Three Different NeuroTag Visualization Media: Brain Visual Stimuli by Monitor, Augmented and Virtual Reality Devices." In 8th International Conference on Human Interaction and Emerging Technologies. AHFE International, 2022. http://dx.doi.org/10.54941/ahfe1002726.
Full textIbarra Chaoul, Andrea, and Moritz Grosse-Wentrup. "Is breathing rate a confounding variable in brain-computer interfaces (BCIs) based on EEG spectral power?" In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2015. http://dx.doi.org/10.1109/embc.2015.7318552.
Full textFloreani, Erica Danielle, and Tom Chau. "Towards Privacy Preserving BCIs: Profiling the Feasibility of Federated Learning for Motor Imagery Brain-Computer Interfaces." In 2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2023. http://dx.doi.org/10.1109/smc53992.2023.10394136.
Full textReports on the topic "Brain-Computer Interfaces (BCIs)"
Potter, Michael, and Lydia Harriss. Brain-computer interfaces. Parliamentary Office of Science and Technology, February 2020. http://dx.doi.org/10.58248/pn614.
Full text