Academic literature on the topic 'Bose-Einstein condensation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bose-Einstein condensation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Bose-Einstein condensation"

1

Griffin, Allan, David W. Snoke, Sandro Stringari, and Thomas Greytak. "Bose–Einstein Condensation." Physics Today 48, no. 10 (October 1995): 63. http://dx.doi.org/10.1063/1.2808208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Townsend, Christopher, Wolfgang Ketterle, and Sandro Stringari. "Bose-Einstein condensation." Physics World 10, no. 3 (March 1997): 29–36. http://dx.doi.org/10.1088/2058-7058/10/3/21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Doyle, J. "Bose-Einstein condensation." Proceedings of the National Academy of Sciences 94, no. 7 (April 1, 1997): 2774–75. http://dx.doi.org/10.1073/pnas.94.7.2774.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Silvera, Isaac F. "Bose–Einstein condensation." American Journal of Physics 65, no. 6 (June 1997): 570–74. http://dx.doi.org/10.1119/1.18591.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jaksch, D. "Bose-Einstein Condensation." Journal of Physics A: Mathematical and General 36, no. 37 (September 2, 2003): 9797. http://dx.doi.org/10.1088/0305-4470/36/37/701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nityananda, R. "Bose-Einstein condensation." Resonance 5, no. 4 (April 2000): 46–51. http://dx.doi.org/10.1007/bf02837905.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nityananda, R. "Bose-Einstein condensation." Resonance 10, no. 12 (December 2005): 142–47. http://dx.doi.org/10.1007/bf02835137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

ERTİK, HÜSEYİN, HÜSEYİN ŞİRİN, DOǦAN DEMİRHAN, and FEVZİ BÜYÜKKİLİÇ. "FRACTIONAL MATHEMATICAL INVESTIGATION OF BOSE–EINSTEIN CONDENSATION IN DILUTE 87Rb, 23Na AND 7Li ATOMIC GASES." International Journal of Modern Physics B 26, no. 17 (June 21, 2012): 1250096. http://dx.doi.org/10.1142/s0217979212500968.

Full text
Abstract:
Although atomic Bose gases are experimentally investigated in the dilute regime, interparticle interactions play an important role on the transition temperatures of Bose–Einstein condensation. In this study, Bose–Einstein condensation is handled using fractional calculus for a Bose gas consisting of interacting bosons which are trapped in a three-dimensional harmonic oscillator. In this frame, in order to introduce the nonextensive effect, fractionally generalized Bose–Einstein distribution function which features Mittag–Leffler function is adopted. The dependence of the transition temperature of Bose–Einstein condensation on α (a measure of fractality of space) has been established. The transition temperatures for the dilute 87 Rb , 23 Na and 7 Li atomic gases have been obtained in consistent with experimental data and the nature of the interactions in the Bose–Einstein condensate has been enlightened. In the course of our investigations, we have arrived to the conclusion that for α < 1 attractive interactions and for α > 1 repulsive interactions are predominant.
APA, Harvard, Vancouver, ISO, and other styles
9

Burnett, K., M. Edwards, and C. W. Clark. "Bose-Einstein condensation - Preface." Journal of Research of the National Institute of Standards and Technology 101, no. 4 (July 1996): iii. http://dx.doi.org/10.6028/jres.101.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ferrari, Loris. "Approaching Bose–Einstein condensation." European Journal of Physics 32, no. 6 (October 4, 2011): 1547–57. http://dx.doi.org/10.1088/0143-0807/32/6/009.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Bose-Einstein condensation"

1

Benson, Eric. "Bose-Einstein condensation of excitons." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape9/PQDD_0017/NQ48088.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Arlt, Jan. "Experiments on Bose-Einstein condensation." Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Davis, Matthew John. "Dynamics of Bose-Einstein condensation." Thesis, University of Oxford, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.393350.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Marelic, Jakov. "Bose-Einstein condensation of photons." Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/59351.

Full text
Abstract:
A Bose-Einstein condensate can be made of photons. The photons are held at thermodynamic equilibrium in a dye-filled microcavity and pumped with a laser. Thermalisation can be demonstrated and above the threshold a Bose-Einstein condensate will form. A Mach-Zehnder interferometer is built and used to measure the spatial and temporal first-order coherence under various conditions. We build a momentum-resolved spectrometer and use it to obtain views into the phase-space distribution of the photon condensate. We put an upper bound on the value of the interaction strength parameter and find that the microcavity system is ergodic even when not at thermal equilibrium. We build a setup to stabilise the pump laser power with the aim to observe the λ-point of the condensate.
APA, Harvard, Vancouver, ISO, and other styles
5

Lewoczko-Adamczyk, Wojciech. "Bose-Einstein condensation in microgravity." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2009. http://dx.doi.org/10.18452/15970.

Full text
Abstract:
Ultra-kalte atomare Gase werden in zahlreichen Laboren weltweit untersucht und finden unter anderem Anwendung in Atomuhren und in Atominterferometer. Die Einsatzgebiete erstrecken sich von der Geodäsie über die Metrologie bis hin zu wichtigen Fragestellungen der Fundamentalphysik, wie z.B. Tests des Äquivalenzprinzips. Doch die beispiellose Messgenauigkeit ist durch die irdische Gravitation eingeschränkt. Zum einen verzerrt die Schwerkraft das Fallenpotential und macht damit die Reduktion der atomaren Energie unter einem bestimmten Limit unmöglich. Zum anderen werden die aus einer Falle frei gelassenen Teilchen durch die Erdanziehung beschleunigt und so ist deren Beobachtungszeit begrenzt. Im Rahmen dieser Arbeit werden die Ergebnisse des Projektes QUANTUS (Quantengase Unter Schwerelosigkeit) dargestellt. Auf dem Weg zur Implementierung eines Quantengasexperimentes im Weltraum wurde innerhalb einer deutschlandweiten Zusammenarbeit eine kompakte, portable und mechanisch stabile Apparatur zur Erzeugung und Untersuchung eines Bose-Einstein-Kondensats (BEC) unter Schwerelosigkeit im Fallturm Bremen entwickelt. Sowohl die Abbremsbeschleunigung von bis zu 50 g als auch das begrenzte Volumen der Fallkapsel stellen hohe Ansprüche an die mechanische Stabilität und die Miniaturisierung von optischen und elektronischen Komponenten. Der Aufbau besteht aus einer im ultra-hoch Vakuum geschlossenen magnetischen Mikrofalle (Atomchip) und einem kompakten auf DFB-Dioden basierenden Lasersystem. Mit diesem Aufbau ließ sich das erste BEC unter Schwerelosigkeit realisieren und nach 1 Sekunde freier Expansion zu beobachten. Weder die schwache Krümmung des Fallenpotentials noch die lange Beobachtungszeit würden in einem erdgebundenen Experiment realisierbar. Die erfolgreiche Umsetzung des Projektes eröffnet ein innovatives Forschungsgebiet - degenerierte Quantengase bei ultratiefen Temperaturen im pK-Bereich, mit großen freien Evolutions- und Beobachtungszeiten von mehreren Sekunden.
Recently, cooling, trapping and manipulation of neutral atoms and ions has become an especially active field of quantum physics. The main motivation for the cooling is to reduce motional effects in high precision measurements including spectroscopy, atomic clocks and matter interferometry. The spectrum of applications of these quantum devices cover a broad area from geodesy, through metrology up to addressing the fundamental questions in physics, as for instance testing the Einstein’s equivalence principle. However, the unprecedented precision of the quantum sensors is limited in terrestial laboratories. Freezing atomic motion can be nowadays put to the limit at which gravity becomes a major perturbation in a system. Gravity can significantly affect and disturb the trapping potential. This limits the use of ultra-shallow traps for low energetic particles. Moreover, free particles are accelerated by gravitational force, which substantially limits the observation time. Targeting the long-term goal of studying cold quantum gases on a space platform, we currently focus on the implementation of a Bose-Einstein condensate (BEC) experiment under microgravity conditions at the drop tower in Bremen. Special challenges in the construction of the experimental setup are posed by a low volume of the drop capsule as well as critical decelerations up to 50g during recapture at the bottom of the tower. All mechanical and electronic components were thus been designed with stringent demands on miniaturization and mechanical stability. This work reports on the observation of a BEC released from an ultra-shallow magnetic potential and freely expanding for one second. Both, the low trapping frequency and long expansion time are not achievable in any earthbound laboratory. This unprecedented time of free evolution leads to new possibilities for the study of BEC-coherence. It can also be applied to enhance the sensitivity of inertial quantum sensors based on ultra-cold matter waves.
APA, Harvard, Vancouver, ISO, and other styles
6

Wu, Biao. "Bose-Einstein condensation of dilute atomic gases." Access restricted to users with UT Austin EID, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3037026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ritter, Stephan. "Probing coherence during Bose-Einstein condensation /." Zürich : ETH, 2007. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=17215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ozdemir, Sevilay. "Bose-einstein Condensation At Lower Dimensions." Master's thesis, METU, 2004. http://etd.lib.metu.edu/upload/755959/index.pdf.

Full text
Abstract:
In this thesis, the properties of the Bose-Einstein condensation (BEC) in low dimensions are reviewed. Three dimensional weakly interacting Bose systems are examined by the variational method. The effects of both the attractive and the repulsive interatomic forces are studied. Thomas-Fermi approximation is applied to find the ground state energy and the chemical potential. The occurrence of the BEC in low dimensional systems, is studied for ideal gases confined by both harmonic and power-law potentials. The properties of BEC in highly anisotropic trap are investigated and the conditions for reduced dimensionality are derived.
APA, Harvard, Vancouver, ISO, and other styles
9

Mewes, Marc-Oliver. "Bose-Einstein condensation of sodium atoms." Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/10768.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fried, Dale G. (Dale George) 1968. "Bose-Einstein condensation of atomic hydrogen." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/84757.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Bose-Einstein condensation"

1

Allan, Griffin, Snoke D. W, and Stringari S, eds. Bose-Einstein condensation. Cambridge: Cambridge University Press, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Allan, Griffin, Snoke D. W, and Stringari S, eds. Bose-Einstein condensation. Cambridge: Cambridge University Press, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

S, Stringari, ed. Bose-Einstein condensation. Oxford: Clarendon Press, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sasaki, Shōsuke. Bose-Einstein condensation and superfluidity. Nomi, Ishikawa, Japan: JAIST Press, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Peter, Ketcham, and National Institute of Standards and Technology (U.S.), eds. Visualization of Bose-Einstein condensates. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pethick, Christopher. Bose-Einstein condensation in dilute gases. Copenhagen: Nordita, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sasaki, Shōsuke. Bose-Einstein condensation in nonlinear system. Hauppauge, N.Y: Nova Science Publishers, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Henrik, Smith, ed. Bose-Einstein condensation in dilute gases. Cambridge, UK: Cambridge University Press, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Henrik, Smith, ed. Bose-Einstein condensation in dilute gases. 2nd ed. Cambridge: Cambridge University Press, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

J, Dalibard, Duplantier Bertrand, and Rivasseau Vincent 1955-, eds. Poincare Seminar 2003: Bose-Einstein condensation-entropy. Basel: Birkhäuser, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Bose-Einstein condensation"

1

Leggett, Anthony J. "Bose-Einstein Condensation." In Compendium of Quantum Physics, 71–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-70626-7_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Meystre, Pierre. "Bose-Einstein Condensation." In Atom Optics, 165–90. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4757-3526-0_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nazarenko, Sergey V. "Bose-Einstein Condensation." In Wave Turbulence, 231–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-15942-8_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Meystre, Pierre. "Bose–Einstein Condensation." In Quantum Optics, 289–324. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76183-7_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Metcalf, Harold J., and Peter van der Straten. "Bose-Einstein Condensation." In Graduate Texts in Contemporary Physics, 241–50. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-1470-0_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Verbeure, André F. "Bose Einstein Condensation (BEC)." In Theoretical and Mathematical Physics, 43–107. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-109-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Verbeure, A. "Conventional Bose-Einstein condensation." In Nonlinear Phenomena and Complex Systems, 109–30. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2149-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pulé, J. V., A. F. Verbeure, and V. A. Zagrebnov. "Bose-Einstein Condensation and Superradiance." In Mathematical Physics of Quantum Mechanics, 259–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-34273-7_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bongs, Kai, and Klaus Sengstock. "Introduction to Bose-Einstein Condensation." In Interactions in Ultracold Gases, 129–74. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603417.ch3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hertle, Jochen. "Macroscopically Inhomogeneous Bose-Einstein Condensation." In Large-Scale Molecular Systems, 339–44. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-5940-1_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Bose-Einstein condensation"

1

Walraven, J. T. M., and Van der Waals. "Bose-Einstein Condensation." In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/cleo_europe.1996.tutb.

Full text
Abstract:
As was shown by Einstein in 1924, Bose-Einstein statistics gives rise to a phase transition in which a macroscopic part of a gaseous state condenses into a phase with ground state properties, offering a unique view on the behavior of matter at zero temperature. From the very start the nature of Bose-Einstein condensation (BEC) has provoked statements concerning its relation with respect to superconductivity in electron gases (Einstein 1925) and the superfluidity of liquid helium (London 1938), but this connection is not easily grasped experimentally. Remarkably, although the concept of BEC appears routinely in very different contexts, ranging from excitons in semiconductors to nuclear matter, it had never been observed in its pure form, i.e., in a gaseous phase, until in 1995 BEC in ultracold Rb vapor was reported by Cornell and Wieman. Bose-Einstein condensation is probably the most exciting phenomenon currently under experimental investigation in ultracold atomic gases. In the tutorial the physics will be addressed which is at the roots of the current interest of BEC in atomic gases.
APA, Harvard, Vancouver, ISO, and other styles
2

El‐Sherbini, Th M. "Bose — Einstein Condensation." In MODERN TRENDS IN PHYSICS RESEARCH: First International Conference on Modern Trends in Physics Research; MTPR-04. American Institute of Physics, 2005. http://dx.doi.org/10.1063/1.1896474.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cornell, Eric. "Bose Einstein Condensation." In Nonlinear Optics: Materials, Fundamentals and Applications. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/nlo.1996.nfa.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Langfeld, Kurt. "Confinement versus Bose-Einstein condensation." In QUARK CONFINEMENT AND THE HADRON SPECTRUM VI: 6th Conference on Quark Confinement and the Hadron Spectrum - QCHS 2004. AIP, 2005. http://dx.doi.org/10.1063/1.1920940.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hulet, Randy G., Curtis C. Bradley, and C. A. Sackett. "Bose-Einstein condensation of lithium." In Photonics West '97, edited by Mara Goff Prentiss and William D. Phillips. SPIE, 1997. http://dx.doi.org/10.1117/12.273760.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ishida, Akira, Kenji Shu, Tomoyuki Murayoshi, Xing Fan, Toshio Namba, Shoji Asai, Kosuke Yoshioka, et al. "Study on positronium Bose–Einstein condensation." In 3rd China-Japan Joint Workshop on Positron Science (JWPS2017). Japan Society of Applied Physics, 2018. http://dx.doi.org/10.7567/jjapcp.7.011001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

WILSON, ANDREW C., and CALLUM R. MCKENZIE. "EXPERIMENTAL ASPECTS OF BOSE-EINSTEIN CONDENSATION." In Proceedings of the Thirteenth Physics Summer School. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812791900_0008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rivas, Juan I., A. Camacho, Alfredo Macias, Claus Lämmerzahl, and Abel Camacho. "Bose–Einstein condensation in gravitational field." In 2007. AIP, 2008. http://dx.doi.org/10.1063/1.2902783.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Takasu, Y. "Bose-Einstein Condensation of Yb atoms." In ATOMIC PHYSICS 19: XIX International Conference on Atomic Physics; ICAP 2004. AIP, 2005. http://dx.doi.org/10.1063/1.1928860.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

TAKAHASHI, Y., Y. TAKASU, K. MAKI, K. KOMORI, T. TAKANO, K. HONDA, A. YAMAGUCHI, et al. "BOSE-EINSTEIN CONDENSATION OF YTTERBIUM ATOMS." In Proceedings of the XVI International Conference. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812703002_0017.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Bose-Einstein condensation"

1

Das, Arnab, Jacopo Sabbatini, and Wojciech H. Zurek. Winding up superfluid in a torus via Bose Einstein condensation. Office of Scientific and Technical Information (OSTI), December 2010. http://dx.doi.org/10.2172/1044896.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zapf, Vivien. Bose-Einstein Condensation and Bose Glasses in an S = 1 Organo-metallic quantum magnet. Office of Scientific and Technical Information (OSTI), June 2012. http://dx.doi.org/10.2172/1042992.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography