Journal articles on the topic 'Bounded Symmetric domain'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Bounded Symmetric domain.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
ROOS, Guy. "Bergman–Hartogs domains and their automorphisms." Tambov University Reports. Series: Natural and Technical Sciences, no. 127 (2019): 316–23. http://dx.doi.org/10.20310/2686-9667-2019-24-127-316-323.
Full textBERSHTEIN, OLGA. "REGULAR FUNCTIONS ON THE SHILOV BOUNDARY." Journal of Algebra and Its Applications 04, no. 06 (December 2005): 613–29. http://dx.doi.org/10.1142/s0219498805001447.
Full textRamachandran, C., R. Ambrose Prabhu, and Srikandan Sivasubramanian. "Starlike and convex functions with respect to symmetric conjugate points involving conical domain." Mathematica Slovaca 68, no. 1 (February 23, 2018): 89–102. http://dx.doi.org/10.1515/ms-2017-0083.
Full textDi Scala, Antonio J., Andrea Loi, and Guy Roos. "The Bisymplectomorphism Group of a Bounded Symmetric Domain." Transformation Groups 13, no. 2 (June 2008): 283–304. http://dx.doi.org/10.1007/s00031-008-9015-z.
Full textMackey and Mellon. "The Bergmann-Shilov boundary of a Bounded Symmetric Domain." Mathematical Proceedings of the Royal Irish Academy 121A, no. 2 (2021): 33. http://dx.doi.org/10.3318/pria.2021.121.03.
Full textMackey, M., and P. Mellon. "The Bergmann-Shilov boundary of a Bounded Symmetric Domain." Mathematical Proceedings of the Royal Irish Academy 121, no. 2 (2021): 33–49. http://dx.doi.org/10.1353/mpr.2021.0002.
Full textChoi, Ki-Seong. "NOTES ON CARLESON TYPE MEASURES ON BOUNDED SYMMETRIC DOMAIN." Communications of the Korean Mathematical Society 22, no. 1 (January 31, 2007): 65–74. http://dx.doi.org/10.4134/ckms.2007.22.1.065.
Full textPAN, LISHUANG, AN WANG, and LIYOU ZHANG. "ON THE KÄHLER–EINSTEIN METRIC OF BERGMAN–HARTOGS DOMAINS." Nagoya Mathematical Journal 221, no. 1 (March 2016): 184–206. http://dx.doi.org/10.1017/nmj.2016.4.
Full textNeidhardt, H., and V. A. Zagrebnov. "Does Each Symmetric Operator Have a Stability Domain?" Reviews in Mathematical Physics 10, no. 06 (August 1998): 829–50. http://dx.doi.org/10.1142/s0129055x98000276.
Full textWu, Hio Tong, Ieng Tak Leong, and Tao Qian. "Adaptive rational approximation in Bergman space on bounded symmetric domain." Journal of Mathematical Analysis and Applications 506, no. 1 (February 2022): 125591. http://dx.doi.org/10.1016/j.jmaa.2021.125591.
Full textChu, Cho-Ho, Hidetaka Hamada, Tatsuhiro Honda, and Gabriela Kohr. "Bloch Space of a Bounded Symmetric Domain and Composition Operators." Complex Analysis and Operator Theory 13, no. 2 (August 21, 2018): 479–92. http://dx.doi.org/10.1007/s11785-018-0835-0.
Full textZhu, Fuliu. "The inverse Abel transform for an exceptional bounded symmetric domain." Science in China Series A: Mathematics 40, no. 7 (July 1997): 687–96. http://dx.doi.org/10.1007/bf02878691.
Full textChu, Cho-Ho. "Siegel domains over Finsler symmetric cones." Journal für die reine und angewandte Mathematik (Crelles Journal) 2021, no. 778 (May 29, 2021): 145–69. http://dx.doi.org/10.1515/crelle-2021-0027.
Full textWolniewicz, Tomasz M. "Independent inner functions in the classical domains." Glasgow Mathematical Journal 29, no. 2 (July 1987): 229–36. http://dx.doi.org/10.1017/s001708950000687x.
Full textHess, Peter, and P. Poláčik. "Symmetry and convergence properties for non-negative solutions of nonautonomous reaction–diffusion problems." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 124, no. 3 (1994): 573–87. http://dx.doi.org/10.1017/s030821050002878x.
Full textXU, Qin. "Completeness of Normal Modes for Symmetric Perturbations in Vertically Bounded Domain." Journal of the Meteorological Society of Japan 89, no. 4 (2011): 389–94. http://dx.doi.org/10.2151/jmsj.2011-407.
Full textHonda, Tatsuhiro. "Operators of the alfa-Bloch space on the open unit ball of a JB*-triple." Studia Universitatis Babes-Bolyai Matematica 67, no. 2 (June 8, 2022): 317–28. http://dx.doi.org/10.24193/subbmath.2022.2.08.
Full textMellon, P. "Dynamics of Biholomorphic Self-Maps on Bounded Symmetric Domains." MATHEMATICA SCANDINAVICA 117, no. 2 (December 14, 2015): 203. http://dx.doi.org/10.7146/math.scand.a-22867.
Full textKajikiya, Ryuji. "Symmetric and Asymmetric Solutions of p-Laplace Elliptic Equations in Hollow Domains." Advanced Nonlinear Studies 18, no. 2 (April 1, 2018): 303–21. http://dx.doi.org/10.1515/ans-2017-6023.
Full textWILKINS, DAVID R. "HOMOGENEOUS VECTOR BUNDLES AND COWEN-DOUGLAS OPERATORS." International Journal of Mathematics 04, no. 03 (June 1993): 503–20. http://dx.doi.org/10.1142/s0129167x93000261.
Full textFattahi, Fariba, and Mohsen Alimohammady. "Infinitely many solutions for a class of hemivariational inequalities involving p(x)-Laplacian." Analele Universitatii "Ovidius" Constanta - Seria Matematica 25, no. 2 (July 26, 2017): 65–83. http://dx.doi.org/10.1515/auom-2017-0021.
Full textClapp, Mónica, Manuel Del Pino, and Monica Musso. "Multiple solutions for a non-homogeneous elliptic equation at the critical exponent." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 134, no. 1 (February 2004): 69–87. http://dx.doi.org/10.1017/s0308210500003085.
Full textFriedman, Yaakov, and Tzvi Scarr. "Symmetry and Special Relativity." Symmetry 11, no. 10 (October 3, 2019): 1235. http://dx.doi.org/10.3390/sym11101235.
Full textMatsumoto, Keiji. "Theta functions on the classical bounded symmetric domain of type $I_{2,2}$." Proceedings of the Japan Academy, Series A, Mathematical Sciences 67, no. 1 (1991): 1–5. http://dx.doi.org/10.3792/pjaa.67.1.
Full textClerc, Jean-Louis, and Karl-Hermann Neeb. "Orbits of triples in the Shilov boundary of a bounded symmetric domain." Transformation Groups 11, no. 3 (September 2006): 387–426. http://dx.doi.org/10.1007/s00031-005-1117-2.
Full textMeschiari, Mauro. "Proper holomorphic maps on an irreducible bounded symmetric domain of classical type." Rendiconti del Circolo Matematico di Palermo 37, no. 1 (February 1988): 18–34. http://dx.doi.org/10.1007/bf02844266.
Full textNomura, Takaaki. "Algebraically independent generators of invariant differential operators on a bounded symmetric domain." Journal of Mathematics of Kyoto University 31, no. 1 (1991): 265–79. http://dx.doi.org/10.1215/kjm/1250519904.
Full textRen, Shuzhan. "Normal modes in the symmetric stability problem in a vertically bounded domain." Geophysical & Astrophysical Fluid Dynamics 102, no. 4 (August 2008): 333–48. http://dx.doi.org/10.1080/03091920701841606.
Full textFaraut, Jacques, and Masato Wakayama. "Hermitian symmetric spaces of tube type and multivariate Meixner-Pollaczek polynomials." MATHEMATICA SCANDINAVICA 120, no. 1 (February 23, 2017): 87. http://dx.doi.org/10.7146/math.scand.a-25506.
Full textBoman, Jan. "A hypersurface containing the support of a Radon transform must be an ellipsoid. II: The general case." Journal of Inverse and Ill-posed Problems 29, no. 3 (February 2, 2021): 351–67. http://dx.doi.org/10.1515/jiip-2020-0139.
Full textIacopetti, Alessandro, and Giusi Vaira. "Sign-changing tower of bubbles for the Brezis–Nirenberg problem." Communications in Contemporary Mathematics 18, no. 01 (January 29, 2016): 1550036. http://dx.doi.org/10.1142/s0219199715500364.
Full textXu, Qin. "Modal and Nonmodal Growths of Symmetric Perturbations in Unbounded Domain." Journal of the Atmospheric Sciences 67, no. 6 (June 1, 2010): 1996–2017. http://dx.doi.org/10.1175/2010jas3360.1.
Full textOhnawa, Masashi, and Masahiro Suzuki. "Time-periodic solutions of symmetric hyperbolic systems." Journal of Hyperbolic Differential Equations 17, no. 04 (December 2020): 707–26. http://dx.doi.org/10.1142/s0219891620500216.
Full textClerc, Jean-Louis. "An invariant for triples in the Shilov boundary of a bounded symmetric domain." Communications in Analysis and Geometry 15, no. 1 (2007): 147–74. http://dx.doi.org/10.4310/cag.2007.v15.n1.a5.
Full textMahmood, Shahid, Hari Srivastava, and Sarfraz Malik. "Some Subclasses of Uniformly Univalent Functions with Respect to Symmetric Points." Symmetry 11, no. 2 (February 22, 2019): 287. http://dx.doi.org/10.3390/sym11020287.
Full textDong, Yan. "Study of Weak Solutions for Degenerate Parabolic Inequalities with Nonlocal Nonlinearities." Symmetry 14, no. 8 (August 13, 2022): 1683. http://dx.doi.org/10.3390/sym14081683.
Full textŽubrinić, Darko. "Solvability of quasilinear elliptic equations with strong dependence on the gradient." Abstract and Applied Analysis 5, no. 3 (2000): 159–73. http://dx.doi.org/10.1155/s1085337500000324.
Full textKhan, Muhammmad Ghaffar, Wali Khan Mashwani, Lei Shi, Serkan Araci, Bakhtiar Ahmad, and Bilal Khan. "Hankel inequalities for bounded turning functions in the domain of cosine Hyperbolic function." AIMS Mathematics 8, no. 9 (2023): 21993–2008. http://dx.doi.org/10.3934/math.20231121.
Full textClark, Marcondes Rodrigues. "Existence of solutions for a nonlinear hyperbolic-parabolic equation in a non-cylinder domain." International Journal of Mathematics and Mathematical Sciences 19, no. 1 (1996): 151–60. http://dx.doi.org/10.1155/s0161171296000221.
Full textEndres, Erik, Helge Kristian Jenssen, and Mark Williams. "Symmetric Euler and Navier–Stokes shocks in stationary barotropic flow on a bounded domain." Journal of Differential Equations 245, no. 10 (November 2008): 3025–67. http://dx.doi.org/10.1016/j.jde.2008.03.013.
Full textBañuelos, Rodrigo, and Dante DeBlassie. "On the First Eigenfunction of the Symmetric Stable Process in a Bounded Lipschitz Domain." Potential Analysis 42, no. 2 (October 18, 2014): 573–83. http://dx.doi.org/10.1007/s11118-014-9445-2.
Full textYang, Sibei, Dachun Yang, and Wen Yuan. "Global gradient estimates for Dirichlet problems of elliptic operators with a BMO antisymmetric part." Advances in Nonlinear Analysis 11, no. 1 (January 1, 2022): 1496–530. http://dx.doi.org/10.1515/anona-2022-0247.
Full textHelffer, B., T. Hoffmann-Ostenhof, F. Jauberteau, and C. Léna. "On the multiplicity of the second eigenvalue of the Laplacian in non simply connected domains – with some numerics –." Asymptotic Analysis 121, no. 1 (December 2, 2020): 35–57. http://dx.doi.org/10.3233/asy-191594.
Full textSong, Haiming, and Ran Zhang. "Projection and Contraction Method for the Valuation of American Options." East Asian Journal on Applied Mathematics 5, no. 1 (February 2015): 48–60. http://dx.doi.org/10.4208/eajam.110914.301114a.
Full textVasylyshyn, T. V. "Algebras of symmetric analytic functions on Cartesian powers of Lebesgue integrable in a power $p\in [1,+\infty)$ functions." Carpathian Mathematical Publications 13, no. 2 (August 16, 2021): 340–51. http://dx.doi.org/10.15330/cmp.13.2.340-351.
Full textLi, Keqiang, Shangjiu Wang, and Shaoyong Li. "Symmetry of large solutions for semilinear elliptic equations in a symmetric convex domain." AIMS Mathematics 7, no. 6 (2022): 10860–66. http://dx.doi.org/10.3934/math.2022607.
Full textDEL PEZZO, LEANDRO M. "OPTIMIZATION PROBLEM FOR EXTREMALS OF THE TRACE INEQUALITY IN DOMAINS WITH HOLES." Communications in Contemporary Mathematics 12, no. 04 (August 2010): 569–86. http://dx.doi.org/10.1142/s0219199710003920.
Full textTordecilla, Jesus Alberto Leon. "Existence of solutions to nonlocal elliptic problems with singular and combined nonlinearities." Electronic Journal of Differential Equations 2022, no. 01-87 (June 27, 2022): 40. http://dx.doi.org/10.58997/ejde.2022.40.
Full textKATAYAMA, SOICHIRO, and HIDEO KUBO. "LOWER BOUND OF THE LIFESPAN OF SOLUTIONS TO SEMILINEAR WAVE EQUATIONS IN AN EXTERIOR DOMAIN." Journal of Hyperbolic Differential Equations 10, no. 02 (June 2013): 199–234. http://dx.doi.org/10.1142/s0219891613500094.
Full textHelffer, Bernard, Ayman Kachmar, and Nicolas Raymond. "Tunneling for the Robin Laplacian in smooth planar domains." Communications in Contemporary Mathematics 19, no. 01 (November 24, 2016): 1650030. http://dx.doi.org/10.1142/s0219199716500309.
Full text