Academic literature on the topic 'Botrytis cinerea'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Botrytis cinerea.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Botrytis cinerea"
Chen, Tong, Zhanquan Zhang, Yong Chen, Boqiang Li, and Shiping Tian. "Botrytis cinerea." Current Biology 33, no. 11 (June 2023): R460—R462. http://dx.doi.org/10.1016/j.cub.2023.01.058.
Full textChetelat, R. T., and L. Stamova. "TOLERANCE TO BOTRYTIS CINEREA." Acta Horticulturae, no. 487 (March 1999): 313–16. http://dx.doi.org/10.17660/actahortic.1999.487.48.
Full textAdjebli, Ahmed, Abdelaziz Messis, Riad Ayeche, and Kamel Aissat. "Phenotypic variability of Botrytis cinerea and Botrytis pseudocinerea isolates." Research Journal of Biotechnology 17, no. 3 (February 25, 2022): 20–26. http://dx.doi.org/10.25303/1703rjbt2026.
Full textVinogradova, Svetlana, Elena Porotikova, Emiliya Navrotskaya, Zsuzsanna Nagyne Galbacs, Sébastien Massart, and Eva Varallyay. "The First Virome of a Russian Vineyard." Plants 12, no. 18 (September 18, 2023): 3292. http://dx.doi.org/10.3390/plants12183292.
Full textGuetsky, Ruth, D. Shtienberg, Y. Elad, E. Fischer, and A. Dinoor. "Improving Biological Control by Combining Biocontrol Agents Each with Several Mechanisms of Disease Suppression." Phytopathology® 92, no. 9 (September 2002): 976–85. http://dx.doi.org/10.1094/phyto.2002.92.9.976.
Full textQiu, Lu, Hai Han Yang, Fang Lei, Shu Guo Fan, Mei Hua Xie, and Zhen Ji Wang. "Studies on the Bacteriostasis of Nano-Silver on the Pathogenic Fungus Botrytis cinerea from Illed Plants." Applied Mechanics and Materials 651-653 (September 2014): 352–61. http://dx.doi.org/10.4028/www.scientific.net/amm.651-653.352.
Full textAhmed, AU, S. Zaman, MA Mazid, MM Rahman, MMR Sarkar, L. Arbia, MM Ud-deen, and G. Kabir. "Studies of Botrytis cinerea causing botrytis gray mold disease in chickpea (Cicer arietinum L.)." Journal of Bio-Science 22 (October 21, 2016): 69–76. http://dx.doi.org/10.3329/jbs.v22i0.30011.
Full textGuerrero Prieto, Víctor Manuel, Juan Luis Jacobo Cuéllar, Rafael Ángel Parra Quezada, Marcos Iván Linares Marrufo, Damaris Leopoldina Ojeda Barrios, Ofelia Adriana Hernández Rodríguez, Loreto Robles Hernández, David Ignacio Berlanga Reyes, and Iván Javier Cabanillas Mata. "Botrytis cinerea Pers. in postharvest apple fruit, control with Candida oleophila Montrocher strains and/or synthetic fungicides." Nova Scientia 11, no. 22 (May 29, 2019): 69–84. http://dx.doi.org/10.21640/ns.v11i22.1645.
Full textKomalaningrat, Devi ayu, Efi Toding Tondok, and Widodo Widodo. "Identitas Spesies Botrytis pada Tanaman Hortikultura Di Jawa Barat, Indonesia." Jurnal Fitopatologi Indonesia 14, no. 6 (February 27, 2019): 205. http://dx.doi.org/10.14692/jfi.14.6.205.
Full textRipardo-Filho, Haroldo da Silva, Víctor Coca Ruíz, Ivonne Suárez, Javier Moraga, Josefina Aleu, and Isidro G. Collado. "From Genes to Molecules, Secondary Metabolism in Botrytis cinerea: New Insights into Anamorphic and Teleomorphic Stages." Plants 12, no. 3 (January 26, 2023): 553. http://dx.doi.org/10.3390/plants12030553.
Full textDissertations / Theses on the topic "Botrytis cinerea"
Shafia, Aminath. "Latent infection of Botrytis cinerea." Thesis, University of Reading, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.499372.
Full textLewis, Megan. "The flavohaemoglobins of Botrytis cinerea." Thesis, University of Sheffield, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.521869.
Full textRajaguru, Bulathsinhalage Anuja Priyangani. "Molecular ecology of Botrytis cinerea." Thesis, University of Reading, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.494963.
Full textEmmanuel, C. J. "'Symptomless' infection by Botrytis cinerea." Thesis, University of Reading, 2016. http://centaur.reading.ac.uk/63176/.
Full textBiosa, Carlotta. "Botrytis cinerea e la sua forma nobile." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Find full textSwadling, Iain. "Biological control of Botrytis cinerea in strawberries." Thesis, University of Kent, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240120.
Full textDeligeorgopoulou, Athina. "Sesquiterpenoids and their biotransformation by Botrytis cinerea." Thesis, University of Sussex, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.392802.
Full textBratt, Richard P. "Spoilage of senescing flax by Botrytis cinerea Pers." Thesis, Queen's University Belfast, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317056.
Full textFernandez, Olivier. "Métabolisme du tréhalose chez la vigne (Vitis vinifera L.) en conditions stressantes : effets du froid et de l’infection par Botrytis cinerea." Thesis, Reims, 2011. http://www.theses.fr/2011REIMS016/document.
Full textThe purpose of the present thesis was to investigate grapevine trehalose metabolism upon exposure to 2 stress conditions: chilling and infection by the grey mould fungus Botrytis cinerea.Initially, we had to optimize a fluorimetric based assay to assess trehalose concentration in grapevine. Latter, this method was used to characterize trehalose synthesis in this plant when exposed to chilling or infected by B. cinerea.Upon chilling exposure, trehalose metabolism is differentially activated in grapevine organs. VvTPPA, a gene involved in trehalose synthesis, and VvTRE, encoding the trehalose degrading enzyme (trehalase), were respectively induced and repressed and their expression was correlated with an increase of trehalose concentration in leaves. No trehalose synthesis was observed in stems and the sugar was undetectable in roots. T6P (its precursor)concentration increase was faster in leaves (3 hours after chilling exposure). Our results are in agreement with current status of T6P acting as a signal molecule, correlated with sucrose concentration, and exclude any significant participation of trehalose as a global osmoprotectant under chilling stress in grapevine. Additionally, we have used grapevine plants bacterized by Burkholderia phytofirmans, an endophytic bacterium that confers them chilling tolerance. We have detected T6P and trehalose synthesis in these plants and we believe it might contribute to the induced chilling tolerance.During grapevine leaf infection by B. cinerea, we observed: (i) a strong increase oftrehalose concentration, (ii) the induction of VvTRE and (iii) an increase of trehalase activity.However, no increase in T6P concentration was detected during infection. Our results suggest that trehalose metabolism is not activated upon B. cinerea infection and that trehalose detected is mainly of fungal origin. This is compatible with current hypothesis considering trehalase encoding gene induction and increase in trehalase activity as a plant response to avoid interference with T6P signaling pathway during pathogen infection.Overall, trehalose metabolism is involved in environmental stress responses in grapevine and might be consider for further research especially with focus on biotic stress
Barnes, Sally Elissa. "The epidemiology of Botrytis cinerea on greenhouse grown ornamentals." Thesis, University of Reading, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.394420.
Full textBooks on the topic "Botrytis cinerea"
Variabilität und Pathogenität bei Botrytis cinerea. Berlin: J. Cramer, 1999.
Find full textJohnson, Dennis A. Botrytis bunch rot of grape. Pullman, Wash: Cooperative Extension, College of Agriculture & Home Economics, Washington State University, 1986.
Find full textJohnson, Dennis A. Botrytis neck rot of onion. Pullman, Wash: Cooperative Extension, College of Agriculture & Home Economics, Washington State University, 1986.
Find full textAljourmi, Ismail. Characterization and protein fingerprinting of Botrytis cinerea isolates. St. Catharines, Ont: Brock University, Dept. of Biological Sciences, 1999.
Find full textJames, Robert L. Resistance of Botrytis cinerea to vinclozolin, iprodione and dicloran. Missoula, Mont: USDA Forest Service, Northern Region, Cooperative Forestry and Pest Management, 1985.
Find full textInternational Botrytis Symposium (10th 1992 Crete, Greece). Recent advances in Botrytis research: Proceedings of the 10th International Botrytis Symposium, Heraklion, Crete, Greece, 5-10 April 1992. Edited by Verhoeff K, Malathrakis N. E, and Williamson B. Wageningen: Pudoc Scientific Publishers, 1992.
Find full textPeterson, Michael James. Grey mould control by seedling canopy humidity reduction through under-bench ventiliation and styroblock aeration. Victoria, B.C: Forestry Canada, 1989.
Find full textPeterson, Michael James. Grey mould control on container-grown Douglas-fir seedlings: Timing of fungicide application related to greenhouse environment. Victoria, B.C: Forestry Canada, 1988.
Find full textGligor, Bojkov. Gray Mold (Botrytis Cinerea) at Vines. Scientific Research Publishing, 2022.
Find full textGligor, Bojkov. Gray Mold (Botrytis Cinerea) at Vines. Scientific Research Publishing, 2022.
Find full textBook chapters on the topic "Botrytis cinerea"
De Miccolis Angelini, Rita Milvia, Stefania Pollastro, and Franco Faretra. "Genetics of Botrytis cinerea." In Botrytis – the Fungus, the Pathogen and its Management in Agricultural Systems, 35–53. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23371-0_3.
Full textClaus, Harald. "Laccases of Botrytis cinerea." In Biology of Microorganisms on Grapes, in Must and in Wine, 339–56. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60021-5_14.
Full textTudzynski, Bettina, and Christian Schulze Gronover. "Signalling in Botrytis cinerea." In Botrytis: Biology, Pathology and Control, 85–97. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-2626-3_6.
Full textMarois, James J. "Biological Control of Botrytis Cinerea." In Biological Control of Plant Diseases, 109–11. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4757-9468-7_15.
Full textVykoupil, Libor. "Botrys neboli esej o záludnostech historikovy práce (rozprava o metodě)." In Filosofie jako životní cesta, 182–91. Brno: Masaryk University Press, 2019. http://dx.doi.org/10.5817/cz.muni.p210-9458-2019-14.
Full textDik, Aleid J., and Jos P. Wubben. "Epidemiology of Botrytis cinerea Diseases in Greenhouses." In Botrytis: Biology, Pathology and Control, 319–33. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-2626-3_17.
Full textVan Der Cruyssen, G., and O. Kamoen. "Regulation of Polygalacturonases of Botrytis Cinerea." In Developments in Plant Pathology, 80. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1737-1_16.
Full textSchumacher, Julia, and Paul Tudzynski. "Morphogenesis and Infection in Botrytis cinerea." In Topics in Current Genetics, 225–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22916-9_11.
Full textElmer, Philip A. G., and Themis J. Michailides. "Epidemiology of Botrytis cinerea in Orchard and Vine Crops." In Botrytis: Biology, Pathology and Control, 243–72. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-2626-3_14.
Full textLyon, Gary D., Bernard A. Goodman, and Brian Williamson. "Botrytis cinerea Perturbs Redox Processes as an Attack Strategy in Plants." In Botrytis: Biology, Pathology and Control, 119–41. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-2626-3_8.
Full textConference papers on the topic "Botrytis cinerea"
Saleh, Iman, and Mohammed Abu-Dieyeh. "Novel Prosopis Juliflora Leaf Ethanolic extract as natural Antifungal agent against Botrytis Cinerea: Application on Strawberries’ shelf-life extension." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2021. http://dx.doi.org/10.29117/quarfe.2021.0044.
Full textRodas, Alejandro, Julio César Chavarro Porras, and Gloria Edith Guerrero Álvarez. "Modelo de recomendación para alerta temprana del hongo Botritys Cinerea en el cultivo de Mora de Castilla sin espinas (Rubus Glaucus Benth) en el departamento de Risaralda." In Nuevas realidades para la educación en ingeniería: currículo, tecnología, medio ambiente y desarrollo. Asociación Colombiana de Facultades de Ingeniería - ACOFI, 2022. http://dx.doi.org/10.26507/paper.2627.
Full textNijhawan, Rahul, Rahul Kumar Singh, Rajendra Singh Bisht, Neha Mendirtta, Pritish Dhir, and Vaishnavi Singh. "Detection of Botrytis Cinerea in Grapes using Machine Learning Technique." In 2023 International Conference on Evolutionary Algorithms and Soft Computing Techniques (EASCT). IEEE, 2023. http://dx.doi.org/10.1109/easct59475.2023.10393855.
Full textLiu, Yutong, Justin Kuo, Kerik Cox, Justine Vanden Heuvel, Kirstin Petersen, and Amit Lal. "Imaging and Detection of Botrytis Cinerea with Gigahertz Ultrasonic Imager." In 2021 IEEE International Ultrasonics Symposium (IUS). IEEE, 2021. http://dx.doi.org/10.1109/ius52206.2021.9593815.
Full textJia, Li-yuan, and Xin-she Liu. "Effect of Six Fungicides against Botrytis Cinerea on Protected Cultivation Tomato." In 2011 Second International Conference on Digital Manufacturing and Automation (ICDMA). IEEE, 2011. http://dx.doi.org/10.1109/icdma.2011.124.
Full textLeandro Rodrigues, Rita Alaide, Enio Nazaré de Oliveira Junior, and Thamara Carvalho Coutinho. "CONTROLE DO CRESCIMENTO DO FUNGO BOTRYTIS CINEREA EM MORANGOS UTILIZANDO QUITOSANA." In Simpósio Nacional de Bioprocessos e Simpósio de Hidrólise Enzimática de Biomassa. Campinas - SP, Brazil: Galoá, 2015. http://dx.doi.org/10.17648/sinaferm-2015-33436.
Full textCardillo, Alejandra B., Stella M. Romero, Maria C. Martinez-Ceron, Silvia A. Camperi, and Silvana L. Giudicessi. "New Antimicrobial Peptides as Potential Candidates in the Control Growth of Botrytis cinerea." In 36th European Peptide Symposium. The European Peptide Society, 2022. http://dx.doi.org/10.17952/36eps.2022.047.
Full textSai Cheng and Xingfeng Shao. "In vivo antifungal activities of the tea tree oil vapor against Botrytis cinerea." In 2011 International Conference on New Technology of Agricultural Engineering (ICAE). IEEE, 2011. http://dx.doi.org/10.1109/icae.2011.5943945.
Full textNobuhiro Aoyagi, Luciano, and Suely Mayumi Obara Doi. "Avaliação da Atividade Antagonista de Trichoderma harzianum sobre Fusarium oxysporum e Botrytis cinerea." In Simpósio de Bioquímica e Biotecnologia. Londrina - PR, Brazil: Galoa, 2017. http://dx.doi.org/10.17648/simbbtec-2017-80820.
Full textCardillo, Alejandra B., Stella M. Romero, María C. Martínez-Ceron, Silvia A. Camperi, and Silvana L. Giudicessi. "New Antimicrobial Peptides as Potential Candidates in the Control Growth of Botrytis cinerea." In 36th European Peptide Symposium. The European Peptide Society, 2022. http://dx.doi.org/10.17952/36eps/36eps.2022.047.
Full textReports on the topic "Botrytis cinerea"
Sharon, Amir, and Tesfaye Mengiste. Molecular dissection of host and pathogen factors in Botrytis cinerea pathogenesis for improved genetic resistance. United States Department of Agriculture, January 2016. http://dx.doi.org/10.32747/2016.7604272.bard.
Full textSharon, Amir, and Maor Bar-Peled. Identification of new glycan metabolic pathways in the fungal pathogen Botrytis cinerea and their role in fungus-plant interactions. United States Department of Agriculture, 2012. http://dx.doi.org/10.32747/2012.7597916.bard.
Full textLichter, Amnon, Joseph L. Smilanick, Dennis A. Margosan, and Susan Lurie. Ethanol for postharvest decay control of table grapes: application and mode of action. United States Department of Agriculture, July 2005. http://dx.doi.org/10.32747/2005.7587217.bard.
Full textReisch, Bruce, Avichai Perl, Julie Kikkert, Ruth Ben-Arie, and Rachel Gollop. Use of Anti-Fungal Gene Synergisms for Improved Foliar and Fruit Disease Tolerance in Transgenic Grapes. United States Department of Agriculture, August 2002. http://dx.doi.org/10.32747/2002.7575292.bard.
Full textLichter, Amnon, Gopi K. Podila, and Maria R. Davis. Identification of Genetic Determinants that Facilitate Development of B. cinerea at Low Temperature and its Postharvest Pathogenicity. United States Department of Agriculture, March 2011. http://dx.doi.org/10.32747/2011.7592641.bard.
Full textChalutz, Edo, Michael Wisniewski, Samir Droby, Yael Eilam, and Ilan Chet. Mode of Action of Yeast Biocontrol Agents of Postharvest Diseases of Fruits. United States Department of Agriculture, June 1996. http://dx.doi.org/10.32747/1996.7613025.bard.
Full textGranot, David, Richard Amasino, and Avner Silber. Mutual effects of hexose phosphorylation enzymes and phosphorous on plant development. United States Department of Agriculture, January 2006. http://dx.doi.org/10.32747/2006.7587223.bard.
Full textDickman, Martin B., and Oded Yarden. Modulation of the Redox Climate and Phosphatase Signaling in a Necrotroph: an Axis for Inter- and Intra-cellular Communication that Regulates Development and Pathogenicity. United States Department of Agriculture, August 2011. http://dx.doi.org/10.32747/2011.7697112.bard.
Full textDroby, Samir, Michael Wisniewski, Ron Porat, and Dumitru Macarisin. Role of Reactive Oxygen Species (ROS) in Tritrophic Interactions in Postharvest Biocontrol Systems. United States Department of Agriculture, December 2012. http://dx.doi.org/10.32747/2012.7594390.bard.
Full textWatad, Abed A., Paul Michael Hasegawa, Ray A. Bressan, Alexander Vainstein, and Yigal Elad. Osmotin and Osmotin-Like Proteins as a Novel Source for Phytopathogenic Fungal Resistance in Transgenic Carnation and Tomato Plants. United States Department of Agriculture, January 2000. http://dx.doi.org/10.32747/2000.7573992.bard.
Full text