Academic literature on the topic 'Brain'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Brain.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Brain"
Scull, A. "Left brain, right brain: One brain, two brains." Brain 133, no. 10 (September 25, 2010): 3153–56. http://dx.doi.org/10.1093/brain/awq255.
Full textVadza, Kejal Chintan. "Brain Gate & Brain Computer Interface." International Journal of Scientific Research 2, no. 5 (June 1, 2012): 45–49. http://dx.doi.org/10.15373/22778179/may2013/19.
Full textGowda, Ashmitha. "Brain Fingerprinting." International Journal of Research Publication and Reviews 4, no. 5 (May 4, 2023): 1707–10. http://dx.doi.org/10.55248/gengpi.234.5.40436.
Full textGoodman, G., R. R. Poznanski, L. Cacha, and D. Bercovich. "The Two-Brains Hypothesis: Towards a guide for brain–brain and brain–machine interfaces." Journal of Integrative Neuroscience 14, no. 03 (September 2015): 281–93. http://dx.doi.org/10.1142/s0219635215500235.
Full textTsibu, George. "The Child Brain." Clinical Medical Reviews and Reports 2, no. 02 (February 24, 2020): 01. http://dx.doi.org/10.31579/2690-8794/011.
Full textPinheiro, Renato Serquiz E., Yanny Cinara T. Ernesto, and Irami Araújo-Filho. "Bleeding Brain Intraparenchymal." International Journal of Trend in Scientific Research and Development Volume-3, Issue-3 (April 30, 2019): 1719–24. http://dx.doi.org/10.31142/ijtsrd23500.
Full textR. Suryawanshi, Chandani, and Vinod Nayyar. "BLUE BRAIN." INTERNATIONAL JOURNAL OF MANAGEMENT & INFORMATION TECHNOLOGY 7, no. 2 (November 30, 2013): 1009–17. http://dx.doi.org/10.24297/ijmit.v7i2.3294.
Full textR, Divya. "Instagramification of the Brain." Neurology & Neurotherapy Open Access Journal 4, no. 1 (2019): 1–2. http://dx.doi.org/10.23880/nnoaj-16000133.
Full textMarkou, Athina, Theodora Duka, and Gordana Prelevic. "Estrogens and brain function." HORMONES 4, no. 1 (January 15, 2005): 9–17. http://dx.doi.org/10.14310/horm.2002.11138.
Full textSalami, A., M. Ajani, I. Orhorho, G. Ogun, A. Adeoye, C. Okolo, A. Oluwasola, and J. Ogunbiyi. "Brain weights in adult africans." Journal of Morphological Sciences 34, no. 04 (October 2017): 223–25. http://dx.doi.org/10.4322/jms.106316.
Full textDissertations / Theses on the topic "Brain"
Wolburg, Martin. "On brain drain, brain gain, and brain exchange within Europe /." Baden-Baden : Nomos Verlagsgesellschaft, 2001. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=015306300&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Full textSebastián, Romagosa Marc. "Brain computer interfaces for brain acquired damage." Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/670835.
Full textEl término Interfaz Cerebro-Computadora (ICC) surgió en los años 70 por el Dr. Jacques J. Vidal, que mediante el uso de la electroencefalografía (EEG) trató de dar una salida alternativa a las señales del cerebro para controlar un dispositivo externo. El objetivo principal de esta hazaña era ayudar a los pacientes con problemas de movimiento o comunicación a relacionarse con el entorno. Desde entonces, muchos neurocientíficos han utilizado esta idea y han tratado de ponerla en práctica utilizando diferentes métodos de adquisición y procesamiento de señales, nuevos dispositivos de interacción y nuevas metas y objetivos. Todo ello ha facilitado la aplicación de esta tecnología en muchas áreas y actualmente las ICC se utilizan para jugar a videojuegos, mover sillas de ruedas, facilitar la escritura en personas sin movilidad, establecer criterios y preferencias de compra en el mundo del comercio y el consumo, o incluso pueden servir como detector de mentiras. Sin embargo, el sector que presenta un mayor avance y desarrollo de las ICC es el sector biomédico. A grandes rasgos podemos utilizar las ICC con dos finalidades distintas dentro de la neurorehabilitación; sustituir una función perdida o inducir cambios en la plasticidad neuronal con el objetivo de restaurar o compensar dicha función perdida. Hay diferentes principios para el registro de las señales del cerebro; de forma invasiva, colocando los electrodos de registro dentro de la cavidad craneal, o no invasiva, colocando los electrodos de registro fuera de la cavidad craneal. El método más conocido y difundido es la EEG. Su uso es adecuado para entornos clínicos, tiene una resolución temporal muy precisa y su retroalimentación en tiempo real puede inducir la plasticidad cortical y el restablecimiento de la función motora normal. En esta tesis presentamos tres objetivos diferentes: (1) evaluar los efectos clínicos de la rehabilitación mediante las ICC en pacientes con ictus, ya sea realizando un meta-análisis de los estudios publicados o evaluando los cambios funcionales en los pacientes con ictus después de la terapia de ICC; (2) explorar parámetros alternativos para cuantificar los efectos de las ICC en pacientes con ictus, evaluando diferentes biomarcadores de electroencefalografía en pacientes con esta patología y correlacionando los posibles cambios en estos parámetros con los resultados en las escalas funcionales; (3) optimizar el sistema ICC utilizando mediante la gamificación de un avatar.
The term Brain Computer Interface (BCI) emerged in the 70's by Dr. Jacques J Vidal, who by using electroencephalography (EEG) tried to give an alternative output to the brain signals in order to control an external device. The main objective of this feat was to help patients with impaired movement or communication to relate themselves to the environment. Since then many neuroscientists have used this idea and have tried to implement it using different methods of signal acquisition and processing, new interaction devices, new goals and objectives. All this has facilitated the implementation of this technology in many areas and currently BCI is used to play video games, move wheelchairs, facilitate writing in people without mobility, establish criteria and purchase preferences in the world of marketing and consumption, or even serve as a lie detector. However, the sector that presents the most marked progress and development of BCI is the biomedical sector. In rough outlines we can use BCI with two different purposes within the neurorehabilitation; to substitute a lost function or to induce neural plasticity changes with the aim to restore or compensate the lost function. To restore a lost function by inducing neuroplastic changes in the brain is undoubtedly a challenging strategy but a feasible goal through BCI technology. This type of intervention requires that the patient invests time and effort in a therapy based on the practice of motor image and feedback mechanisms in real time. There are different principles to record the brain signals; invasively, placing the recording electrodes inside the cranial cavity, or non-invasive, placing the recording electrodes outside of the cranial cavity. The best known and most widespread one is EEG, since they are suitable for clinical environments, have a highly accurate temporal resolution and their real-time feedback can induce cortical plasticity and the restoration of normal motor function. On this thesis we present three different objectives: (1) to evaluate the clinical effects of rehabilitation based on BCI system in stroke patients, either by performing a meta-analysis of published studies or by evaluating functional changes in stroke patients after BCI training; (2) to explore alternative parameters to quantify effects of BCI in stroke patients, by evaluating different electroencephalography biomarkers in stroke patients and correlating potential changes in these parameters with functional scales; (3) to optimize the BCI system by using a new gamified avatar.
Liu, Mianxin. "The brain at criticality : variability of brain spontaneous activity and relevance to brain functions." HKBU Institutional Repository, 2020. https://repository.hkbu.edu.hk/etd_oa/809.
Full textDave, Nimita D. "Brain/Brain Tumor Pharmacokinetics and Pharmacodynamics of Letrozole." University of Cincinnati / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1368013158.
Full textWoody, Christine Buchanan. "Right-brain/left-brain communication in the church." Theological Research Exchange Network (TREN), 2007. http://www.tren.com/search.cfm?p064-0137.
Full textÁlvarez, Fernández Jorge Luis, Segura Claudia Alejandra Muñoz, Apolaya Juan José Polack, and Bautista Karina Rodríguez. "Brain Freeze." Bachelor's thesis, Universidad Peruana de Ciencias Aplicadas (UPC), 2018. http://hdl.handle.net/10757/625355.
Full textThe main purpose of this paper is to develop an innovative business model, based on the creation of an ice cream made from Polyphenol, which has the added value of not melting easily. "Brain Freeze" forms an innovative proposal for the ice cream market at present, due to its main competitive and comparative advantage over the existing competition in the market. Likewise, from this written document, all the main aspects are developed for the correct and efficient realization of this project and its prompt execution in Metropolitan Lima; as well as all the financial details required for its evaluation and prompt investment in the business model. With the purpose of being able to establish a planning that allows real market estimations, the present investigation took into account the respective and updated information of the market segment to which it is expected to attend. The concept of "Brain Freeze" proposes the development of five sales modules in five of the main shopping centers, in order to cover the largest number of customers, who turn to the main shopping centers in Metropolitan Lima and thus become in a Top of Mind brand, within five years of its launch.
Trabajo de investigación
Подолкова, Світлана Віталіївна, Светлана Витальевна Подолкова, Svitlana Vitaliivna Podolkova, and I. Strizhakov. "Human brain." Thesis, Вид-во СумДУ, 2011. http://essuir.sumdu.edu.ua/handle/123456789/22106.
Full textSylenko, E. V. "Brain-computer." Thesis, Sumy State University, 2016. http://essuir.sumdu.edu.ua/handle/123456789/45871.
Full textWatson, Charles. "Brain mapping." Thesis, The University of Sydney, 2011. https://hdl.handle.net/2123/28840.
Full textBabalola, Karolyn Olatubosun. "Brain-computer interfaces for inducing brain plasticity and motor learning: implications for brain-injury rehabilitation." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/41164.
Full textBooks on the topic "Brain"
Dalton, A. J. Brain beats brawn every time. Liverpool: Liverpool Libraries & Arts, 1995.
Find full textGeorg, Deutsch, ed. Left brain, right brain. 4th ed. New York: W.H. Freeman, 1993.
Find full textGeorg, Deutsch, ed. Left brain, right brain. New York: W.H. Freeman and Company, 1989.
Find full textGeorg, Deutsch, ed. Left brain, right brain. New York: W.H. Freeman, 1985.
Find full textHelge, Refsum, Sulg Ilmar A. 1919-, and Rasmussen Knut, eds. Heart & brain, brain & heart. Berlin: Springer-Verlag, 1989.
Find full textSpringer, Sally P. Left brain, right brain. 3rd ed. New York: W.H. Freeman, 1989.
Find full text1950-, Fawcett James W., Rosser Anne E, and Dunnett S. B, eds. Brain damage, brain repair. Oxford: Oxford University Press, 2001.
Find full textComics Collection (University of Pennsylvania), ed. The tiger-eater: Brain beats brawn. Mumbai: Amar Chitra Katha, ACK Media, 2011.
Find full textI, Templer Donald, Hartlage Lawrence C, and Cannon W. Gary, eds. Preventable brain damage: Brain vulnerability and brain health. New York: Springer Pub. Co., 1992.
Find full textCaster, Shannon. Brain. New York: PowerKids Press, 2010.
Find full textBook chapters on the topic "Brain"
Poon, Jessie P. H., and Wei Yin. "Brawn to brain." In In The Post-Urban World, 109–28. Abingdon, Oxon ; New York, NY : Routledge, 2018.: Routledge, 2017. http://dx.doi.org/10.4324/9781315672168-9.
Full textAboitiz, Francisco. "Monkey Brain, Human Brain." In A Brain for Speech, 249–85. London: Palgrave Macmillan UK, 2017. http://dx.doi.org/10.1057/978-1-137-54060-7_7.
Full textCampagnole-Santos, Maria Jose, Mariela M. Gironacci, and Marco Antônio Peliky Fontes. "Brain." In Angiotensin-(1-7), 55–71. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22696-1_4.
Full textMerrick, Malcolm V. "Brain." In Essentials of Nuclear Medicine, 221–44. London: Springer London, 1998. http://dx.doi.org/10.1007/978-1-4471-0907-5_9.
Full textGedroyc, Wladyslaw, and Sheila Rankin. "Brain." In Practical CT Techniques, 26–29. London: Springer London, 1992. http://dx.doi.org/10.1007/978-1-4471-3275-2_8.
Full textSantiago, Jonas Francisco Y. "Brain." In Positron Emission Tomography with Computed Tomography (PET/CT), 3–12. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05518-3_2.
Full textHecht, Silke. "Brain." In Veterinary Computed Tomography, 185–95. West Sussex, UK: John Wiley & Sons, Ltd., 2013. http://dx.doi.org/10.1002/9781118785676.ch19.
Full textCrispino, Mario, and Emanuela Crispino. "Brain." In Atlas of Imaging Anatomy, 1–27. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10750-9_1.
Full textWideman, Timothy H., Michael J. L. Sullivan, Shuji Inada, David McIntyre, Masayoshi Kumagai, Naoya Yahagi, J. Rick Turner, et al. "Brain." In Encyclopedia of Behavioral Medicine, 251. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-1005-9_1098.
Full textWallis, Jennifer. "Brain." In Investigating the Body in the Victorian Asylum, 141–79. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56714-3_5.
Full textConference papers on the topic "Brain"
Hu, Hao, William S. Rosenberg, and Adnan H. Nayfeh. "Modeling Human Brain Movability Effect on Brain Response During Impact." In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-0980.
Full textWands, Bruce. "Right brain/left brain." In ACM SIGGRAPH 2006 Educators program. New York, New York, USA: ACM Press, 2006. http://dx.doi.org/10.1145/1179295.1179326.
Full textMin, Byoung-Kyong. "Eeg/sonication-based brain-brain interfacing." In 2013 International Winter Workshop on Brain-Computer Interface (BCI). IEEE, 2013. http://dx.doi.org/10.1109/iww-bci.2013.6506614.
Full textRoula, Mohammed Ali, Sriharsha Ramaraju, and Peter McCarthy. "Brain Stimulation and Brain Computer Interfacing." In Proceedings of the 32nd International BCS Human Computer Interaction Conference. BCS Learning & Development, 2018. http://dx.doi.org/10.14236/ewic/hci2018.231.
Full textValentino, D. J., J. C. Mazziotta, and H. K. Huang. "Mapping Brain Function To Brain Anatomy." In Medical Imaging II, edited by Roger H. Schneider and Samuel J. Dwyer III. SPIE, 1988. http://dx.doi.org/10.1117/12.968665.
Full textAlkan, Sarper, and Fatos T. Yarman-Vural. "Ensembling brain regions for brain decoding." In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2015. http://dx.doi.org/10.1109/embc.2015.7319010.
Full textPavone, Francesco S. "3d Human Brain Digital Histopatology." In Optics and the Brain. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/brain.2018.bf4c.1.
Full textMurphy, Tim H. "Point-source Maps: Relations between Mesoscopic Imaging of Mouse Cortex and Neuronal Spiking." In Optics and the Brain. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/brain.2015.brt2b.1.
Full textDrew, Patrick J. "Optical Dissection of Mesoscale Cerebral Hemodynamics in the Behaving Brain." In Optics and the Brain. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/brain.2016.bm4d.4.
Full textKwon, Sunkuk, and Eva M. Sevick-Muraca. "Changes in lymph node metastasis patterns after surgical removal of a popliteal lymph node in mice." In Optics and the Brain. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/brain.2016.ptu3a.1.
Full textReports on the topic "Brain"
Nudo, Randolph. A Brain-Machine-Brain Interface for Rewiring of Cortical Circuitry after Traumatic Brain Injury. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada561375.
Full textNudo, Randolph J. A Brain-Machine-Brain Interface for Rewiring of Cortical Circuitry after Traumatic Brain Injury. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada570590.
Full textMohseni, Pedram. A Brain-Machine-Brain Interface for Rewiring of Cortical Circuitry after Traumatic Brain Injury. Fort Belvoir, VA: Defense Technical Information Center, September 2013. http://dx.doi.org/10.21236/ada598378.
Full textNudo, Randolph J. A Brain-Machine-Brain Interface for Rewiring of Cortical Circuitry after Traumatic Brain Injury. Fort Belvoir, VA: Defense Technical Information Center, September 2013. http://dx.doi.org/10.21236/ada598379.
Full textNajm, Imad. Deep Brain Stimulation of Treatment of Traumatic Brain Injury. Fort Belvoir, VA: Defense Technical Information Center, October 2009. http://dx.doi.org/10.21236/ada548984.
Full textMonteiro-Benson, Misha. Will Kazakhstan’s brain drain become a wartime brain gain? East Asia Forum, October 2023. http://dx.doi.org/10.59425/eabc.1697018415.
Full textPotter, Michael, and Lydia Harriss. Brain-computer interfaces. Parliamentary Office of Science and Technology, February 2020. http://dx.doi.org/10.58248/pn614.
Full textWilliams, Timothy J., Ramesh Balakrishnan, Fabien Delalondre, Felix Schuermann, Eilif Muller, and Marc Oliver Gewaltig. Large-Scale Simulation of Brain Tissue, Blue Brain Project, EPFL. Office of Scientific and Technical Information (OSTI), May 2018. http://dx.doi.org/10.2172/1483995.
Full textAaron Seitz, Aaron Seitz. Can brain training help soldiers with brain injury regain hearing? Experiment, June 2014. http://dx.doi.org/10.18258/2793.
Full textSingh, Manbir, Peter Gruen, Chi-Shing Zee, Edward Grant, and Jeongwon Jeong. MRI-DTI Tractography to Quantify Brain Connectivity in Traumatic Brain Injury. Fort Belvoir, VA: Defense Technical Information Center, April 2009. http://dx.doi.org/10.21236/ada501253.
Full text