To see the other types of publications on this topic, follow the link: Bragg grating solitons.

Journal articles on the topic 'Bragg grating solitons'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Bragg grating solitons.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Eggleton, Benjamin J., R. E. Slusher, C. Martijn de Sterke, Peter A. Krug, and J. E. Sipe. "Bragg Grating Solitons." Physical Review Letters 76, no. 10 (March 4, 1996): 1627–30. http://dx.doi.org/10.1103/physrevlett.76.1627.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

ALATAS, H., A. A. ISKANDAR, M. O. TJIA, and T. P. VALKERING. "DARK, ANTIDARK SOLITON-LIKE SOLUTIONS AND THEIR CONNECTION IN A FINITE DEEP NONLINEAR BRAGG GRATING WITH A MIRROR." Journal of Nonlinear Optical Physics & Materials 13, no. 02 (June 2004): 259–74. http://dx.doi.org/10.1142/s0218863504001827.

Full text
Abstract:
We report the results of our study on the in-gap soliton-like solutions in a system of a uniform finite deep nonlinear Bragg grating with a mirror and continuous light source on the opposite sides of the grating. The system was shown to exhibit a new feature consisting of homoclinic and heteroclinic orbits in phase plane associated with the in-gap bright and dark/antidark solitons respectively. The multi-valued connection between the dark and antidark solitons was explicitly displayed. It was further demonstrated that a transition from dark to antidark soliton could be affected by either changing the mirror position or changing the source intensity.
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Kuiru, Gong Chen, Binbin Yan, Xinzhu Sang, and Jielin Cheng. "Motion characteristics of Bragg grating solitons in rectangle-apodized fiber Bragg gratings." Optics Communications 284, no. 7 (April 2011): 2012–17. http://dx.doi.org/10.1016/j.optcom.2010.11.070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Alatas, H., A. A. Iskandar, M. O. Tjia, and T. P. Valkering. "Analytic Study of Stationary Solitons in Deep Nonlinear Bragg Grating." Journal of Nonlinear Optical Physics & Materials 12, no. 02 (June 2003): 157–73. http://dx.doi.org/10.1142/s0218863503001304.

Full text
Abstract:
A study of nonlinear Bragg grating has been carried out using a modified scheme of approximation originally proposed by Iizuka and de Sterke. A complete classification of the solitonic solutions in the system was given. We further demonstrated in this work the existence of in-gap dark and antidark soliton, in addition to the out-gap solutions reported previously. We also found at the boundaries in the bifurcation diagram, the large-amplitude out-gap antidark soliton and broad in-gap dark soliton.
APA, Harvard, Vancouver, ISO, and other styles
5

Li, XiaoLu, and YueSong Jiang. "Compound solitons in fiber Bragg grating." Science in China Series F: Information Sciences 51, no. 8 (June 25, 2008): 1177–83. http://dx.doi.org/10.1007/s11432-008-0083-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

ALATAS, H., A. A. KANDI, A. A. ISKANDAR, and M. O. TJIA. "NEW CLASS OF BRIGHT SPATIAL SOLITONS OBTAINED BY HIROTA'S METHOD FROM GENERALIZED COUPLED MODE EQUATIONS OF NONLINEAR OPTICAL BRAGG GRATING." Journal of Nonlinear Optical Physics & Materials 17, no. 02 (June 2008): 225–33. http://dx.doi.org/10.1142/s021886350800410x.

Full text
Abstract:
We have demonstrated by Hirota's bilinear method the existence of a new class of bright spatial soliton solutions from the same model of nonlinear optical Bragg grating considered previously by another group of researchers. The explicit expressions obtained from these soliton profiles are distinctly different from the previous results and offer a much more flexible choice of physical parameters for device design. It was further shown that the present formulation provides a classification scheme incorporating previous results as special cases of different parameter sets. Finally, due to the diffraction effect, these solitons were shown to exhibit a certain degree of instability in their perturbed profiles as they propagate along the grating.
APA, Harvard, Vancouver, ISO, and other styles
7

Li Hua-Xing and Lin Ji. "The perturbed optoacoustic solitons in Bragg grating." Acta Physica Sinica 60, no. 12 (2011): 124201. http://dx.doi.org/10.7498/aps.60.124201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lee, Ray-Kuang, and Yinchieh Lai. "Quantum theory of fibre Bragg grating solitons." Journal of Optics B: Quantum and Semiclassical Optics 6, no. 8 (July 28, 2004): S638—S644. http://dx.doi.org/10.1088/1464-4266/6/8/003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Senthilnathan, K., K. Porsezian, P. R. Babu, and V. Santhanam. "Bright and dark Bragg solitons in a fiber Bragg grating." IEEE Journal of Quantum Electronics 39, no. 11 (November 2003): 1492–97. http://dx.doi.org/10.1109/jqe.2003.818279.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

ASSANTO, GAETANO, CLAUDIO CONTI, MICHELE DE SARIO, and STEFANO TRILLO. "PARAMETRIC OPTICAL SOLITONS IN BRAGG RESONANT MEDIA." Journal of Nonlinear Optical Physics & Materials 09, no. 01 (March 2000): 69–78. http://dx.doi.org/10.1142/s0218863500000078.

Full text
Abstract:
Temporal solitary waves in material systems yielding a quadratic nonlinear response and in the presence of a Bragg grating are theoretically identified and numerically investigated for the specific case of second-harmonic generation. Their peculiar and intriguing features are reviewed and discussed in view of potential applications.
APA, Harvard, Vancouver, ISO, and other styles
11

Senthilnathan, K., P. Ramesh Babu, K. Porsezian, V. Santhanam, and S. Gnanasekaran. "Grating solitons near the photonic bandgap of a fiber Bragg grating." Chaos, Solitons & Fractals 33, no. 2 (July 2007): 523–31. http://dx.doi.org/10.1016/j.chaos.2005.12.034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Porsezian, K., and K. Senthilnathan. "Generation of Bragg solitons through modulation instability in a Bragg grating structure." Chaos: An Interdisciplinary Journal of Nonlinear Science 15, no. 3 (September 2005): 037109. http://dx.doi.org/10.1063/1.1899824.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Atai, Javid, and Boris A. Malomed. "Bragg-grating solitons in a semilinear dual-core system." Physical Review E 62, no. 6 (December 1, 2000): 8713–18. http://dx.doi.org/10.1103/physreve.62.8713.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Atai, Javid, and Boris A. Malomed. "Families of Bragg-grating solitons in a cubic–quintic medium." Physics Letters A 284, no. 6 (June 2001): 247–52. http://dx.doi.org/10.1016/s0375-9601(01)00314-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Levy, Kobi, and Boris A. Malomed. "Stability and collisions of traveling solitons in Bragg-grating superstructures." Journal of the Optical Society of America B 25, no. 3 (February 13, 2008): 302. http://dx.doi.org/10.1364/josab.25.000302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Atai, Javid. "Interaction of Bragg grating solitons in a cubic–quintic medium." Journal of Optics B: Quantum and Semiclassical Optics 6, no. 5 (May 1, 2004): S177—S181. http://dx.doi.org/10.1088/1464-4266/6/5/003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Wang Kuiru, 王葵如, 程洁琳 Cheng Jielin, 陈功 Chen Gong, 饶岚 Rao Lan, and 桑新柱 Sang Xinzhu. "Research on Time-Delay Characteristics of Solitons in Fiber Bragg Grating." Acta Optica Sinica 31, no. 2 (2011): 0219001. http://dx.doi.org/10.3788/aos201131.0219001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Joseph, Ancemma, K. Senthilnathan, K. Porsezian, and P. Tchofo Dinda. "Gap solitons and modulation instability in a dynamic Bragg grating with nonlinearity management." Journal of Optics A: Pure and Applied Optics 11, no. 1 (December 18, 2008): 015203. http://dx.doi.org/10.1088/1464-4258/11/1/015203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Chowdhury, S. A. M. Saddam, and Javid Atai. "Stability of Bragg Grating Solitons in a Semilinear Dual Core System With Dispersive Reflectivity." IEEE Journal of Quantum Electronics 50, no. 6 (June 2014): 458–65. http://dx.doi.org/10.1109/jqe.2014.2318206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Dasanayaka, Sahan, and Javid Atai. "Stability of Bragg grating solitons in a cubic–quintic nonlinear medium with dispersive reflectivity." Physics Letters A 375, no. 2 (December 2010): 225–29. http://dx.doi.org/10.1016/j.physleta.2010.10.043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Mayteevarunyoo, Thawatchai, and Boris A. Malomed. "Interaction of spatial solitons with a gapless stripe embedded into a Bragg-grating area." Journal of Physics: Conference Series 574 (January 21, 2015): 012023. http://dx.doi.org/10.1088/1742-6596/574/1/012023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Dasanayaka, Sahan, and Javid Atai. "Stability and collisions of moving Bragg grating solitons in a cubic-quintic nonlinear medium." Journal of the Optical Society of America B 30, no. 2 (January 22, 2013): 396. http://dx.doi.org/10.1364/josab.30.000396.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Chowdhury, S. A. M. Saddam, and Javid Atai. "Interaction dynamics of Bragg grating solitons in a semilinear dual-core system with dispersive reflectivity." Journal of Modern Optics 63, no. 21 (June 13, 2016): 2238–45. http://dx.doi.org/10.1080/09500340.2016.1193242.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Jahirul Islam, Md, and Javid Atai. "Stability of Bragg grating solitons in a semilinear dual-core system with cubic–quintic nonlinearity." Nonlinear Dynamics 87, no. 3 (October 26, 2016): 1693–701. http://dx.doi.org/10.1007/s11071-016-3145-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Zayed, Elsayed M. E., Mohamed E. M. Alngar, Anjan Biswas, Mehmet Ekici, Padmaja Guggilla, Salam Khan, Hashim Mohammad Alshehri, and Milivoj R. Belic. "Optical Solutions in Fiber Bragg Gratings with Polynomial Law Nonlinearity and Cubic-Quartic Dispersive Reflectivity-=SUP=-*-=/SUP=-." Оптика и спектроскопия 129, no. 11 (2021): 1409. http://dx.doi.org/10.21883/os.2021.11.51648.1016-21.

Full text
Abstract:
Optical solitons with ber Bragg gratings and polynomial law of nonlinear refractive index are addressed in the paper. The auxiliary equation approach together with an addendum to Kudryashov's method identify soliton solutions to the model. Singular periodic solutions emerge from these integration schemes as a byproduct. Keywords: solitons; cubic-quartic; Bragg gratings.
APA, Harvard, Vancouver, ISO, and other styles
26

Radwell, Neal, and Thorsten Ackemann. "Characteristics of Laser Cavity Solitons in a Vertical-Cavity Surface-Emitting Laser With Feedback From a Volume Bragg Grating." IEEE Journal of Quantum Electronics 45, no. 11 (November 2009): 1388–95. http://dx.doi.org/10.1109/jqe.2009.2027134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Wang, Jie, Yaxi Yan, A. Ping Zhang, Bo Wu, Yonghang Shen, and Hwa-yaw Tam. "Tunable scalar solitons from a polarization-maintaining mode-locked fiber laser using carbon nanotube and chirped fiber Bragg grating." Optics Express 24, no. 20 (September 19, 2016): 22387. http://dx.doi.org/10.1364/oe.24.022387.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Wang, Ming-Yue, Anjan Biswas, Yakup Yıldırım, Hashim M. Alshehri, Luminita Moraru, and Simona Moldovanu. "Optical Solitons in Fiber Bragg Gratings with Dispersive Reflectivity Having Five Nonlinear Forms of Refractive Index." Axioms 11, no. 11 (November 13, 2022): 640. http://dx.doi.org/10.3390/axioms11110640.

Full text
Abstract:
This paper implements the trial equation approach to retrieve cubic–quartic optical solitons in fiber Bragg gratings with the aid of the trial equation methodology. Five forms of nonlinear refractive index structures are considered. They are the Kerr law, the parabolic law, the polynomial law, the quadratic–cubic law, and the parabolic nonlocal law. Dark and singular soliton solutions are recovered along with Jacobi’s elliptic functions with an appropriate modulus of ellipticity.
APA, Harvard, Vancouver, ISO, and other styles
29

Zayed, Elsayed M. E., Mohamed E. M. Alngar, Reham M. A. Shohib, Anjan Biswas, Yakup Yıldırım, Salam Khan, Luminita Moraru, Simona Moldovanu, and Catalina Iticescu. "Highly Dispersive Optical Solitons in Fiber Bragg Gratings with Kerr Law of Nonlinear Refractive Index." Mathematics 10, no. 16 (August 17, 2022): 2968. http://dx.doi.org/10.3390/math10162968.

Full text
Abstract:
This paper obtains highly dispersive optical solitons in fiber Bragg gratings with the Kerr law of a nonlinear refractive index. The generalized Kudryashov’s approach as well as its newer version makes this retrieval possible. A full spectrum of solitons is thus recovered.
APA, Harvard, Vancouver, ISO, and other styles
30

Zayed, Elsayed M. E., Mohamed E. M. Alngar, Reham M. A. Shohib, Anjan Biswas, Yakup Yıldırım, Luminita Moraru, Simona Moldovanu, and Catalina Iticescu. "Highly Dispersive Optical Solitons in Fiber Bragg Gratings with Quadratic-Cubic Nonlinearity." Electronics 12, no. 1 (December 28, 2022): 125. http://dx.doi.org/10.3390/electronics12010125.

Full text
Abstract:
Highly dispersive solitons in fiber Bragg gratings with quadratic-cubic law of nonlinear refractive index are studied in this paper. The G′/G-expansion approach and the enhanced Kudryashov’s scheme have made this retrieval possible. A deluge of solitons, that emerge from the two integration schemes, are presented.
APA, Harvard, Vancouver, ISO, and other styles
31

Chi, Sien, Boren Luo, and Hong-Yih Tseng. "Ultrashort bragg soliton in a fiber bragg grating." Optics Communications 206, no. 1-3 (May 2002): 115–21. http://dx.doi.org/10.1016/s0030-4018(02)01174-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Rozanov, N. N., and S. Ch Chan. "Dissipative solitons in active Bragg gratings." Optics and Spectroscopy 101, no. 2 (August 2006): 271–77. http://dx.doi.org/10.1134/s0030400x06080157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Akter, Afroja, Md Jahedul Islam, and Javid Atai. "Quiescent Gap Solitons in Coupled Nonuniform Bragg Gratings with Cubic-Quintic Nonlinearity." Applied Sciences 11, no. 11 (May 25, 2021): 4833. http://dx.doi.org/10.3390/app11114833.

Full text
Abstract:
We study the stability characteristics of zero-velocity gap solitons in dual-core Bragg gratings with cubic-quintic nonlinearity and dispersive reflectivity. The model supports two disjointed families of gap solitons (Type 1 and Type 2). Additionally, asymmetric and symmetric solitons exist in both Type 1 and Type 2 families. A comprehensive numerical stability analysis is performed to analyze the stability of solitons. It is found that dispersive reflectivity improves the stability of both types of solitons. Nontrivial stability boundaries have been identified within the bandgap for each family of solitons. The effects and interplay of dispersive reflectivity and the coupling coefficient on the stability regions are also analyzed.
APA, Harvard, Vancouver, ISO, and other styles
34

Litchinitser, N. M., B. J. Eggleton, C. M. de Sterke, A. B. Aceves, and Govind P. Agrawal. "Interaction of Bragg solitons in fiber gratings." Journal of the Optical Society of America B 16, no. 1 (January 1, 1999): 18. http://dx.doi.org/10.1364/josab.16.000018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Merhasin, Ilya M., Boris A. Malomed, K. Senthilnathan, K. Nakkeeran, P. K. A. Wai, and K. W. Chow. "Solitons in Bragg gratings with saturable nonlinearities." Journal of the Optical Society of America B 24, no. 7 (June 15, 2007): 1458. http://dx.doi.org/10.1364/josab.24.001458.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Merhasin, Ilya M., and Boris A. Malomed. "Four-wave solitons in Bragg cross-gratings." Journal of Optics B: Quantum and Semiclassical Optics 6, no. 5 (May 1, 2004): S323—S332. http://dx.doi.org/10.1088/1464-4266/6/5/022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Millar, P., N. G. R. Broderick, D. J. Richardson, J. S. Aitchison, R. M. De La Rue, and T. F. Krauss. "Soliton Effects in an AlGaAs Bragg Grating." Optics and Photonics News 10, no. 12 (December 1, 1999): 43. http://dx.doi.org/10.1364/opn.10.12.000043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Bugaychuk, S. "Bragg Fibers with Soliton-like Grating Profiles." MATEC Web of Conferences 83 (2016): 08002. http://dx.doi.org/10.1051/matecconf/20168308002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

ALATAS, H., A. A. ISKANDAR, M. O. TJIA, and T. P. VALKERING. "OPTICAL SENSING AND SWITCHING DEVICE BASED ON A FINITE DEEP NONLINEAR BRAGG GRATING WITH A MIRROR." Journal of Nonlinear Optical Physics & Materials 14, no. 02 (June 2005): 259–72. http://dx.doi.org/10.1142/s0218863505002694.

Full text
Abstract:
We investigate the detailed transition of the dark to antidark soliton-like states in a system of finite deep nonlinear Bragg grating equipped with a movable metallic mirror and illuminated by a continuous laser source. As reported previously, the transition can be induced mechanically by moving the mirror as well as optically by changing the light source intensity.
APA, Harvard, Vancouver, ISO, and other styles
40

Atai, Javid, and Boris A. Malomed. "Gap solitons in Bragg gratings with dispersive reflectivity." Physics Letters A 342, no. 5-6 (July 2005): 404–12. http://dx.doi.org/10.1016/j.physleta.2005.05.081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Emplit, Ph, M. Haelterman, R. Kashyap, and M. De Lathouwer. "Fiber Bragg grating for optical dark soliton generation." IEEE Photonics Technology Letters 9, no. 8 (August 1997): 1122–24. http://dx.doi.org/10.1109/68.605522.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Deng, Zhigui, Haolin Lin, Hongji Li, Shenhe Fu, Yikun Liu, Ying Xiang, and Yongyao Li. "Femtosecond soliton diode on heterojunction Bragg-grating structure." Applied Physics Letters 109, no. 12 (September 19, 2016): 121101. http://dx.doi.org/10.1063/1.4962898.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Lenz, G., and B. J. Eggleton. "Adiabatic Bragg soliton compression in nonuniform grating structures." Journal of the Optical Society of America B 15, no. 12 (December 1, 1998): 2979. http://dx.doi.org/10.1364/josab.15.002979.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Malik, Sandeep, Sachin Kumar, Anjan Biswas, Yakup Yıldırım, Luminita Moraru, Simona Moldovanu, Catalina Iticescu, and Hashim M. Alshehri. "Cubic-Quartic Optical Solitons in Fiber Bragg Gratings with Dispersive Reflectivity Having Parabolic Law of Nonlinear Refractive Index by Lie Symmetry." Symmetry 14, no. 11 (November 10, 2022): 2370. http://dx.doi.org/10.3390/sym14112370.

Full text
Abstract:
This work recovers cubic-quartic optical solitons with dispersive reflectivity in fiber Bragg gratings and parabolic law of nonlinearity. The Lie symmetry analysis first reduces the governing partial differential equations to the corresponding ordinary differential equations which are subsequently integrated. This integration is conducted using two approaches which are the modified Kudryashov’s approach as well as the generalized Arnous’ scheme. These collectively yielded a full spectrum of cubic-quartic optical solitons that have been proposed to control the depletion of the much-needed chromatic dispersion. They range from bright, dark, singular to combo solitons. These solitons are considered with dispersive reflectivity, which maintains the necessary balance between chromatic dispersion and nonlinear refractive index structure for an uninterrupted transmission of solitons along intercontinental distances. Their respective surface and contour plots are also exhibited. A few closing words are included with some prospective future avenues of research to extend this topic further.
APA, Harvard, Vancouver, ISO, and other styles
45

Tsoy, E. N., and C. M. de Sterke. "Soliton dynamics in nonuniform fiber Bragg gratings." Journal of the Optical Society of America B 18, no. 1 (January 1, 2001): 1. http://dx.doi.org/10.1364/josab.18.000001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Chen, Peter Y. P., Boris A. Malomed, and Pak L. Chu. "Interactions of solitons with complex defects in Bragg gratings." Physics Letters A 372, no. 3 (January 2008): 327–32. http://dx.doi.org/10.1016/j.physleta.2007.03.060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Biswas, Anjan, Jose Vega-Guzman, Mohammad F. Mahmood, Salam Khan, Qin Zhou, Seithuti P. Moshokoa, and Milivoj Belic. "Solitons in optical fiber Bragg gratings with dispersive reflectivity." Optik 182 (April 2019): 119–23. http://dx.doi.org/10.1016/j.ijleo.2018.12.180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Yagasaki, K., I. M. Merhasin, B. A. Malomed, T. Wagenknecht, and A. R. Champneys. "Gap solitons in Bragg gratings with a harmonic superlattice." Europhysics Letters (EPL) 74, no. 6 (June 2006): 1006–12. http://dx.doi.org/10.1209/epl/i2005-10593-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Zayed, Elsayed M. E., Mohamed E. M. Alngar, Anjan Biswas, Mehmet Ekici, Abdullah Khamis Alzahrani, and Milivoj R. Belic. "Solitons in fiber Bragg gratings with cubic–quartic dispersive reflectivity having Kerr law of nonlinear refractive index." Journal of Nonlinear Optical Physics & Materials 29, no. 03n04 (September 2020): 2050011. http://dx.doi.org/10.1142/s0218863520500113.

Full text
Abstract:
This paper retrieves soliton solutions to fiber Bragg ratings with dispersive reflectivity where cubic–quartic dispersive effects are considered as opposed to the usual chromatic dispersion. The auxiliary equation approach and an addendum to Kudryashov’s scheme display a complete spectrum of soliton forms to the model that is studied with Kerr effect.
APA, Harvard, Vancouver, ISO, and other styles
50

Luo, Boren, and Sien Chi. "Dissipative soliton in an amplifier with a Bragg grating." Optics Letters 28, no. 22 (November 15, 2003): 2216. http://dx.doi.org/10.1364/ol.28.002216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography