Journal articles on the topic 'Boundary layer (Meteorology) Australia, Northern'

To see the other types of publications on this topic, follow the link: Boundary layer (Meteorology) Australia, Northern.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Boundary layer (Meteorology) Australia, Northern.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Zhang, Wang, Jena, Paton-Walsh, Guérette, Utembe, Silver, and Keywood. "Multiscale Applications of Two Online-Coupled Meteorology-Chemistry Models During Recent Field Campaigns in Australia, Part II: Comparison of WRF/Chem and WRF/Chem-ROMS and Impacts of Air-Sea Interactions and Boundary Conditions." Atmosphere 10, no. 4 (April 20, 2019): 210. http://dx.doi.org/10.3390/atmos10040210.

Full text
Abstract:
Air-sea interactions play an important role in atmospheric circulation and boundary layer conditions through changing convection processes and surface heat fluxes, particularly in coastal areas. These changes can affect the concentrations, distributions, and lifetimes of atmospheric pollutants. In this Part II paper, the performance of the Weather Research and Forecasting model with chemistry (WRF/Chem) and the coupled WRF/Chem with the Regional Ocean Model System (ROMS) (WRF/Chem-ROMS) are intercompared for their applications over quadruple-nested domains in Australia during the three following field campaigns: The Sydney Particle Study Stages 1 and 2 (SPS1 and SPS2) and the Measurements of Urban, Marine, and Biogenic Air (MUMBA). The results are used to evaluate the impact of air-sea interaction representation in WRF/Chem-ROMS on model predictions. At 3, 9, and 27 km resolutions, compared to WRF/Chem, the explicit air-sea interactions in WRF/Chem-ROMS lead to substantial improvements in simulated sea-surface temperature (SST), latent heat fluxes (LHF), and sensible heat fluxes (SHF) over the ocean, in terms of statistics and spatial distributions, during all three field campaigns. The use of finer grid resolutions (3 or 9 km) effectively reduces the biases in these variables during SPS1 and SPS2 by WRF/Chem-ROMS, whereas it further increases these biases for WRF/Chem during all field campaigns. The large differences in SST, LHF, and SHF between the two models lead to different radiative, cloud, meteorological, and chemical predictions. WRF/Chem-ROMS generally performs better in terms of statistics and temporal variations for temperature and relative humidity at 2 m, wind speed and direction at 10 m, and precipitation. The percentage differences in simulated surface concentrations between the two models are mostly in the range of ±10% for CO, OH, and O3, ±25% for HCHO, ±30% for NO2, ±35% for H2O2, ±50% for SO2, ±60% for isoprene and terpenes, ±15% for PM2.5, and ±12% for PM10. WRF/Chem-ROMS at 3 km resolution slightly improves the statistical performance of many surface and column concentrations. WRF/Chem simulations with satellite-constrained boundary conditions (BCONs) improve the spatial distributions and magnitudes of column CO for all field campaigns and slightly improve those of the column NO2 for SPS1 and SPS2, column HCHO for SPS1 and MUMBA, and column O3 for SPS2 at 3 km over the Greater Sydney area. The satellite-constrained chemical BCONs reduce the model biases of surface CO, NO, and O3 predictions at 3 km for all field campaigns, surface PM2.5 predictions at 3 km for SPS1 and MUMBA, and surface PM10 predictions at all grid resolutions for all field campaigns. A more important role of chemical BCONs in the Southern Hemisphere, compared to that in the Northern Hemisphere reported in this work, indicates a crucial need in developing more realistic chemical BCONs for O3 in the relatively clean SH.
APA, Harvard, Vancouver, ISO, and other styles
2

Schnell, Jordan L., Vaishali Naik, Larry W. Horowitz, Fabien Paulot, Jingqiu Mao, Paul Ginoux, Ming Zhao, and Kirpa Ram. "Exploring the relationship between surface PM<sub>2.5</sub> and meteorology in Northern India." Atmospheric Chemistry and Physics 18, no. 14 (July 17, 2018): 10157–75. http://dx.doi.org/10.5194/acp-18-10157-2018.

Full text
Abstract:
Abstract. Northern India (23–31° N, 68–90° E) is one of the most densely populated and polluted regions in world. Accurately modeling pollution in the region is difficult due to the extreme conditions with respect to emissions, meteorology, and topography, but it is paramount in order to understand how future changes in emissions and climate may alter the region's pollution regime. We evaluate the ability of a developmental version of the new-generation NOAA GFDL Atmospheric Model, version 4 (AM4) to simulate observed wintertime fine particulate matter (PM2.5) and its relationship to meteorology over Northern India. We compare two simulations of GFDL-AM4 nudged to observed meteorology for the period 1980–2016 driven by pollutant emissions from two global inventories developed in support of the Coupled Model Intercomparison Project Phases 5 (CMIP5) and 6 (CMIP6), and compare results with ground-based observations from India's Central Pollution Control Board (CPCB) for the period 1 October 2015–31 March 2016. Overall, our results indicate that the simulation with CMIP6 emissions produces improved concentrations of pollutants over the region relative to the CMIP5-driven simulation. While the particulate concentrations simulated by AM4 are biased low overall, the model generally simulates the magnitude and daily variability of observed total PM2.5. Nitrate and organic matter are the primary components of PM2.5 over Northern India in the model. On the basis of correlations of the individual model components with total observed PM2.5 and correlations between the two simulations, meteorology is the primary driver of daily variability. The model correctly reproduces the shape and magnitude of the seasonal cycle of PM2.5, but the simulated diurnal cycle misses the early evening rise and secondary maximum found in the observations. Observed PM2.5 abundances are by far the highest within the densely populated Indo-Gangetic Plain, where they are closely related to boundary layer meteorology, specifically relative humidity, wind speed, boundary layer height, and inversion strength. The GFDL AM4 model reproduces the overall observed pollution gradient over Northern India as well as the strength of the meteorology–PM2.5 relationship in most locations.
APA, Harvard, Vancouver, ISO, and other styles
3

Fletcher, Jennifer, Shannon Mason, and Christian Jakob. "The Climatology, Meteorology, and Boundary Layer Structure of Marine Cold Air Outbreaks in Both Hemispheres*." Journal of Climate 29, no. 6 (March 4, 2016): 1999–2014. http://dx.doi.org/10.1175/jcli-d-15-0268.1.

Full text
Abstract:
Abstract A comparison of marine cold air outbreaks (MCAOs) in the Northern and Southern Hemispheres is presented, with attention to their seasonality, frequency of occurrence, and strength as measured by a cold air outbreak index. When considered on a gridpoint-by-gridpoint basis, MCAOs are more severe and more frequent in the Northern Hemisphere (NH) than the Southern Hemisphere (SH) in winter. However, when MCAOs are viewed as individual events regardless of horizontal extent, they occur more frequently in the SH. This is fundamentally because NH MCAOs are larger and stronger than those in the SH. MCAOs occur throughout the year, but in warm seasons and in the SH they are smaller and weaker than in cold seasons and in the NH. In both hemispheres, strong MCAOs occupy the cold air sector of midlatitude cyclones, which generally appear to be in their growth phase. Weak MCAOs in the SH occur under generally zonal flow with a slight northward component associated with weak zonal pressure gradients, while weak NH MCAOs occur under such a wide range of conditions that no characteristic synoptic pattern emerges from compositing. Strong boundary layer deepening, warming, and moistening occur as a result of the surface heat fluxes within MCAOs.
APA, Harvard, Vancouver, ISO, and other styles
4

Decker, M., A. Pitman, and J. Evans. "Diagnosing the seasonal land–atmosphere correspondence over northern Australia: dependence on soil moisture state and correspondence strength definition." Hydrology and Earth System Sciences 19, no. 8 (August 6, 2015): 3433–47. http://dx.doi.org/10.5194/hess-19-3433-2015.

Full text
Abstract:
Abstract. The similarity of the temporal variations of land and atmospheric states during the onset (September) through to the peak (February) of the wet season over northern Australia is statistically diagnosed using ensembles of offline land surface model simulations that produce a range of different background soil moisture states. We derive the temporal correspondence between variations in the soil moisture and the planetary boundary layer via a statistical measure of rank correlation. The simulated evaporative fraction and the boundary layer are shown to be strongly correlated during both SON (September–October–November) and DJF (December–January–February) despite the differing background soil moisture states between the two seasons and among the ensemble members. The sign and magnitude of the boundary layer–surface layer soil moisture association during the onset of the wet season (SON) differs from the correlation between the evaporative fraction and boundary layer from the same season, and from the correlation between the surface soil moisture and boundary layer association during DJF. The patterns and magnitude of the surface flux–boundary layer correspondence are not captured when the relationship is diagnosed using the surface layer soil moisture alone. The conflicting results arise because the surface layer soil moisture lacks strong correlation with the atmosphere during the monsoon onset because the evapotranspiration is dominated by transpiration. Our results indicate that accurately diagnosing the correspondence and therefore coupling strength in seasonally dry regions, such as northern Australia, requires root zone soil moisture to be included.
APA, Harvard, Vancouver, ISO, and other styles
5

Decker, M., A. Pitman, and J. Evans. "Diagnosing the seasonal land–atmosphere coupling strength over Northern Australia: dependence on soil moisture state and coupling strength definition." Hydrology and Earth System Sciences Discussions 11, no. 9 (September 19, 2014): 10431–63. http://dx.doi.org/10.5194/hessd-11-10431-2014.

Full text
Abstract:
Abstract. The strength of land–atmosphere coupling during the onset (September) through to the peak (February) of the wet season over Northern Australia is statistically diagnosed using ensembles of land surface model simulations that produce a range of different background soil moisture states. We derive coupling strength between the soil moisture and the planetary boundary layer via a statistical measure of association. The simulated evaporative fraction and the boundary layer are shown to be strongly coupled during both SON and DJF despite the differing background soil moisture states between the two seasons as among the ensemble members. The sign and magnitude of the surface layer soil moisture based coupling strength during the onset of the wet season (SON) differs from the coupling between the evaporative fraction and boundary layer from the same season, and the coupling between the surface soil moisture and boundary layer coupling during DJF. The patterns and magnitude of the surface flux-boundary layer coupling are not captured when coupling is diagnosed using the surface layer soil moisture alone. The conflicting results arise because the surface layer soil moisture lacks strong association with the atmosphere during the monsoon onset because the evapotranspiration is dominated by transpiration. Our results indicate that accurately diagnosing coupling strength in seasonally dry regions, such as Northern Australia, requires root zone soil moisture to be included.
APA, Harvard, Vancouver, ISO, and other styles
6

KAVASSERI, RAJESH G., and RADHAKRISHNAN NAGARAJAN. "A QUALITATIVE DESCRIPTION OF BOUNDARY LAYER WIND SPEED RECORDS." Fluctuation and Noise Letters 06, no. 02 (June 2006): L201—L213. http://dx.doi.org/10.1142/s021947750600329x.

Full text
Abstract:
The complexity of the atmosphere endows it with the property of turbulence by virtue of which, wind speed variations in the atmospheric boundary layer (ABL) exhibit highly irregular fluctuations that persist over a wide range of temporal and spatial scales. Despite the large and significant body of work on microscale turbulence, understanding the statistics of atmospheric wind speed variations has proved to be elusive and challenging. Knowledge about the nature of wind speed at ABL has far reaching impact on several fields of research such as meteorology, hydrology, agriculture, pollutant dispersion, and more importantly wind energy generation. In the present study, temporal wind speed records from twenty eight stations distributed through out the state of North Dakota (ND, USA), (~ 70,000 square-miles) and spanning a period of nearly eight years are analyzed. We show that these records exhibit a characteristic broad multifractal spectrum irrespective of the geographical location and topography. The rapid progression of air masses with distinct qualitative characteristics originating from Polar regions, Gulf of Mexico and Northern Pacific account for irregular changes in the local weather system in ND. We hypothesize that one of the primary reasons for the observed multifractal structure could be the irregular recurrence and confluence of these three air masses.
APA, Harvard, Vancouver, ISO, and other styles
7

Zhao, T. L., S. L. Gong, P. Huang, and D. Lavoué. "Hemispheric transport and influence of meteorology on global aerosol climatology." Atmospheric Chemistry and Physics 12, no. 16 (August 22, 2012): 7609–24. http://dx.doi.org/10.5194/acp-12-7609-2012.

Full text
Abstract:
Abstract. Based on a 10-yr simulation with the global air quality modeling system GEM-AQ/EC, the northern hemispheric aerosol transport with the inter-annual and seasonal variability as well as the mean climate was investigated. The intercontinental aerosol transport is predominant in the zonal direction from west to east with the ranges of inter-annual variability between 14% and 63%, and is 0.5–2 orders of magnitude weaker in the meridional direction but with larger inter-annual variability. The aerosol transport is found to fluctuate seasonally with a factor of 5–8 between the maximum in late winter and spring and the minimum in late summer and fall. Three meteorological factors controlling the intercontinental aerosol transport and its inter-annual variations are identified from the modeling results: (1) Anomalies in the mid-latitude westerlies in the troposphere. (2) Variations of precipitation over the intercontinental transport pathways and (3) Changes of meteorological conditions within the boundary layer. Changed only by the meteorology, the aerosol column loadings in the free troposphere over the source regions of Europe, North America, South and East Asia vary inter-annually with the highest magnitudes of 30–37% in January and December and the lowest magnitudes of 16–20% in August and September, and the inter-annual aerosol variability within the boundary layer influencing the surface concentrations with the magnitudes from 6% to 20% is more region-dependent. As the strongest climatic signal, the El Niño-Southern Oscillation (ENSO) can lead the anomalies in the intercontinental aerosols in El Niño- and La Niña-years respectively with the strong and weak transport of the mid-latitude westerlies and the low latitude easterlies in the Northern Hemisphere (NH).
APA, Harvard, Vancouver, ISO, and other styles
8

Rooney, Brigitte, Yuan Wang, Jonathan H. Jiang, Bin Zhao, Zhao-Cheng Zeng, and John H. Seinfeld. "Air quality impact of the Northern California Camp Fire of November 2018." Atmospheric Chemistry and Physics 20, no. 23 (December 1, 2020): 14597–616. http://dx.doi.org/10.5194/acp-20-14597-2020.

Full text
Abstract:
Abstract. The Northern California Camp Fire that took place in November 2018 was one of the most damaging environmental events in California history. Here, we analyze ground-based station observations of airborne particulate matter that has a diameter <2.5 µm (PM2.5) across Northern California and conduct numerical simulations of the Camp Fire using the Weather Research and Forecasting model online coupled with chemistry (WRF-Chem). Simulations are evaluated against ground-based observations of PM2.5, black carbon, and meteorology, as well as satellite measurements, such as Tropospheric Monitoring Instrument (TROPOMI) aerosol layer height and aerosol index. The Camp Fire led to an increase in Bay Area PM2.5 to over 50 µg m−3 for nearly 2 weeks, with localized peaks exceeding 300 µg m−3. Using the Visible Infrared Imaging Radiometer Suite (VIIRS) high-resolution fire detection products, the simulations reproduce the magnitude and evolution of surface PM2.5 concentrations, especially downwind of the wildfire. The overall spatial patterns of simulated aerosol plumes and their heights are comparable with the latest satellite products from TROPOMI. WRF-Chem sensitivity simulations are carried out to analyze uncertainties that arise from fire emissions, meteorological conditions, feedback of aerosol radiative effects on meteorology, and various physical parameterizations, including the planetary boundary layer model and the plume rise model. Downwind PM2.5 concentrations are sensitive to both flaming and smoldering emissions over the fire, so the uncertainty in the satellite-derived fire emission products can directly affect the air pollution simulations downwind. Our analysis also shows the importance of land surface and boundary layer parameterization in the fire simulation, which can result in large variations in magnitude and trend of surface PM2.5. Inclusion of aerosol radiative feedback moderately improves PM2.5 simulations, especially over the most polluted days. Results of this study can assist in the development of data assimilation systems as well as air quality forecasting of health exposures and economic impact studies.
APA, Harvard, Vancouver, ISO, and other styles
9

Williams, Alastair G., Wlodek Zahorowski, Scott Chambers, Alan Griffiths, Jörg M. Hacker, Adrian Element, and Sylvester Werczynski. "The Vertical Distribution of Radon in Clear and Cloudy Daytime Terrestrial Boundary Layers." Journal of the Atmospheric Sciences 68, no. 1 (January 1, 2011): 155–74. http://dx.doi.org/10.1175/2010jas3576.1.

Full text
Abstract:
Abstract Radon (222Rn) is a powerful natural tracer of mixing and exchange processes in the atmospheric boundary layer. The authors present and discuss the main features of a unique dataset of 50 high-resolution vertical radon profiles up to 3500 m above ground level, obtained in clear and cloudy daytime terrestrial boundary layers over an inland rural site in Australia using an instrumented motorized research glider. It is demonstrated that boundary layer radon profiles frequently exhibit a complex layered structure as a result of mixing and exchange processes of varying strengths and extents working in clear and cloudy conditions within the context of the diurnal cycle and the synoptic meteorology. Normalized aircraft radon measurements are presented, revealing the characteristic structure and variability of three major classes of daytime boundary layer: 1) dry convective boundary layers, 2) mixed layers topped with residual layers, and 3) convective boundary layers topped with coupled nonprecipitating clouds. Robust and unambiguous signatures of important atmospheric processes in the boundary layer are identifiable in the radon profiles, including “top-down” mixing associated with entrainment in clear-sky cases and strongly enhanced venting and subcloud-layer mixing when substantial active cumulus are present. In poorly mixed conditions, radon gradients in the daytime atmospheric surface layer significantly exceed those predicted by Monin–Obukhov similarity theory. In two case studies, it is demonstrated for the first time that a sequence of vertical radon profiles measured over the course of a single day can consistently reproduce major structural features of the evolving boundary layer.
APA, Harvard, Vancouver, ISO, and other styles
10

Takegawa, N., Y. Kondo, M. Ko, M. Koike, K. Kita, D. R. Blake, W. Hu, et al. "Photochemical production of O3in biomass burning plumes in the boundary layer over northern Australia." Geophysical Research Letters 30, no. 10 (May 15, 2003): n/a. http://dx.doi.org/10.1029/2003gl017017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Jacobs, Stephanie J., Ailie J. E. Gallant, and Nigel J. Tapper. "The Sensitivity of Urban Meteorology to Soil Moisture Boundary Conditions: A Case Study in Melbourne, Australia." Journal of Applied Meteorology and Climatology 56, no. 8 (August 2017): 2155–72. http://dx.doi.org/10.1175/jamc-d-17-0007.1.

Full text
Abstract:
AbstractThe sensitivity of near-surface urban meteorological conditions to three different soil moisture initialization experiments under heat-wave conditions is investigated for the city of Melbourne, Australia. The Weather Research and Forecasting Model is used to simulate a domain over Melbourne and its surrounding rural areas. The experiments employ three suites of simulations. Two suites initialize the model with soil moisture from the top layer of the ERA-Interim soil moisture data with a 3-month and 24-h coupled spinup period, respectively. The third suite initializes the model with the arguably more realistic soil moistures from the Australian Water Availability Project (AWAP), which are an order of magnitude drier than the ERA-Interim data, again using a 24-h spinup period. The simulations employing the AWAP data are found to have smaller errors when compared with observations, with biases in urban maximum temperature reduced by 4.1°C and biases in the skin temperature reduced by 3.0°C relative to the biases of the 3-month-spinup experiment. Despite urban areas only having a small proportion of soil-covered surfaces, the results show that urban soils have a greater influence on urban near-surface temperatures at night, whereas rural soils have a greater influence on urban near-surface temperatures during the daytime.
APA, Harvard, Vancouver, ISO, and other styles
12

Zhao, T. L., S. L. Gong, P. Huang, and D. Lavoué. "Hemispheric transport and influence of meteorology on global aerosol climatology." Atmospheric Chemistry and Physics Discussions 12, no. 4 (April 20, 2012): 10181–221. http://dx.doi.org/10.5194/acpd-12-10181-2012.

Full text
Abstract:
Abstract. Based on a 10-yr simulation with the global air quality modeling system GEM-AQ/EC, the inter-annual and seasonal variability as well as the mean climate of hemispheric aerosol transport (HAT) was investigated. The intercontinental aerosol transport is predominant in the zonal direction from west to east with the magnitudes of inter-annual variability between 14% and 63%, and are 0.5–2 orders of magnitude weaker in the meridional direction but with larger inter-annual variability. The HAT is found to fluctuate seasonally with a factor of 5–8 between the maximum in late winter and spring and the minimum in late summer and fall. Three meteorological factors controlling the inter-annual aerosol variations in the source-receptor (S-R) relationships are identified from the modeling results: (1) Anomalies in the mid-latitude westerlies in the troposphere. (2) Variations of precipitation over the intercontinental transport pathways and (3) Changes of meteorological conditions in the boundary layer. Changed only by the meteorology, the aerosol column loadings in the free troposphere over the HTAP-regions vary inter-annually with the highest magnitudes of 30–37% in January and December and the lowest magnitudes of 16–20% in August and September, and the magnitudes of inter-annual variability within the boundary layer influencing the surface concentrations over the HTAP-regions are 30–70% less than in the free troposphere and more region-dependent. As the strongest climatic signal, the El Niño–Southern Oscillation (ENSO) can lead the anomalies in the S-R relationships for intercontinental aerosols in the Northern Hemisphere (NH) with the strong/weak transport in the mid-latitude westerlies and the low latitude easterlies for the HAT in El Niño/ La Niña-years.
APA, Harvard, Vancouver, ISO, and other styles
13

Short, Ewan. "Verifying Operational Forecasts of Land–Sea-Breeze and Boundary Layer Mixing Processes." Weather and Forecasting 35, no. 4 (August 1, 2020): 1427–45. http://dx.doi.org/10.1175/waf-d-19-0244.1.

Full text
Abstract:
AbstractForecasters working for Australia’s Bureau of Meteorology (BoM) produce a 7-day forecast in two key steps: first they choose a model guidance dataset to base the forecast on, and then they use graphical software to manually edit these data. Two types of edits are commonly made to the wind fields that aim to improve how the influences of boundary layer mixing and land–sea-breeze processes are represented in the forecast. In this study the diurnally varying component of the BoM’s official wind forecast is compared with that of station observations and unedited model guidance datasets. Coastal locations across Australia over June, July, and August 2018 are considered, with data aggregated over three spatial scales. The edited forecast produces a lower mean absolute error than model guidance at the coarsest spatial scale (over 50 000 km2), and achieves lower seasonal biases over all spatial scales. However, the edited forecast only reduces errors or biases at particular times and locations, and rarely produces lower errors or biases than all model guidance products simultaneously. To better understand physical reasons for biases in the mean diurnal wind cycles, modified ellipses are fitted to the seasonally averaged diurnal wind temporal hodographs. Biases in the official forecast diurnal cycle vary with location for multiple reasons, including biases in the directions that sea breezes approach coastlines, amplitude biases, and disagreement in the relative contribution of sea-breeze and boundary layer mixing processes to the mean diurnal cycle.
APA, Harvard, Vancouver, ISO, and other styles
14

Zhang, Jianhao, and Paquita Zuidema. "Sunlight-absorbing aerosol amplifies the seasonal cycle in low-cloud fraction over the southeast Atlantic." Atmospheric Chemistry and Physics 21, no. 14 (July 23, 2021): 11179–99. http://dx.doi.org/10.5194/acp-21-11179-2021.

Full text
Abstract:
Abstract. The mean altitude of the smoke loading over the southeast Atlantic moves from the boundary layer in July to the free troposphere by October. This study details the month-by-month changes in cloud properties and the large-scale environment as a function of the biomass burning aerosol loading at Ascension Island (8∘ S, 14.5∘ W) from July to October, based on island measurements, satellite retrievals, and reanalysis. In July and August, the smoke loading predominantly varies within the boundary layer. During both months, the low-cloud fraction is less and is increasingly cumuliform when more smoke is present, with the exception of a late morning boundary layer deepening that encourages a short-lived cloud development. The meteorology varies little, suggesting aerosol–cloud interactions explain the cloudiness changes. September marks a transition month during which midlatitude disturbances can intrude into the Atlantic subtropics, constraining the free tropospheric aerosol closer to the African coast. Stronger boundary layer winds on cleaner days help deepen, dry, and cool much of the marine boundary layer compared to that on days with high smoke loadings, with stratocumulus reducing everywhere but at the northern deck edge. The September free troposphere is better mixed on smoky days compared to October. Longwave cooling rates, generated by a sharp water vapor gradient at the aerosol layer top, encourage a small-scale vertical mixing that could help maintain the well-mixed smoky September free troposphere. The October meteorology primarily varies as a function of the strength of the free tropospheric winds advecting aerosol offshore. The free tropospheric aerosol loading is less than in September, and the moisture variability is greater. Low-level clouds increase and are more stratiform in October when the smoke loadings are higher. The increased free tropospheric moisture can help sustain the clouds through a reduction in evaporative drying during cloud-top entrainment. Enhanced subsidence above the coastal upwelling region, increasing cloud droplet number concentrations, may further prolong cloud lifetime through microphysical interactions. Reduced subsidence underneath stronger free tropospheric winds at Ascension Island supports slightly higher cloud tops during smokier conditions. Overall, the monthly changes in the large-scale aerosol and moisture vertical structure act to amplify the seasonal cycle in low-cloud amount and morphology. This is climatically important, as cloudiness changes dominate changes in the top-of-atmosphere radiation budget.
APA, Harvard, Vancouver, ISO, and other styles
15

Li, Yaohui, Xing Yuan, Hongsheng Zhang, Runyuan Wang, Chenghai Wang, Xianhong Meng, Zhiqiang Zhang, et al. "Mechanisms and Early Warning of Drought Disasters: Experimental Drought Meteorology Research over China." Bulletin of the American Meteorological Society 100, no. 4 (April 1, 2019): 673–87. http://dx.doi.org/10.1175/bams-d-17-0029.1.

Full text
Abstract:
Abstract A major experimental drought research project entitled “Mechanisms and Early Warning of Drought Disasters over Northern China” (DroughtEX_China) was launched by the Ministry of Science and Technology of China in 2015. The objective of DroughtEX_China is to investigate drought disaster mechanisms and provide early-warning information via multisource observations and multiscale modeling. Since the implementation of DroughtEX_China, a comprehensive V-shape in situ observation network has been established to integrate different observational experiment systems for different landscapes, including crops in northern China. In this article, we introduce the experimental area, observational network configuration, ground- and air-based observing/testing facilities, implementation scheme, and data management procedures and sharing policy. The preliminary observational and numerical experimental results show that the following are important processes for understanding and modeling drought disasters over arid and semiarid regions: 1) the soil water vapor–heat interactions that affect surface soil moisture variability, 2) the effect of intermittent turbulence on boundary layer energy exchange, 3) the drought–albedo feedback, and 4) the transition from stomatal to nonstomatal control of plant photosynthesis with increasing drought severity. A prototype of a drought monitoring and forecasting system developed from coupled hydroclimate prediction models and an integrated multisource drought information platform is also briefly introduced. DroughtEX_China lasted for four years (i.e., 2015–18) and its implementation now provides regional drought monitoring and forecasting, risk assessment information, and a multisource data-sharing platform for drought adaptation over northern China, contributing to the global drought information system (GDIS).
APA, Harvard, Vancouver, ISO, and other styles
16

Liu, Boming, Jianping Guo, Wei Gong, Lijuan Shi, Yong Zhang, and Yingying Ma. "Characteristics and performance of wind profiles as observed by the radar wind profiler network of China." Atmospheric Measurement Techniques 13, no. 8 (August 25, 2020): 4589–600. http://dx.doi.org/10.5194/amt-13-4589-2020.

Full text
Abstract:
Abstract. Wind profiles are fundamental to the research and applications in boundary layer meteorology, air quality and numerical weather prediction. Large-scale wind profile data have been previously documented from network observations in several countries, such as Japan, the USA, various European countries and Australia, but nationwide wind profiles observations are poorly understood in China. In this study, the salient characteristics and performance of wind profiles as observed by the radar wind profiler network of China are investigated. This network consists of more than 100 stations instrumented with 1290 MHz Doppler radar designed primarily for measuring vertically resolved winds at various altitudes but mainly in the boundary layer. It has good spatial coverage, with much denser sites in eastern China. The wind profiles observed by this network can provide the horizontal wind direction, horizontal wind speed and vertical wind speed for every 120 m interval within the height of 0 to 3 km. The availability of the radar wind profiler network has been investigated in terms of effective detection height, data acquisition rate, data confidence and data accuracy. Further comparison analyses with reanalysis data indicate that the observation data at 89 stations are recommended and 17 stations are not recommended. The boundary layer wind profiles from China can provide useful input to numerical weather prediction systems at regional scales.
APA, Harvard, Vancouver, ISO, and other styles
17

May, Peter T., Charles N. Long, and Alain Protat. "The Diurnal Cycle of the Boundary Layer, Convection, Clouds, and Surface Radiation in a Coastal Monsoon Environment (Darwin, Australia)." Journal of Climate 25, no. 15 (August 1, 2012): 5309–26. http://dx.doi.org/10.1175/jcli-d-11-00538.1.

Full text
Abstract:
Abstract The diurnal variation of convection and associated cloud and radiative properties remains a significant issue in global NWP and climate models. This study analyzes observed diurnal variability of convection in a coastal monsoonal environment examining the interaction of convective rain clouds, their associated cloud properties, and the impact on the surface radiation and corresponding boundary layer structure during periods where convection is suppressed or active on the large scale. The analysis uses data from the Tropical Warm Pool International Cloud Experiment (TWP-ICE) as well as routine measurements from the Australian Bureau of Meteorology and the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program. Both active monsoonal and large-scale suppressed (buildup and break) conditions are examined and demonstrate that the diurnal variation of rainfall is much larger during the break periods and the spatial distribution of rainfall is very different between the monsoon and break regimes. During the active monsoon the total net radiative input to the surface is decreased by more than 3 times the amount than during the break regime—this total radiative cloud forcing is found to be dominated by the shortwave (SW) cloud effects because of the much larger optical thicknesses and persistence of long-lasting anvils and cirrus cloud decks associated with the monsoon regime. These differences in monsoon versus break surface radiative energy contribute to low-level air temperature differences in the boundary layer over the land surfaces.
APA, Harvard, Vancouver, ISO, and other styles
18

Sharma, Amit, Ana Carla Fernandez Valdes, and Yunha Lee. "Impact of Wildfires on Meteorology and Air Quality (PM2.5 and O3) over Western United States during September 2017." Atmosphere 13, no. 2 (February 3, 2022): 262. http://dx.doi.org/10.3390/atmos13020262.

Full text
Abstract:
In this study, we investigated the impact of wildfires on meteorology and air quality (PM2.5 and O3) over the western United States during the September 2017 period. This is done by using Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) to simulate scenarios with wildfires (base case) and without wildfires (sensitivity case). Our analysis performed during the first half of September 2017 (when wildfire activity was more intense) reveals a reduction in modelled daytime average shortwave surface downward radiation especially in locations close to wildfires by up to 50 W m−2, thus resulting in the reduction of the diurnal average surface temperature by up to 0.5 °C and the planetary boundary layer height by up to 50 m. These changes are mainly attributed to aerosol-meteorology feedbacks that affect radiation and clouds. The model results also show mostly enhancements for diurnally averaged cloud optical depth (COD) by up to 10 units in the northern domain due to the wildfire-related air quality. These changes occur mostly in response to aerosol–cloud interactions. Analysis of the impact of wildfires on chemical species shows large changes in daily mean PM2.5 concentrations (exceeding by 200 μg m−3 in locations close to wildfires). The 24 h average surface ozone mixing ratios also increase in response to wildfires by up to 15 ppbv. The results show that the changes in PM2.5 and ozone occur not just due to wildfire emissions directly but also in response to changes in meteorology, indicating the importance of including aerosol-meteorology feedbacks, especially during poor air quality events.
APA, Harvard, Vancouver, ISO, and other styles
19

Nahian, Md Rafsan, Amir Nazem, Manoj K. Nambiar, Ryan Byerlay, Shohel Mahmud, Alison M. Seguin, Françoise R. Robe, James Ravenhill, and Amir A. Aliabadi. "Complex Meteorology over a Complex Mining Facility: Assessment of Topography, Land Use, and Grid Spacing Modifications in WRF." Journal of Applied Meteorology and Climatology 59, no. 4 (April 2020): 769–89. http://dx.doi.org/10.1175/jamc-d-19-0213.1.

Full text
Abstract:
AbstractThe performance of the Weather Research and Forecasting (WRF) Model is evaluated in predicting the meteorological conditions over a complex open-pit mining facility in northern Canada in support of more accurate operational reporting of area-fugitive greenhouse gas emission fluxes from such facilities. WRF is studied in a series of sensitivity tests by varying topography, land use, and horizontal and vertical grid spacings to arrive at optimum configurations for reducing modeling biases in comparison with field meteorological observations. Overall, WRF shows a better performance when accounting for the mine topography and modified land use. As a result, the model biases reduce from 1.10 to 0.08 m s−1, from 1.04 to 0.50 m s−1, from 0.98 to 0.32 K, and from 45.7 to 17.3 W m−2, for near-surface wind speed, boundary layer wind speed, near-surface potential temperature, and turbulent sensible heat flux, respectively. Refining the model horizontal and vertical grid spacings results in bias reductions from 3.31 to 0.08 and from 0.80 to −0.11 m s−1 for near-surface and boundary layer wind speeds, respectively. The simulation results also agree with previous observations of meteorological effects on enclosed Earth depressions, characterized by formation of a cool pool of air, reduced wind speeds, and horizontal wind circulations at the bottom of the depression under thermally stable conditions. The results suggest that such configurations for WRF are necessary to arrive at more accurate meteorological predictions over complex open-pit mining terrains with similar features.
APA, Harvard, Vancouver, ISO, and other styles
20

Guo, Jianping, Yucong Miao, Yong Zhang, Huan Liu, Zhanqing Li, Wanchun Zhang, Jing He, et al. "The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data." Atmospheric Chemistry and Physics 16, no. 20 (October 28, 2016): 13309–19. http://dx.doi.org/10.5194/acp-16-13309-2016.

Full text
Abstract:
Abstract. The important roles of the planetary boundary layer (PBL) in climate, weather and air quality have long been recognized, but little is known about the PBL climatology in China. Using the fine-resolution sounding observations made across China and reanalysis data, we conducted a comprehensive investigation of the PBL in China from January 2011 to July 2015. The boundary layer height (BLH) is found to be generally higher in spring and summer than that in fall and winter. The comparison of seasonally averaged BLHs derived from observations and reanalysis, on average, shows good agreement, despite the pronounced inconsistence in some regions. The BLH, derived from soundings conducted three or four times daily in summer, tends to peak in the early afternoon, and the diurnal amplitude of BLH is higher in the northern and western subregions of China than other subregions. The meteorological influence on the annual cycle of BLH is investigated as well, showing that BLH at most sounding sites is negatively associated with the surface pressure and lower tropospheric stability, but positively associated with the near-surface wind speed and temperature. In addition, cloud tends to suppress the development of PBL, particularly in the early afternoon. This indicates that meteorology plays a significant role in the PBL processes. Overall, the key findings obtained from this study lay a solid foundation for us to gain a deep insight into the fundamentals of PBL in China, which helps to understand the roles that the PBL plays in the air pollution, weather and climate of China.
APA, Harvard, Vancouver, ISO, and other styles
21

Junkermann, W., J. Hacker, T. Lyons, and U. Nair. "Land use change suppresses precipitation." Atmospheric Chemistry and Physics Discussions 9, no. 3 (May 8, 2009): 11481–500. http://dx.doi.org/10.5194/acpd-9-11481-2009.

Full text
Abstract:
Abstract. A feedback loop between regional scale deforestation and climate change was investigated in an experiment using novel, small size airborne platforms and instrument setups. Experiments were performed in a worldwide unique natural laboratory in Western Australia, characterized by two adjacent homogeneous observation areas with distinctly different land use characteristics. Conversion of several ten thousand square km of forests into agricultural land began more than a century ago. Changes in albedo and surface roughness and the water budget of soil and the planetary boundary layer evolved over decades. Besides different meteorology we found a significant up to now overseen source of aerosol over the agriculture. The enhanced number of cloud condensation nuclei is coupled through the hydrological groundwater cycle with deforestation. Modification of surface properties and aerosol number concentrations are key factors for the observed reduction of precipitation. The results document the importance of aerosol indirect effects on climate due to nanometer size biogenic aerosol and human impact on aerosol sources.
APA, Harvard, Vancouver, ISO, and other styles
22

Junkermann, W., J. Hacker, T. Lyons, and U. Nair. "Land use change suppresses precipitation." Atmospheric Chemistry and Physics 9, no. 17 (September 10, 2009): 6531–39. http://dx.doi.org/10.5194/acp-9-6531-2009.

Full text
Abstract:
Abstract. A feedback loop between regional scale deforestation and climate change was investigated in an experiment using novel, small size airborne platforms and instrument setups. Experiments were performed in a worldwide unique natural laboratory in Western Australia, characterized by two adjacent homogeneous observation areas with distinctly different land use characteristics. Conversion of several ten thousand square km of forests into agricultural land began more than a century ago. Changes in albedo, surface roughness, the soil water budget and the planetary boundary layer evolved over decades. Besides different meteorology, we found a significant up to now overlooked source of aerosol over the agriculture area. The enhanced number of cloud condensation nuclei is coupled through the hydrological groundwater cycle with deforestation. Modification of surface properties and aerosol number concentrations are key factors for the observed reduction of precipitation. The results document the importance of aerosol indirect effects on climate due to nanometer size biogenic aerosol and human impact on aerosol sources.
APA, Harvard, Vancouver, ISO, and other styles
23

Barth, M. C., J. Lee, A. Hodzic, G. Pfister, W. C. Skamarock, J. Worden, J. Wong, and D. Noone. "Thunderstorms and upper troposphere chemistry during the early stages of the 2006 North American Monsoon." Atmospheric Chemistry and Physics Discussions 12, no. 7 (July 4, 2012): 16407–55. http://dx.doi.org/10.5194/acpd-12-16407-2012.

Full text
Abstract:
Abstract. In this study, the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) is applied at 4 km horizontal grid spacing to study the meteorology and chemistry over the continental US and Northern Mexico region for the 15 July to 7 August 2006 period, which coincides with the early stages of the North American Monsoon. Evaluation of model results shows that WRF-Chem reasonably represents the large-scale meteorology and strong convective storms, but tends to overestimate weak convection. In the upper troposphere, the WRF-Chem model predicts ozone and carbon monoxide (CO) to within 10–20% of aircraft and sonde measurements. However, the frequency distribution from satellite data indicates that WRF-Chem is lofting too much CO from the boundary layer (BL). Because ozone mixing ratios agree well with these same satellite data, it suggests that chemical production of O3 in the model is overpredicted and compensates for the excess convective lofting of BL air. Analysis of different geographic regions (West Coast, Rocky Mountains, Central Plains, Midwest, and Gulf Coast) reveals that much of the convective transport occurs in the Rocky Mountains, while much of the UT ozone chemical production occurs over the Gulf Coast and Midwest regions where both CO and volatile organic compounds (VOCs) are abundant in the upper troposphere and promote the production of peroxy radicals. In all regions most of the ozone chemical production occurs within 24 h of the air being lofted from the boundary layer. In addition, analysis of the anticyclone and adjacent air indicates that ozone mixing ratios within the anticyclone region associated with the North American Monsoon and just outside the anticyclone are similar. Increases of O3 within the anticyclone are strongly coincident with entrainment of stratospheric air into the anticyclone, but also are from in situ O3 chemical production. In situ O3 production is up to 17% greater within the anticyclone than just outside the anticyclone when the anticyclone is over the Southern US indicating that the enhancement of O3 is most pronounced over regions with abundant VOCs.
APA, Harvard, Vancouver, ISO, and other styles
24

Feng, L., P. I. Palmer, Y. Yang, R. M. Yantosca, S. R. Kawa, J. D. Paris, H. Matsueda, and T. Machida. "Evaluating a 3-D transport model of atmospheric CO<sub>2</sub> using ground-based, aircraft, and space-borne data." Atmospheric Chemistry and Physics Discussions 10, no. 7 (July 29, 2010): 18025–61. http://dx.doi.org/10.5194/acpd-10-18025-2010.

Full text
Abstract:
Abstract. We evaluate the GEOS-Chem atmospheric transport model (v8-02-01) of CO2 over 2003–2006, driven by GEOS-4 and GEOS-5 meteorology from the NASA Goddard Global Modelling and Assimilation Office, using surface, aircraft and space-borne concentration measurements of CO2. We use an established ensemble Kalman filter to estimate a posteriori biospheric+biomass burning (BS+BB) and oceanic (OC) CO2 fluxes from 22 geographical regions, following the TransCom 3 protocol, using boundary layer CO2 data from a subset of GLOBALVIEW surface sites. Global annual net BS+BB+OC CO2 fluxes over 2004–2006 for GEOS-4 (GEOS-5) meteorology are −4.4±0.9 (−4.2±0.9), −3.9±0.9 (−4.5±0.9), and −5.2±0.9 (−4.9±0.9) Pg C yr−1 , respectively. The regional a posteriori fluxes are broadly consistent in the sign and magnitude of the TransCom-3 study for 1992–1996, but we find larger net sinks over northern and southern continents. We find large departures from our a priori over Europe during summer 2003, over temperate Eurasia during 2004, and over North America during 2005, reflecting an incomplete description of terrestrial carbon dynamics. We find GEOS-4 (GEOS-5) a posteriori CO2 concentrations reproduce the observed surface trend of 1.91–2.43 ppm yr−1, depending on latitude, within 0.15 ppm yr−1 (0.2 ppm yr−1) and the seasonal cycle within 0.2 ppm (0.2 ppm) at all latitudes. We find the a posteriori model reproduces the aircraft vertical profile measurements of CO2 over North America and Siberia generally within 1.5 ppm in the free and upper troposphere but can be biased by up to 4–5 ppm in the boundary layer at the start and end of the growing season. The model has a small negative bias in the free troposphere CO2 trend (1.95–2.19 ppm yr−1) compared to AIRS data which has a trend of 2.21–2.63 ppm yr−1 during 2004–2006, consistent with surface data. Model CO2 concentrations in the upper troposphere, evaluated using CONTRAIL (Comprehensive Observation Network for TRace gases by AIrLiner) aircraft measurements, reproduce the magnitude and phase of the seasonal cycle of CO2 in both hemispheres. We generally find that the GEOS meteorology reproduces much of the observed tropospheric CO2 variability, suggesting that these meteorological fields will help make significant progress in understanding carbon fluxes as more data become available.
APA, Harvard, Vancouver, ISO, and other styles
25

Monk, Khalia, Elise-Andrée Guérette, Clare Paton-Walsh, Jeremy D. Silver, Kathryn M. Emmerson, Steven R. Utembe, Yang Zhang, et al. "Evaluation of Regional Air Quality Models over Sydney and Australia: Part 1—Meteorological Model Comparison." Atmosphere 10, no. 7 (July 4, 2019): 374. http://dx.doi.org/10.3390/atmos10070374.

Full text
Abstract:
The ability of meteorological models to accurately characterise regional meteorology plays a crucial role in the performance of photochemical simulations of air pollution. As part of the research funded by the Australian government’s Department of the Environment Clean Air and Urban Landscape hub, this study set out to complete an intercomparison of air quality models over the Sydney region. This intercomparison would test existing modelling capabilities, identify any problems and provide the necessary validation of models in the region. The first component of the intercomparison study was to assess the ability of the models to reproduce meteorological observations, since it is a significant driver of air quality. To evaluate the meteorological component of these air quality modelling systems, seven different simulations based on varying configurations of inputs, integrations and physical parameterizations of two meteorological models (the Weather Research and Forecasting (WRF) and Conformal Cubic Atmospheric Model (CCAM)) were examined. The modelling was conducted for three periods coinciding with comprehensive air quality measurement campaigns (the Sydney Particle Studies (SPS) 1 and 2 and the Measurement of Urban, Marine and Biogenic Air (MUMBA)). The analysis focuses on meteorological variables (temperature, mixing ratio of water, wind (via wind speed and zonal wind components), precipitation and planetary boundary layer height), that are relevant to air quality. The surface meteorology simulations were evaluated against observations from seven Bureau of Meteorology (BoM) Automatic Weather Stations through composite diurnal plots, Taylor plots and paired mean bias plots. Simulated vertical profiles of temperature, mixing ratio of water and wind (via wind speed and zonal wind components) were assessed through comparison with radiosonde data from the Sydney Airport BoM site. The statistical comparisons with observations identified systematic overestimations of wind speeds that were more pronounced overnight. The temperature was well simulated, with biases generally between ±2 °C and the largest biases seen overnight (up to 4 °C). The models tend to have a drier lower atmosphere than observed, implying that better representations of soil moisture and surface moisture fluxes would improve the subsequent air quality simulations. On average the models captured local-scale meteorological features, like the sea breeze, which is a critical feature driving ozone formation in the Sydney Basin. The overall performance and model biases were generally within the recommended benchmark values (e.g., ±1 °C mean bias in temperature, ±1 g/kg mean bias of water vapour mixing ratio and ±1.5 m s−1 mean bias of wind speed) except at either end of the scale, where the bias tends to be larger. The model biases reported here are similar to those seen in other model intercomparisons.
APA, Harvard, Vancouver, ISO, and other styles
26

Feng, L., P. I. Palmer, Y. Yang, R. M. Yantosca, S. R. Kawa, J. D. Paris, H. Matsueda, and T. Machida. "Evaluating a 3-D transport model of atmospheric CO<sub>2</sub> using ground-based, aircraft, and space-borne data." Atmospheric Chemistry and Physics 11, no. 6 (March 25, 2011): 2789–803. http://dx.doi.org/10.5194/acp-11-2789-2011.

Full text
Abstract:
Abstract. We evaluate the GEOS-Chem atmospheric transport model (v8-02-01) of CO2 over 2003–2006, driven by GEOS-4 and GEOS-5 meteorology from the NASA Goddard Global Modeling and Assimilation Office, using surface, aircraft and space-borne concentration measurements of CO2. We use an established ensemble Kalman Filter to estimate a posteriori biospheric+biomass burning (BS + BB) and oceanic (OC) CO2 fluxes from 22 geographical regions, following the TransCom-3 protocol, using boundary layer CO2 data from a subset of GLOBALVIEW surface sites. Global annual net BS + BB + OC CO2 fluxes over 2004–2006 for GEOS-4 (GEOS-5) meteorology are −4.4 ± 0.9 (−4.2 ± 0.9), −3.9 ± 0.9 (−4.5 ± 0.9), and −5.2 ± 0.9 (−4.9 ± 0.9) PgC yr−1, respectively. After taking into account anthropogenic fossil fuel and bio-fuel emissions, the global annual net CO2 emissions for 2004–2006 are estimated to be 4.0 ± 0.9 (4.2 ± 0.9), 4.8 ± 0.9 (4.2 ± 0.9), and 3.8 ± 0.9 (4.1 ± 0.9) PgC yr−1, respectively. The estimated 3-yr total net emission for GEOS-4 (GEOS-5) meteorology is equal to 12.5 (12.4) PgC, agreeing with other recent top-down estimates (12–13 PgC). The regional a posteriori fluxes are broadly consistent in the sign and magnitude of the TransCom-3 study for 1992–1996, but we find larger net sinks over northern and southern continents. We find large departures from our a priori over Europe during summer 2003, over temperate Eurasia during 2004, and over North America during 2005, reflecting an incomplete description of terrestrial carbon dynamics. We find GEOS-4 (GEOS-5) a posteriori CO2 concentrations reproduce the observed surface trend of 1.91–2.43 ppm yr−1 (parts per million per year), depending on latitude, within 0.15 ppm yr−1 (0.2 ppm yr−1) and the seasonal cycle within 0.2 ppm (0.2 ppm) at all latitudes. We find the a posteriori model reproduces the aircraft vertical profile measurements of CO2 over North America and Siberia generally within 1.5 ppm in the free and upper troposphere but can be biased by up to 4–5 ppm in the boundary layer at the start and end of the growing season. The model has a small negative bias in the free troposphere CO2 trend (1.95–2.19 ppm yr−1) compared to AIRS data which has a trend of 2.21–2.63 ppm yr−1 during 2004–2006, consistent with surface data. Model CO2 concentrations in the upper troposphere, evaluated using CONTRAIL (Comprehensive Observation Network for TRace gases by AIrLiner) aircraft measurements, reproduce the magnitude and phase of the seasonal cycle of CO2 in both hemispheres. We generally find that the GEOS meteorology reproduces much of the observed tropospheric CO2 variability, suggesting that these meteorological fields will help make significant progress in understanding carbon fluxes as more data become available.
APA, Harvard, Vancouver, ISO, and other styles
27

Zhang, Yang, Chinmay Jena, Kai Wang, Clare Paton-Walsh, Élise-Andrée Guérette, Steven Utembe, Jeremy David Silver, and and Melita Keywood. "Multiscale Applications of Two Online-Coupled Meteorology-Chemistry Models during Recent Field Campaigns in Australia, Part I: Model Description and WRF/Chem-ROMS Evaluation Using Surface and Satellite Data and Sensitivity to Spatial Grid Resolutions." Atmosphere 10, no. 4 (April 8, 2019): 189. http://dx.doi.org/10.3390/atmos10040189.

Full text
Abstract:
Air pollution and associated human exposure are important research areas in Greater Sydney, Australia. Several field campaigns were conducted to characterize the pollution sources and their impacts on ambient air quality including the Sydney Particle Study Stages 1 and 2 (SPS1 and SPS2), and the Measurements of Urban, Marine, and Biogenic Air (MUMBA). In this work, the Weather Research and Forecasting model with chemistry (WRF/Chem) and the coupled WRF/Chem with the Regional Ocean Model System (ROMS) (WRF/Chem-ROMS) are applied during these field campaigns to assess the models’ capability in reproducing atmospheric observations. The model simulations are performed over quadruple-nested domains at grid resolutions of 81-, 27-, 9-, and 3-km over Australia, an area in southeastern Australia, an area in New South Wales, and the Greater Sydney area, respectively. A comprehensive model evaluation is conducted using surface observations from these field campaigns, satellite retrievals, and other data. This paper evaluates the performance of WRF/Chem-ROMS and its sensitivity to spatial grid resolutions. The model generally performs well at 3-, 9-, and 27-km resolutions for sea-surface temperature and boundary layer meteorology in terms of performance statistics, seasonality, and daily variation. Moderate biases occur for temperature at 2-m and wind speed at 10-m in the mornings and evenings due to the inaccurate representation of the nocturnal boundary layer and surface heat fluxes. Larger underpredictions occur for total precipitation due to the limitations of the cloud microphysics scheme or cumulus parameterization. The model performs well at 3-, 9-, and 27-km resolutions for surface O3 in terms of statistics, spatial distributions, and diurnal and daily variations. The model underpredicts PM2.5 and PM10 during SPS1 and MUMBA but overpredicts PM2.5 and underpredicts PM10 during SPS2. These biases are attributed to inaccurate meteorology, precursor emissions, insufficient SO2 conversion to sulfate, inadequate dispersion at finer grid resolutions, and underprediction in secondary organic aerosol. The model gives moderate biases for net shortwave radiation and cloud condensation nuclei but large biases for other radiative and cloud variables. The performance of aerosol optical depth and latent/sensible heat flux varies for different simulation periods. Among all variables evaluated, wind speed at 10-m, precipitation, surface concentrations of CO, NO, NO2, SO2, O3, PM2.5, and PM10, aerosol optical depth, cloud optical thickness, cloud condensation nuclei, and column NO2 show moderate-to-strong sensitivity to spatial grid resolutions. The use of finer grid resolutions (3- or 9-km) can generally improve the performance for those variables. While the performance for most of these variables is consistent with that over the U.S. and East Asia, several differences along with future work are identified to pinpoint reasons for such differences.
APA, Harvard, Vancouver, ISO, and other styles
28

Gangoiti, G., A. Albizuri, L. Alonso, M. Navazo, M. Matabuena, V. Valdenebro, J. A. García, and M. M. Millán. "Sub-continental transport mechanisms and pathways during two ozone episodes in northern Spain." Atmospheric Chemistry and Physics Discussions 5, no. 5 (October 25, 2005): 10657–84. http://dx.doi.org/10.5194/acpd-5-10657-2005.

Full text
Abstract:
Abstract. Two ozone episodes (occurring in June 2001 and June 2003) in the air quality monitoring network of the Basque Country (BC) are analyzed. The population information threshold was exceeded in most of the stations (urban, urban-background and rural). During these type of episodes, forced by a blocking anticyclone over the British Isles, ozone background concentrations over the area increase after the import of pollution from both, the continental Europe and the western Mediterranean areas (Gangoiti et al., 2002). For the present analysis, emphasis is made in the search for transport mechanisms, pathways and area sources contributing to the build-up of the episodes. Contributions from a selection of 17 urban and industrial conglomerates in the western European Atlantic (WEA) and the western Mediterranean (WM) are shown after the results of a coupled RAMS-HYPACT modelling system. Meteorological simulations are tested against both the high-resolution wind data recorded at the BC coastal area by a boundary layer wind-profiler radar (Alonso et al., 1998) and the wind soundings reported by the National Centres of Meteorology at a selection of European and north-African sites. Results show that during the accumulation phase of the episodes, background ozone concentrations increase in the whole territory as a consequence of transport from the Atlantic coast of France and the British Channel. For the peak phase, intrusions from new sources, located at the Western Mediterranean, Southern France, Ebro Valley, and, occasionally, the area of Madrid are added, resulting in a further increase in the ozone concentrations. Direct day and night transport within the north-easterly winds over the sea from the WEA source region, and night-time transport within the residual layer over continental areas (southern France, the Ebro Valley, and central Iberia) modulate the import sequence of pollutants and the local increase of ozone concentrations.
APA, Harvard, Vancouver, ISO, and other styles
29

Kulessa, A. S., A. Barrios, J. Claverie, S. Garrett, T. Haack, J. M. Hacker, H. J. Hansen, et al. "The Tropical Air–Sea Propagation Study (TAPS)." Bulletin of the American Meteorological Society 98, no. 3 (March 1, 2017): 517–37. http://dx.doi.org/10.1175/bams-d-14-00284.1.

Full text
Abstract:
Abstract The purpose of the Tropical Air–Sea Propagation Study (TAPS), which was conducted during November–December 2013, was to gather coordinated atmospheric and radio frequency (RF) data, offshore of northeastern Australia, in order to address the question of how well radio wave propagation can be predicted in a clear-air, tropical, littoral maritime environment. Spatiotemporal variations in vertical gradients of the conserved thermodynamic variables found in surface layers, mixing layers, and entrainment layers have the potential to bend or refract RF energy in directions that can either enhance or limit the intended function of an RF system. TAPS facilitated the collaboration of scientists and technologists from the United Kingdom, the United States, France, New Zealand, and Australia, bringing together expertise in boundary layer meteorology, mesoscale numerical weather prediction (NWP), and RF propagation. The focus of the study was on investigating for the first time in a tropical, littoral environment the i) refractivity structure in the marine and coastal inland boundary layers; ii) the spatial and temporal behavior of momentum, heat, and moisture fluxes; and iii) the ability of propagation models seeded with refractive index functions derived from blended NWP and surface-layer models to predict the propagation of radio wave signals of ultrahigh frequency (UHF; 300 MHz–3 GHz), super-high frequency (SHF; 3–30 GHz), and extremely high frequency (EHF; 30–300 GHz). Coordinated atmospheric and RF measurements were made using a small research aircraft, slow-ascent radiosondes, lidar, flux towers, a kitesonde, and land-based transmitters. The use of a ship as an RF-receiving platform facilitated variable-range RF links extending to distances of 80 km from the mainland. Four high-resolution NWP forecasting systems were employed to characterize environmental variability. This paper provides an overview of the TAPS experimental design and field campaign, including a description of the unique data that were collected, preliminary findings, and the envisaged interpretation of the results.
APA, Harvard, Vancouver, ISO, and other styles
30

Barth, M. C., J. Lee, A. Hodzic, G. Pfister, W. C. Skamarock, J. Worden, J. Wong, and D. Noone. "Thunderstorms and upper troposphere chemistry during the early stages of the 2006 North American Monsoon." Atmospheric Chemistry and Physics 12, no. 22 (November 21, 2012): 11003–26. http://dx.doi.org/10.5194/acp-12-11003-2012.

Full text
Abstract:
Abstract. To study the meteorology and chemistry that is associated with the early stages of the North American Monsoon, the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) is applied for the first time at high resolution (4 km grid spacing, allowing for explicit representation of convection) over a large region (continental US and northern Mexico) for a multi-week (15 July to 7 August 2006) integration. Evaluation of model results shows that WRF-Chem reasonably represents the large-scale meteorology and strong convective storms, but tends to overestimate weak convection. In the upper troposphere, the WRF-Chem model predicts ozone (O3) and carbon monoxide (CO) to within 10–20% of aircraft and sonde measurements. Comparison of UT O3 and CO frequency distributions between WRF-Chem and satellite data indicates that WRF-Chem is lofting CO too frequently from the boundary layer (BL). This excessive lofting should also cause biases in the WRF-Chem ozone frequency distribution; however it agrees well with satellite data suggesting that either the chemical production of O3 in the model is overpredicted or there is too much stratosphere to troposphere transport in the model. Analysis of different geographic regions (West Coast, Rocky Mountains, Central Plains, Midwest, and Gulf Coast) reveals that much of the convective transport occurs in the Rocky Mountains, while much of the UT ozone chemical production occurs over the Gulf Coast and Midwest regions where both CO and volatile organic compounds (VOCs) are abundant in the upper troposphere and promote the production of peroxy radicals. In all regions most of the ozone chemical production occurs within 24 h of the air being lofted from the boundary layer. In addition, analysis of the anticyclone and adjacent air indicates that ozone mixing ratios within the anticyclone region associated with the North American Monsoon and just outside the anticyclone are similar. Increases of O3 within the anticyclone are strongly coincident with entrainment of stratospheric air into the anticyclone, but also are from in situ O3 chemical production. In situ O3 production is up to 17% greater within the anticyclone than just outside the anticyclone when the anticyclone is over the southern US indicating that the enhancement of O3 is most pronounced over regions with abundant VOCs.
APA, Harvard, Vancouver, ISO, and other styles
31

Gangoiti, G., A. Albizuri, L. Alonso, M. Navazo, M. Matabuena, V. Valdenebro, J. A. García, and M. M. Millán. "Sub-continental transport mechanisms and pathways during two ozone episodes in northern Spain." Atmospheric Chemistry and Physics 6, no. 6 (May 8, 2006): 1469–84. http://dx.doi.org/10.5194/acp-6-1469-2006.

Full text
Abstract:
Abstract. Two ozone episodes (occurring in June 2001 and June 2003) in the air quality monitoring network of the Basque Country (BC) are analyzed. The population information threshold was exceeded in many stations (urban, urban-background and rural). During this type of episodes, forced by a blocking anticyclone over the British Isles, ozone background concentrations over the area increase after the import of pollution from both, the continental Europe and the western Mediterranean areas (Gangoiti et al., 2002). For the present analysis, emphasis is made in the search for transport mechanisms, pathways and area sources contributing to the build-up of the episodes. Contributions from a selection of 17 urban and industrial conglomerates in the western European Atlantic (WEA) and the western Mediterranean (WM) are shown after the results of a coupled RAMS-HYPACT modelling system. Meteorological simulations are tested against both the high-resolution wind data recorded at the BC coastal area by a boundary layer wind-profiler radar (Alonso et al., 1998) and the wind soundings reported by the National Centres of Meteorology at a selection of European and north-African sites. Results show that during the accumulation phase of the episodes, background ozone concentrations increase in the whole territory as a consequence of transport from the Atlantic coast of France and the British Channel. For the peak phase, intrusions from new sources, located at the Western Mediterranean, Southern France, Ebro Valley, and, occasionally, the area of Madrid are added, resulting in a further increase in the ozone concentrations. Direct day and night transport within the north-easterly winds over the sea from the WEA source region, and night-time transport within the residual layer over continental areas (southern France, the Ebro Valley, and central Iberia) modulate the import sequence of pollutants and the local increase of ozone concentrations. The alternative direct use of low resolution meteorological data for the estimation of back-trajectories shows a more simple transport scheme with no contributions neither from the Western Mediterranean nor from the Madrid area.
APA, Harvard, Vancouver, ISO, and other styles
32

Zhu, Jiachen, Amos P. K. Tai, and Steve Hung Lam Yim. "Effects of ozone–vegetation interactions on meteorology and air quality in China using a two-way coupled land–atmosphere model." Atmospheric Chemistry and Physics 22, no. 2 (January 18, 2022): 765–82. http://dx.doi.org/10.5194/acp-22-765-2022.

Full text
Abstract:
Abstract. Tropospheric ozone (O3) is one of the most important air pollutants in China and is projected to continue to increase in the near future. O3 and vegetation closely interact with each other and such interactions may not only affect plant physiology (e.g., stomatal conductance and photosynthesis) but also influence the overlying meteorology and air quality through modifying leaf stomatal behaviors. Previous studies have highlighted China as a hotspot in terms of O3 pollution and O3 damage to vegetation. Yet, few studies have investigated the effects of O3–vegetation interactions on meteorology and air quality in China, especially in the light of recent severe O3 pollution. In this study, a two-way coupled land–atmosphere model was applied to simulate O3 damage to vegetation and the subsequent effects on meteorology and air quality in China. Our results reveal that O3 causes up to 16 % enhancement in stomatal resistance, whereby large increases are found in the Henan, Hebei, and Shandong provinces. O3 damage causes more than 0.6 µmol CO2 m−2 s−1 reductions in photosynthesis rate and at least 0.4 and 0.8 g C m−2 d−1 decreases in leaf area index (LAI) and gross primary production (GPP), respectively, and hotspot areas appear in the northeastern and southern China. The associated reduction in transpiration causes a 5–30 W m−2 decrease (increase) in latent heat (sensible heat) flux, which induces a 3 % reduction in surface relative humidity, 0.2–0.8 K increase in surface air temperature, and 40–120 m increase in boundary-layer height in China. We also found that the meteorological changes further induce a 2–6 ppb increase in O3 concentration in northern and south-central China mainly due to enhanced isoprene emission following increased air temperature, demonstrating that O3–vegetation interactions can lead to strong positive feedback that can amplify O3 pollution in China. Our findings emphasize the importance of considering the effects of O3 damage and O3–vegetation interactions in air quality simulations, with ramifications for both air quality and forest management.
APA, Harvard, Vancouver, ISO, and other styles
33

Inomata, Yayoi, Masato Takeda, Nguyen Thao, Mizuo Kajino, Takafumi Seto, Hiroyuki Nakamura, and Kazuichi Hayakawa. "Particulate PAH Transport Associated with Adult Chronic Cough Occurrence Closely Connected with Meteorological Conditions: A Modelling Study." Atmosphere 12, no. 9 (September 10, 2021): 1163. http://dx.doi.org/10.3390/atmos12091163.

Full text
Abstract:
Exposure to polycyclic aromatic hydrocarbons (PAHs) are a cause of chronic cough occurrence in adult patients. In order to clear the relationship between transboundary transport of PAH and health effects, this study investigates the relationship between atmospheric particulate PAHs (p-PAHs), cough occurrence by epidemiological research, and meteorological conditions using a chemical transport model. Source receptor relationship (SRR) analysis revealed that a higher cough occurrence was caused by exposure to high p-PAH levels in air masses transported from central China (CCHN, 30–40° N) under westerly conditions. The p-PAHs transported from northern China (NCHN, >40° N) and the eastern part of Russia (ERUS) under north-westerly conditions also contributed to cough occurrence. The low equivalent potential temperature (ePT) and geopotential height anomaly suggested that the p-PAHs emitted near the surface were suppressed to upward transport under the colder air mass but were instead transported horizontally near the surface in the boundary layer, resulting in high p-PAH concentrations arriving in Kanazawa. Our study’s findings suggest that the air mass transport pattern associated with meteorology strongly influences the high p-PAH concentrations causing adult chronic cough occurrence.
APA, Harvard, Vancouver, ISO, and other styles
34

Zhao, Zhan, Pingkuan Di, Shu-Hua Chen, Jeremy Avise, and Ajith Kaduwela. "Assessment of climate change impact on wintertime meteorology over California using dynamical downscaling method with a bias correction technique." Climate Dynamics 57, no. 1-2 (March 12, 2021): 375–93. http://dx.doi.org/10.1007/s00382-021-05718-8.

Full text
Abstract:
AbstractClimate change can potentially have great impacts on wintertime precipitation and stagnant conditions, which are critical for both water resources and wintertime particulate matter (PM), in California. This study utilizes the Weather Research and Forecasting model to dynamically downscale a bias-corrected coarse-resolution global climate model dataset from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to a grid size of 4 × 4 km2 over California for a present (2003–2012) and a future (2046–2055) decade. Compared to the present climate, an increase in 2-m temperature (up to 2 K) and water vapor mixing ratio (up to 1 g/kg) and a decrease in planetary boundary layer height (up to 80 m) are projected by the 2050s for the entire state of California. The number of stagnant days over the San Joaquin Valley is expected to increase by approximately 6% in the future decade, indicating potential exacerbation of the winter PM issue in this region. The wintertime precipitation is projected to increase by up to 50% in northern California and, conversely, to decrease by up to 40% in southern California during 2046–2055. The solid phase precipitation is projected to decrease over mountain ranges with lower elevations despite an overall increase in total precipitation, while it is projected to increase over the eastern side of the Sierra Nevada with elevation over 2 km.
APA, Harvard, Vancouver, ISO, and other styles
35

Nieminen, Tuomo, Veli-Matti Kerminen, Tuukka Petäjä, Pasi P. Aalto, Mikhail Arshinov, Eija Asmi, Urs Baltensperger, et al. "Global analysis of continental boundary layer new particle formation based on long-term measurements." Atmospheric Chemistry and Physics 18, no. 19 (October 12, 2018): 14737–56. http://dx.doi.org/10.5194/acp-18-14737-2018.

Full text
Abstract:
Abstract. Atmospheric new particle formation (NPF) is an important phenomenon in terms of global particle number concentrations. Here we investigated the frequency of NPF, formation rates of 10 nm particles, and growth rates in the size range of 10–25 nm using at least 1 year of aerosol number size-distribution observations at 36 different locations around the world. The majority of these measurement sites are in the Northern Hemisphere. We found that the NPF frequency has a strong seasonal variability. At the measurement sites analyzed in this study, NPF occurs most frequently in March–May (on about 30 % of the days) and least frequently in December–February (about 10 % of the days). The median formation rate of 10 nm particles varies by about 3 orders of magnitude (0.01–10 cm−3 s−1) and the growth rate by about an order of magnitude (1–10 nm h−1). The smallest values of both formation and growth rates were observed at polar sites and the largest ones in urban environments or anthropogenically influenced rural sites. The correlation between the NPF event frequency and the particle formation and growth rate was at best moderate among the different measurement sites, as well as among the sites belonging to a certain environmental regime. For a better understanding of atmospheric NPF and its regional importance, we would need more observational data from different urban areas in practically all parts of the world, from additional remote and rural locations in North America, Asia, and most of the Southern Hemisphere (especially Australia), from polar areas, and from at least a few locations over the oceans.
APA, Harvard, Vancouver, ISO, and other styles
36

Fox-Hughes, Paul. "Characteristics of Some Days Involving Abrupt Increases in Fire Danger." Journal of Applied Meteorology and Climatology 54, no. 12 (December 2015): 2353–63. http://dx.doi.org/10.1175/jamc-d-15-0062.1.

Full text
Abstract:
AbstractA class of fire-weather events has been identified recently in which the normal, often diurnal, rise and fall of fire danger is interrupted by abruptly worsening conditions, or “spikes,” for which fire managers may be unprepared. Frequent observations from a site in Tasmania, Australia, show that spike events are associated with the passage of negatively tilted upper-tropospheric troughs, leading to descent into the atmospheric boundary layer of dry, high-momentum air—a result that is supported by satellite water vapor imagery. Case studies from other major fire events, both in Australia and in the Northern Hemisphere, show similar characteristics. Statistically significant differences exist between the location and placement of trough and jet-streak features during spike events and normal fire-weather events, with differences in satellite water vapor imagery features also evident. The seasonality of spike events differs significantly from other fire-weather events, with their occurrence peaking from late spring to early summer in Tasmania, in contrast to broad summer primary and midspring secondary peaks for nonspike events.
APA, Harvard, Vancouver, ISO, and other styles
37

Nilsson, E. D., and M. Kulmala. "Aerosol formation over the Boreal forest in Hyytiälä, Finland: monthly frequency and annual cycles – the roles of air mass characteristics and synoptic scale meteorology." Atmospheric Chemistry and Physics Discussions 6, no. 5 (October 18, 2006): 10425–62. http://dx.doi.org/10.5194/acpd-6-10425-2006.

Full text
Abstract:
Abstract. New atmospheric particles with diameters of 3–10 nm and their subsequent growth to cloud condensation nucleus have been observed at various places in the European boundary layer. These events have been observed simultaneously within wide geographical areas (over 1000 km) in connection to specific weather systems, the cold air behind cyclones. Here we show that atmospheric aerosol formation (i.e. nucleation and initial growth) is favoured by the outbreak of cold Arctic air over northern Europe. Aerosol formation was about twice as common in Arctic air as in sub-Polar air, and even more so compared to other air masses. The most important general factor favouring aerosol formation in Arctic air and marine air was weaker competing condensational sink (CS) for the precursor gases (less pre-existing aerosols), while high CS prevented aerosol formation in heated sub-Polar air and mid-latitude air. High SO2 levels favoured nucleation in continental air and high UV-B radiation in sub-tropical air. The critical factor that determined if aerosol formation would start on a day with Arctic air was the UV-B radiation. The same applied to sub-Polar air and continental air, while increased SO2 concentration could trigger formation in heated sub-Polar and mid-latitude air, and reduced CS could cause formation in mid-latitude, marine or mixed/transient air. We speculate that strong emissions of volatile organic compounds from the Boreal forest and strong boundary layer dynamics may have caused aerosol formation in sub-Polar air masses and air in transition from a marine to a continental character. The monthly frequency of Arctic air masses and the probability for photo-chemically driven aerosol formation explains the observed annual cycle in monthly particle formation frequency as well as much of the inter annual variability. The same cyclones that transport cold, clean air from the Arctic to Europe will also transport warm polluted air in the other direction, which help cause the Arctic Haze phenomena. The cyclones have a key role for the atmospheric aerosol life cycle in mid to high latitudes. Due to the observed growth to the size of CCN in one to two days, there is a potential feed back from the effects on the CCN population and cloud albedo even within the same weather system, but also on the climatic time scale.
APA, Harvard, Vancouver, ISO, and other styles
38

Wu, Guoxiong, and Yimin Liu. "Impacts of the Tibetan Plateau on Asian Climate." Meteorological Monographs 56 (May 1, 2016): 7.1–7.29. http://dx.doi.org/10.1175/amsmonographs-d-15-0018.1.

Full text
Abstract:
Abstract Professor Yanai is remembered in our hearts as an esteemed friend. Based on his accomplishments in tropical meteorology and with his flashes of insight he led his group at the University of California, Los Angeles, in the 1980s and 1990s to explore the thermal features of the Tibetan Plateau (TP) and its relation to the Asian monsoon, and he brought forward the TP meteorology established by Ye Duzheng et al. in 1957 to a new stage. In cherishing the memory of Professor Yanai and his great contribution to the TP meteorology, the authors review their recent study on the impacts of the TP and contribute this chapter as an extension of their chapter titled “Effects of the Tibetan Plateau” published by Yanai and Wu in 2006 in the book The Asian Monsoon. The influence of a large-scale orography on climate depends not only on the mechanical and thermal forcing it exerts on the atmosphere, but also on the background atmospheric circulation. In winter the TP possesses two leading heating modes resulting from the relevant dominant atmospheric circulations, in particular the North Atlantic Oscillation and the North Pacific Oscillation. The prevailing effect of the mechanical forcing of the TP in wintertime generates a dipole type of circulation, in which the anticyclonic gyre in the middle and high latitudes contributes to the warm inland area to the west, and the cold seashore area to the east, of northeast Asia, whereas the cyclonic gyre in low latitudes contributes to the formation of a prolonged dry season over central and southern Asia and moist climate over southeastern Asia. Such a dipole circulation also generates a unique persistent rainfall in early spring (PRES) over southern China. In 1980s, Yanai and his colleagues analyzed the in situ observation and found that the constant potential temperature boundary layer over the TP can reach about 300 hPa before the summer monsoon onset. This study supports these findings, and demonstrates that such a boundary layer structure is a consequence of the atmospheric thermal adaptation to the surface sensible heating, which vanishes quickly with increasing height. The overshooting of rising air, which is induced by surface sensible heating, then can form a layer of constant potential temperature with a thickness of several kilometers. The thermal forcing of the TP on the lower tropospheric circulation looks like a sensible heat–driven air pump (SHAP). It is the surface sensible heating on the sloping sides of the plateau that the SHAP can effectively influence the Asian monsoon circulation. In spring the SHAP contributes to the seasonal abrupt change of the Asian circulation and anchors the earliest Asian summer monsoon onset over the eastern Bay of Bengal. In summer, this pumping, together with the thermal forcing over the Iranian Plateau, produces bimodality in the South Asian high activity in the upper troposphere, which is closely related to the climate anomaly patterns over South and East Asia. Because the isentropic surfaces in the middle and lower troposphere intersect with the TP, in summertime the plateau becomes a strong negative vorticity source of the atmosphere and affects the surrounding climate and even the Northern Hemispheric circulation via Rossby wave energy dispersion. Future prospects in related TP studies are also addressed.
APA, Harvard, Vancouver, ISO, and other styles
39

Kondo, Yutaka, Nobuyuki Takegawa, Yuzo Miyazaki, Malcolm Ko, Makoto Koike, Kazuyuki Kita, Shuji Kawakami, et al. "Effects of biomass burning and lightning on atmospheric chemistry over Australia and South-east Asia." International Journal of Wildland Fire 12, no. 4 (2003): 271. http://dx.doi.org/10.1071/wf03014.

Full text
Abstract:
In situ aircraft measurements of trace gases and aerosols were made in the boundary layer (BL) and free troposphere (FT) over Indonesia and Australia during the Biomass Burning and Lightning Experiment (BIBLE)-A and B conducted in August–October 1998 and 1999.Concentrations of ozone (O3) and its precursors [CO, reactive nitrogen (NOx), non-methane hydrocarbons (NMHCs)] were measured in these campaigns to identify the sources of NOx and to estimate the effects of biomass burning and lightning on photochemical production of O3. Over Indonesia, in-situ production of NOx by lightning was found to be a major source of reactive nitrogen in the upper troposphere during BIBLE-A. In some circumstances, increases in reactive nitrogen were often associated with enhancements in CO and NMHCs, suggesting that the sources were biomass burning and fossil fuel combustion, followed by upward transport by cumulus convection. Over Australia the levels of O3, CO, reactive nitrogen, and NMHCs were elevated throughout the troposphere compared to those observed in the tropical Pacific. However, the mechanisms responsible for the enhanced concentrations in the BL and FT are distinctly different. The emissions from biomass burning that occurred in northern Australia were restricted to the BL because of strong subsidence in the period. In the FT over Australia, elevated concentrations of O3 and its precursors result from injections of emissions as the air masses travel over Africa, South America, the Indian Ocean, and Indonesia en route to Australia. In all cases, O3 levels in the biomass burning plumes were enhanced due to photochemical production.
APA, Harvard, Vancouver, ISO, and other styles
40

Hill, Kathryn E., Robert S. Hill, and Jennifer R. Watling. "Do CO2, temperature, rainfall and elevation influence stomatal traits and leaf width in Melaleuca lanceolata across southern Australia?" Australian Journal of Botany 62, no. 8 (2014): 666. http://dx.doi.org/10.1071/bt14300.

Full text
Abstract:
Herbarium specimens and contemporary collections were used to investigate the effects of environment and CO2 concentration on stomatal density, stomatal size, maximum potential water loss through stomata (gwmax) and leaf width of Melaleuca lanceolata Otto in southern Australia. Variation in CO2 had no effect on stomatal size and density, or gwmax of M. lanceolata. In contrast, stomatal density was negatively correlated with annual rainfall and there were significant, positive relationships between both elevation and mean maximum temperature and stomatal density. There was also a positive relationship between gwmax and maximum temperature. Leaf width was negatively correlated with both maximum temperature and elevation. We suggest that the increase in stomatal density and gwmax with increasing maximum temperatures enhances the potential for evaporative cooling of M. lanceolata leaves. It could also allow plants to maximise opportunities for carbon fixation during the sporadic rainfall events that are typical of drier, northern regions. This occurs in conjunction with a narrowing of the leaves in warmer climates and higher elevations, which results in a decrease in the thickness of the boundary layer. This combination of smaller leaves and increased potential for evaporative cooling through increased stomatal density and gwmax would allow the leaf to stay closer to its optimal temperature for photosynthesis.
APA, Harvard, Vancouver, ISO, and other styles
41

Curci, G., L. Ferrero, P. Tuccella, F. Barnaba, F. Angelini, E. Bolzacchini, C. Carbone, et al. "How much is particulate matter near the ground influenced by upper level processes within and above the PBL? A summertime case study in Milan (Italy)." Atmospheric Chemistry and Physics Discussions 14, no. 19 (October 22, 2014): 26403–61. http://dx.doi.org/10.5194/acpd-14-26403-2014.

Full text
Abstract:
Abstract. Chemical and dynamical processes yield to the formation of aerosol layers in the upper planetary boundary layer (PBL) and above it. Through vertical mixing and entrainment into the PBL these layers may contribute to the ground-level particulate matter (PM), but a quantitative assessment of such contribution is still missing. This study investigates this aspect combining chemical and physical aerosol measurements with WRF/Chem model simulations. The observations were collected in the Milan urban area (Northern Italy) during summer of 2007. The period coincided with the passage of a meteorological perturbation that cleansed the lower atmosphere, followed by a high pressure period that favoured pollutant accumulation. Lidar observations reveal the formation of elevated aerosol layers and show evidences of their entrainment into the PBL. We analyze the budget of ground-level PM2.5 (particulate matter with aerodynamic diameter less than 2.5 μm with the help of the online meteorology-chemistry WRF/Chem model, with particular focus on the contribution of upper level processes. We find that an important player in determining the upper PBL aerosol layer is particulate nitrate, which may reach higher values in the upper PBL (up to 30% of the aerosol mass) than the lower. The nitrate formation process is predicted to be largely driven by the relative humidity vertical profile, that may trigger efficient aqueous nitrate formation when exceeding the ammonium nitrate deliquescence point. Secondary PM2.5 produced in the upper half of the PBL may contribute up to 7–8 μg m−3 (or 25%) to ground level concentrations on hourly basis. A large potential role is also found to be played by the residual aerosol layer above the PBL, which may occasionally contribute up to 10–12 μg m−3 (or 40%) to hourly ground level PM2.5 concentrations during the morning. This study highlights the importance of considering the interplay between chemical and dynamical processes occurring within and above the PBL when interpreting ground level aerosol observations.
APA, Harvard, Vancouver, ISO, and other styles
42

Notaro, Michael, Guangshan Chen, Yan Yu, Fuyao Wang, and Ahmed Tawfik. "Regional Climate Modeling of Vegetation Feedbacks on the Asian–Australian Monsoon Systems." Journal of Climate 30, no. 5 (February 9, 2017): 1553–82. http://dx.doi.org/10.1175/jcli-d-16-0669.1.

Full text
Abstract:
Abstract This study explores the hypothesis that subtropical and tropical monsoon regions exhibit unique responses to vegetation feedbacks. Using the Community Climate System Model (CCSM), M. Notaro et al. concluded that reduced vegetation cover led to an earlier subtropical Chinese monsoon and a delayed, weaker tropical Australian monsoon, yet significant climate and leaf area index (LAI) biases obfuscated the hypothesis’s reliability. To address these concerns, the Regional Climate Model, version 4 (RegCM4), likewise coupled to the Community Land Model but with “observed” LAI boundary conditions, is applied across China and Australia. The model matches the observed dominance of crops, grass, and evergreen trees in southern China and grass and shrubs in northern Australia. The optimal model configuration is determined and applied in control runs for 1960–2013. Monsoon region LAI is modified in a RegCM4 ensemble, aimed at contrasting vegetation feedbacks between tropical and subtropical regions. Greater LAI supports reductions in albedo, temperature, wind speed, boundary layer height, ascending motion, and midlevel clouds and increases in diurnal temperature range (DTR), wind stress, evapotranspiration (ET), specific humidity, and low clouds. In response to greater LAI, rainfall is enhanced during Australia’s pre-to-midmonsoon season but not for China. Modified LAI leads to dramatic changes in the temporal distribution and intensity of Australian rain events. Heterogeneous responses to biophysical feedbacks include amplified impacts (e.g., increased ET and DTR) across China’s croplands and Australia’s shrublands. Inconsistencies between China’s monsoonal responses in the present RegCM4 study and prior CCSM study of M. Notaro et al. are attributed to CCSM’s excessive forest cover and LAI, exaggerated roughness mechanism, and deficient ET response.
APA, Harvard, Vancouver, ISO, and other styles
43

Liu, Shuang, Xingchuan Yang, Fuzhou Duan, and Wenji Zhao. "Changes in Air Quality and Drivers for the Heavy PM2.5 Pollution on the North China Plain Pre- to Post-COVID-19." International Journal of Environmental Research and Public Health 19, no. 19 (October 8, 2022): 12904. http://dx.doi.org/10.3390/ijerph191912904.

Full text
Abstract:
Under the clean air action plans and the lockdown to constrain the coronavirus disease 2019 (COVID-19), the air quality improved significantly. However, fine particulate matter (PM2.5) pollution still occurred on the North China Plain (NCP). This study analyzed the variations of PM2.5, nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), and ozone (O3) during 2017–2021 on the northern (Beijing) and southern (Henan) edges of the NCP. Furthermore, the drivers for the PM2.5 pollution episodes pre- to post-COVID-19 in Beijing and Henan were explored by combining air pollutant and meteorological datasets and the weighted potential source contribution function. Results showed air quality generally improved during 2017–2021, except for a slight rebound (3.6%) in NO2 concentration in 2021 in Beijing. Notably, the O3 concentration began to decrease significantly in 2020. The COVID-19 lockdown resulted in a sharp drop in the concentrations of PM2.5, NO2, SO2, and CO in February of 2020, but PM2.5 and CO in Beijing exhibited a delayed decrease in March. For Beijing, the PM2.5 pollution was driven by the initial regional transport and later secondary formation under adverse meteorology. For Henan, the PM2.5 pollution was driven by the primary emissions under the persistent high humidity and stable atmospheric conditions, superimposing small-scale regional transport. Low wind speed, shallow boundary layer, and high humidity are major drivers of heavy PM2.5 pollution. These results provide an important reference for setting mitigation measures not only for the NCP but for the entire world.
APA, Harvard, Vancouver, ISO, and other styles
44

Muñoz, Ricardo C., Rosa A. Zamora, and José A. Rutllant. "The Coastal Boundary Layer at the Eastern Margin of the Southeast Pacific (23.4°S, 70.4°W): Cloudiness-Conditioned Climatology." Journal of Climate 24, no. 4 (February 15, 2011): 1013–33. http://dx.doi.org/10.1175/2010jcli3714.1.

Full text
Abstract:
Abstract A basic climatological description of 29 years of surface and upper-air observations at a coastal site (23.4°S, 70.4°W) in northern Chile is presented. The site is considered to be generally representative of the eastern coastal margin of the southeast Pacific stratocumulus region, which plays an important role in the global radiative balance. The analysis focuses on two of the main elements affecting coastal weather in this region: low-level cloudiness and the state of the subsidence temperature inversion. The objectives of the paper are 1) to present the basic climatological features of these elements and 2) to document the differences in the structure of this coastal boundary layer (BL) associated with the presence or absence of low-level clouds. Low-level clouds (defined here as ceilings less than 1500 m AGL) occur at the site mostly in the night, especially during austral winter and spring. Elevated subsidence inversions show a very large prevalence in the 1200 UTC [0800 local time (LT)] radiosonde profiles analyzed here, with base heights typically between 800 and 1100 m. The seasonal cycle of the subsidence inversion shows an ∼300-m amplitude at inversion base and top and a substantial BL cooling in austral winter. Generally weak and shallow surface-based inversions at 1200 UTC (0800 LT) are present in about 15% of the soundings, with more frequent occurrence in austral fall. The second objective was accomplished by compositing surface meteorology and upper-air profiles conditioned by nighttime low-level cloudiness. More frequent surface inversions in temperature and dewpoint are found for mostly clear nights, as compared to mostly cloudy nighttime conditions. The clear-night BL shows a more stable temperature profile and larger vertical gradients in mixing ratio when compared to the approximately well-mixed cloud-topped BL. Above the BL, the clear composites show a weaker subsidence inversion and more intense northerly winds in the 1000–3000-m layer compared to the cloudy cases. Insights into the physical mechanisms underlying the findings above were sought by comparing the cloudy composites to results of a stationary mixed-layer model of a stratus-capped marine BL, by computing derived parameters pertaining to the temperature budget and the turbulent state of the lower troposphere and by using reanalysis fields to compute regional circulation anomalies associated to coastal low-level cloudiness. The results show physically significant differences in subsidence, horizontal temperature advection, and winds in the lower troposphere associated with the mean clear and cloudy coastal BL. Coastal clear nights appear associated with a cold anomaly in the lower troposphere over the southeast Pacific basin offshore of Peru and Chile, which by thermal wind arguments induce anomalies of southerly winds along the Chilean coast near the surface and northerly winds above the BL, while at the same time reducing the coastal subsidence in the lower troposphere. These results point to the importance of properly representing the sea–land temperature contrast and the topographic impact on the lower-tropospheric flow in order to adequately model the coastal BL mean state over this region.
APA, Harvard, Vancouver, ISO, and other styles
45

Roemmich, Dean, John Gilson, Josh Willis, Philip Sutton, and Ken Ridgway. "Closing the Time-Varying Mass and Heat Budgets for Large Ocean Areas: The Tasman Box." Journal of Climate 18, no. 13 (July 1, 2005): 2330–43. http://dx.doi.org/10.1175/jcli3409.1.

Full text
Abstract:
Abstract The role of oceanic advection in seasonal-to-interannual balances of mass and heat is studied using a 12-yr time series of quarterly eddy-resolving expendable bathythermograph (XBT) surveys around the perimeter of a region the authors call the Tasman Box in the southwestern Pacific. The region contains the South Pacific’s subtropical western boundary current system and associated strong mesoscale variability. Mean geostrophic transport in the warm upper ocean (temperature greater than 12°C) is about 3.8 Sv (1 Sv ≡ 106 m3 s−1) southward into the box across the Brisbane, Australia–Fiji northern edge. Net outflows are 3.3 Sv eastward across the Auckland, New Zealand–Fiji edge, and 2.7 Sv southward across Sydney, Australia–Wellington, New Zealand. Mean Ekman convergence of 2.2 Sv closes the mass budget. Net water mass conversions in the upper ocean consist of inflow of waters averaging about 26°C and 35.4 psu balanced by outflow at about 18°C and 35.7 psu, and reflect the net evaporation and heat loss in the formation of South Pacific Subtropical Mode Water. The mean heat balance shows good agreement between ocean heat flux convergence (42.3 W m−2), heat loss to the atmosphere from the NCEP–NCAR reanalysis (39.2 W m−2), and heat storage calculated from data in the box interior (1.3 W m−2). On interannual time scales, volume transport through the box ranges from about 1 to 9 Sv, with heat flux convergence ranging from about 20 to 60 W m−2. An interannual balance in the heat budget of the warm layer is achieved to within about 10 W m−2 (or 6 W m−2 for the upper 100 m alone). Maxima in the advective heat flux convergence occurred in 1993, 1997, and 1999–2000, and corresponded to maxima in air–sea heat loss. The evolution of surface-layer temperature in the region is the residual of nearly equal and opposing effects of ocean heat flux convergence and air–sea exchange. Hence, ocean circulation is a key element in the interannual heat budget of the air–sea climate system in the western boundary current region.
APA, Harvard, Vancouver, ISO, and other styles
46

Curci, G., L. Ferrero, P. Tuccella, F. Barnaba, F. Angelini, E. Bolzacchini, C. Carbone, et al. "How much is particulate matter near the ground influenced by upper-level processes within and above the PBL? A summertime case study in Milan (Italy) evidences the distinctive role of nitrate." Atmospheric Chemistry and Physics 15, no. 5 (March 9, 2015): 2629–49. http://dx.doi.org/10.5194/acp-15-2629-2015.

Full text
Abstract:
Abstract. Chemical and dynamical processes lead to the formation of aerosol layers in the upper planetary boundary layer (PBL) and above it. Through vertical mixing and entrainment into the PBL these layers may contribute to the ground-level particulate matter (PM); however, to date a quantitative assessment of such a contribution has not been carried out. This study investigates this aspect by combining chemical and physical aerosol measurements with WRF/Chem (Weather Research and Forecasting with Chemistry) model simulations. The observations were collected in the Milan urban area (northern Italy) during the summer of 2007. The period coincided with the passage of a meteorological perturbation that cleansed the lower atmosphere, followed by a high-pressure period favouring pollutant accumulation. Lidar observations revealed the formation of elevated aerosol layers and evidence of their entrainment into the PBL. We analysed the budget of ground-level PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 μm) with the help of the online meteorology–chemistry WRF/Chem model, focusing in particular on the contribution of upper-level processes. Our findings show that an important player in determining the upper-PBL aerosol layer is particulate nitrate, which may reach higher values in the upper PBL (up to 30% of the aerosol mass) than in the lower PBL. The nitrate formation process is predicted to be largely driven by the relative-humidity vertical profile, which may trigger efficient aqueous nitrate formation when exceeding the ammonium nitrate deliquescence point. Secondary PM2.5 produced in the upper half of the PBL may contribute up to 7–8 μg m−3 (or 25%) to ground-level concentrations on an hourly basis. The residual aerosol layer above the PBL is also found to potentially play a large role, which may occasionally contribute up to 10–12 μg m−3 (or 40%) to hourly ground-level PM2.5 concentrations during the morning hours. Although the results presented here refer to one relatively short period in one location, this study highlights the importance of considering the interplay between chemical and dynamical processes occurring within and above the PBL when interpreting ground-level aerosol observations.
APA, Harvard, Vancouver, ISO, and other styles
47

Ma, P. L., P. J. Rasch, J. D. Fast, R. C. Easter, W. I. Gustafson Jr., X. Liu, S. J. Ghan, and B. Singh. "Assessing the CAM5 physics suite in the WRF-Chem model: implementation, resolution sensitivity, and a first evaluation for a regional case study." Geoscientific Model Development 7, no. 3 (May 6, 2014): 755–78. http://dx.doi.org/10.5194/gmd-7-755-2014.

Full text
Abstract:
Abstract. A suite of physical parameterizations (deep and shallow convection, turbulent boundary layer, aerosols, cloud microphysics, and cloud fraction) from the global climate model Community Atmosphere Model version 5.1 (CAM5) has been implemented in the regional model Weather Research and Forecasting with chemistry (WRF-Chem). A downscaling modeling framework with consistent physics has also been established in which both global and regional simulations use the same emissions and surface fluxes. The WRF-Chem model with the CAM5 physics suite is run at multiple horizontal resolutions over a domain encompassing the northern Pacific Ocean, northeast Asia, and northwest North America for April 2008 when the ARCTAS, ARCPAC, and ISDAC field campaigns took place. These simulations are evaluated against field campaign measurements, satellite retrievals, and ground-based observations, and are compared with simulations that use a set of common WRF-Chem parameterizations. This manuscript describes the implementation of the CAM5 physics suite in WRF-Chem, provides an overview of the modeling framework and an initial evaluation of the simulated meteorology, clouds, and aerosols, and quantifies the resolution dependence of the cloud and aerosol parameterizations. We demonstrate that some of the CAM5 biases, such as high estimates of cloud susceptibility to aerosols and the underestimation of aerosol concentrations in the Arctic, can be reduced simply by increasing horizontal resolution. We also show that the CAM5 physics suite performs similarly to a set of parameterizations commonly used in WRF-Chem, but produces higher ice and liquid water condensate amounts and near-surface black carbon concentration. Further evaluations that use other mesoscale model parameterizations and perform other case studies are needed to infer whether one parameterization consistently produces results more consistent with observations.
APA, Harvard, Vancouver, ISO, and other styles
48

Ma, P. L., P. J. Rasch, J. D. Fast, R. C. Easter, W. I. Gustafson Jr., X. Liu, S. J. Ghan, and B. Singh. "Assessing the CAM5 physics suite in the WRF-Chem model: implementation, evaluation, and resolution sensitivity." Geoscientific Model Development Discussions 6, no. 4 (November 29, 2013): 6157–218. http://dx.doi.org/10.5194/gmdd-6-6157-2013.

Full text
Abstract:
Abstract. A suite of physical parameterizations (deep and shallow convection, turbulent boundary layer, aerosols, cloud microphysics, and cloud fraction) from the global climate model Community Atmosphere Model version 5.1 (CAM5) has been implemented in the regional model Weather Research and Forecasting with Chemistry (WRF-Chem). A downscaling modeling framework with consistent physics has also been established in which both global and regional simulations use the same emissions and surface fluxes. The WRF-Chem model with the CAM5 physics suite is run at multiple horizontal resolutions over a domain encompassing the northern Pacific Ocean, northeast Asia, and northwest North America for April 2008 when the ARCTAS, ARCPAC, and ISDAC field campaigns took place. These simulations are evaluated against field campaign measurements, satellite retrievals, and ground-based observations, and are compared with simulations that use a set of common WRF-Chem parameterizations. This manuscript describes the implementation of the CAM5 physics suite in WRF-Chem, provides an overview of the modeling framework and an initial evaluation of the simulated meteorology, clouds, and aerosols, and quantifies the resolution dependence of the cloud and aerosol parameterizations. We demonstrate that some of the CAM5 biases, such as high estimates of cloud susceptibility to aerosols and the underestimation of aerosol concentrations in the Arctic, can be reduced simply by increasing horizontal resolution. We also show that the CAM5 physics suite performs similarly to a set of parameterizations commonly used in WRF-Chem, but produces higher ice and liquid water condensate amounts and near-surface black carbon concentration. Further evaluations that use other mesoscale model parameterizations and perform other case studies are needed to infer whether one parameterization consistently produces results more consistent with observations.
APA, Harvard, Vancouver, ISO, and other styles
49

Vellalassery, Ashique, Dhanyalekshmi Pillai, Julia Marshall, Christoph Gerbig, Michael Buchwitz, Oliver Schneising, and Aparnna Ravi. "Using TROPOspheric Monitoring Instrument (TROPOMI) measurements and Weather Research and Forecasting (WRF) CO modelling to understand the contribution of meteorology and emissions to an extreme air pollution event in India." Atmospheric Chemistry and Physics 21, no. 7 (April 8, 2021): 5393–414. http://dx.doi.org/10.5194/acp-21-5393-2021.

Full text
Abstract:
Abstract. Several ambient air quality records corroborate the severe and persistent degradation of air quality over northern India during the winter months, with evidence of a continued, increasing trend of pollution across the Indo-Gangetic Plain (IGP) over the past decade. A combination of atmospheric dynamics and uncertain emissions, including the post-monsoon agricultural stubble burning, make it challenging to resolve the role of each individual factor. Here we demonstrate the potential use of an atmospheric transport model, the Weather Research and Forecasting model coupled with chemistry (WRF–Chem) to identify and quantify the role of transport mechanisms and emissions on the occurrence of the pollution events. The investigation is based on the use of carbon monoxide (CO) observations from the TROPOspheric Monitoring Instrument (TROPOMI) on board the Sentinel-5 Precursor satellite and the surface measurement network, as well as the WRF–Chem simulations, to investigate the factors contributing to CO enhancement over India during November 2018. We show that the simulated column-averaged dry air mole fraction (XCO) is largely consistent with TROPOMI observations, with a spatial correlation coefficient of 0.87. The surface-level CO concentrations show larger sensitivities to boundary layer dynamics, wind speed, and diverging source regions, leading to a complex concentration pattern and reducing the observation-model agreement with a correlation coefficient ranging from 0.41 to 0.60 for measurement locations across the IGP. We find that daily satellite observations can provide a first-order inference of the CO transport pathways during the enhanced burning period, and this transport pattern is reproduced well in the model. By using the observations and employing the model at a comparable resolution, we confirm the significant role of atmospheric dynamics and residential, industrial, and commercial emissions in the production of the exorbitant level of air pollutants in northern India. We find that biomass burning plays only a minimal role in both column and surface enhancements of CO, except for the state of Punjab during the high pollution episodes. While the model reproduces observations reasonably well, a better understanding of the factors controlling the model uncertainties is essential for relating the observed concentrations to the underlying emissions. Overall, our study emphasizes the importance of undertaking rigorous policy measures, mainly focusing on reducing residential, commercial, and industrial emissions in addition to actions already underway in the agricultural sectors.
APA, Harvard, Vancouver, ISO, and other styles
50

Liu, Yiming, and Tao Wang. "Worsening urban ozone pollution in China from 2013 to 2017 – Part 1: The complex and varying roles of meteorology." Atmospheric Chemistry and Physics 20, no. 11 (June 3, 2020): 6305–21. http://dx.doi.org/10.5194/acp-20-6305-2020.

Full text
Abstract:
Abstract. China has suffered from increasing levels of ozone pollution in urban areas despite the implementation of various stringent emission reduction measures since 2013. In this study, we conducted numerical experiments with an up-to-date regional chemical transport model to assess the contribution of the changes in meteorological conditions and anthropogenic emissions to the summer ozone level from 2013 to 2017 in various regions of China. The model can faithfully reproduce the observed meteorological parameters and air pollutant concentrations and capture the increasing trend in the surface maximum daily 8 h average (MDA8) ozone (O3) from 2013 to 2017. The emission-control measures implemented by the government induced a decrease in MDA8 O3 levels in rural areas but an increase in urban areas. The meteorological influence on the ozone trend varied by region and by year and could be comparable to or even more significant than the impact of changes in anthropogenic emissions. Meteorological conditions can modulate the ozone concentration via direct (e.g., increasing reaction rates at higher temperatures) and indirect (e.g., increasing biogenic emissions at higher temperatures) effects. As an essential source of volatile organic compounds that contributes to ozone formation, the variation in biogenic emissions during summer varied across regions and was mainly affected by temperature. China's midlatitude areas (25 to 40∘ N) experienced a significant decrease in MDA8 O3 due to a decline in biogenic emissions, especially for the Yangtze River Delta and Sichuan Basin regions in 2014 and 2015. In contrast, in northern (north of 40∘ N) and southern (south of 25∘ N) China, higher temperatures after 2013 led to an increase in MDA8 O3 via an increase in biogenic emissions. We also assessed the individual effects of changes in temperature, specific humidity, wind field, planetary boundary layer height, clouds, and precipitation on ozone levels from 2013 to 2017. The results show that the wind field change made a significant contribution to the increase in surface ozone over many parts of China. The long-range transport of ozone and its precursors from outside the modeling domain also contributed to the increase in MDA8 O3 in China, especially on the Qinghai–Tibetan Plateau (an increase of 1 to 4 ppbv). Our study represents the most comprehensive and up-to-date analysis of the impact of changes in meteorology on ozone across China and highlights the importance of considering meteorological variations when assessing the effectiveness of emission control on changes in the ozone levels in recent years.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography