Journal articles on the topic 'Boron deficiency; Ribonucleic acid metabolism'

To see the other types of publications on this topic, follow the link: Boron deficiency; Ribonucleic acid metabolism.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 24 journal articles for your research on the topic 'Boron deficiency; Ribonucleic acid metabolism.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

CHATTERJEE, C., P. SINHA, and S. C. AGARWALA. "INTERACTIVE EFFECT OF BORON AND PHOSPHORUS ON GROWTH AND METABOLISM OF MAIZE GROWN IN REFINED SAND." Canadian Journal of Plant Science 70, no. 2 (April 1, 1990): 455–60. http://dx.doi.org/10.4141/cjps90-053.

Full text
Abstract:
Boron-phosphorus interaction was observed in maize (Zea mays L. ’Ganga 2’) when grown in refined sand at three levels of boron, deficient (0.0033 mg L−1), normal (0.33 mg L−1) and excess (3.3 mg L−1), each at three levels of phosphorus, deficient (0.17 m mol L−1), normal (1.5 mmol L−1) and excess (4 m mol L−1). The effects of phosphorus deficiency (i.e., reduction in dry matter, soluble protein, DNA, activity of ribonuclease and increase in the activities of peroxidase, acid phosphatase and polyphenol oxidase) were intensified by a combined deficiency of boron and phosphorus. The effects of boron deficiency (i.e., reduction in dry weight, leaf boron and DNA and increase in starch content and in the activities of starch phosphorylase, peroxidase and polyphenol oxidase) become more intense in the treatment-deficient B-excess P. The decreases caused by excess phosphorus (i.e., dry weight, starch and sugar content, DNA, RNA and activity of ribonuclease) were aggravated by combined excess of boron and phosphorus.Key words: Zea mays, maize, boron and phosphorus nutrition
APA, Harvard, Vancouver, ISO, and other styles
2

Brdar-Jokanović, Milka. "Boron Toxicity and Deficiency in Agricultural Plants." International Journal of Molecular Sciences 21, no. 4 (February 20, 2020): 1424. http://dx.doi.org/10.3390/ijms21041424.

Full text
Abstract:
Boron is an essential plant micronutrient taken up via the roots mostly in the form of boric acid. Its important role in plant metabolism involves the stabilization of molecules with cis-diol groups. The element is involved in the cell wall and membrane structure and functioning; therefore, it participates in numerous ion, metabolite, and hormone transport reactions. Boron has an extremely narrow range between deficiency and toxicity, and inadequate boron supply exhibits a detrimental effect on the yield of agricultural plants. The deficiency problem can be solved by fertilization, whereas soil boron toxicity can be ameliorated using various procedures; however, these approaches are costly and time-consuming, and they often show temporary effects. Plant species, as well as the genotypes within the species, dramatically differ in terms of boron requirements; thus, the available soil boron which is deficient for one crop may exhibit toxic effects on another. The widely documented intraspecies genetic variability regarding boron utilization efficiency and toxicity tolerance, together with the knowledge of the physiology and genetics of boron, should result in the development of efficient and tolerant varieties that may represent a long-term sustainable solution for the problem of inadequate or excess boron supply.
APA, Harvard, Vancouver, ISO, and other styles
3

CABRER, BARTHOLOMÉ, HUGUETTE BROCAS, ANA PEREZ-CASTILLO, VIVIANE POHL, JOSÉ J. NAVAS, HECTOR TARGOVNIK, JOSÉ A. CENTENERA, and GILBERT VASSART. "Normal Level of Thyroglobulin Messenger Ribonucleic Acid ina Human Congenital Goiter with Thyroglobulin Deficiency*." Journal of Clinical Endocrinology & Metabolism 63, no. 4 (October 1986): 931–40. http://dx.doi.org/10.1210/jcem-63-4-931.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Blanco-Dolado, Laura, Antonia Martín-Hidalgo, and Emilio Herrera. "Streptozotocin-Induced Diabetes Decreases Mammary Gland Lipoprotein Lipase Activity and Messenger Ribonucleic Acid in Pregnant and Nonpregnant Rats." International Journal of Experimental Diabetes Research 3, no. 1 (2002): 61–68. http://dx.doi.org/10.1080/15604280212524.

Full text
Abstract:
Diabetes mellitus is associated with a reduction of lipoprotein lipase (LPL) activity in adipose tissue and development of hypertriglyceridemia. To determine how a condition of severe insulin deficiency affects mammary gland LPL activity and mRNA expression during late pregnancy, streptozotocin (STZ) treated (40 mg/kg) and non-treated (control) virgin and 20 day pregnant rats were studied. In control rats, both LPL activity and mRNA were higher in pregnant than in virgin rats. When compared to control rats, STZ-treated rats, either pregnant or virgin, showed decreased LPL activity and mRNA content. Furthermore, mammary gland LPL activity was linearly correlated with mRNA content, and either variable was linearly correlated with plasma insulin levels. Thus, insulin deficiency impairs the expression of LPL in mammary glands, revealing the role of insulin as a modulator of the enzyme at the mRNA expression level.
APA, Harvard, Vancouver, ISO, and other styles
5

Yang, Lin-Tong, Jun-Feng Pan, Neng-Jing Hu, Huan-Huan Chen, Huan-Xin Jiang, Yi-Bin Lu, and Li-Song Chen. "Citrus Physiological and Molecular Response to Boron Stresses." Plants 11, no. 1 (December 23, 2021): 40. http://dx.doi.org/10.3390/plants11010040.

Full text
Abstract:
Since the essentiality of boron (B) to plant growth was reported nearly one century ago, the implication of B in physiological performance, productivity and quality of agricultural products, and the morphogenesis of apical meristem in plants has widely been studied. B stresses (B deficiency and toxicity), which lead to atrophy of canopy and deterioration of Citrus fruits, have long been discovered in citrus orchards. This paper reviews the research progress of B stresses on Citrus growth, photosynthesis, light use efficiency, nutrient absorption, organic acid metabolism, sugar metabolism and relocation, and antioxidant system. Moreover, the beneficial effects of B on plant stress tolerance and further research in this area were also discussed.
APA, Harvard, Vancouver, ISO, and other styles
6

Beuschlein, Felix, Egbert Schulze, Patricia Mora, Hans-Peter Gensheimer, Christiane Maser-Gluth, Bruno Allolio, and Martin Reincke. "Steroid 21-Hydroxylase Mutations and 21-Hydroxylase Messenger Ribonucleic Acid Expression in Human Adrenocortical Tumors1." Journal of Clinical Endocrinology & Metabolism 83, no. 7 (July 1, 1998): 2585–88. http://dx.doi.org/10.1210/jcem.83.7.4965.

Full text
Abstract:
Twenty-one hydroxylase (P450c21) is a key enzyme essential for normal zona glomerulosa and fasciculata function. Recently, 21-hydroxylase deficiency has been implicated in the pathogenesis of adrenocortical tumors. Therefore, we investigated the mutational spectrum of the CYP21B gene and the messenger RNA expression of P450c21 in six aldosterone-producing adenomas, seven cortisol-producing adenomas, two nonfunctional incidentally detected adenomas, and four adrenal carcinomas. DNA from leukocytes and tumors was amplified by PCR using primers specific for the CYP21B gene. The 10 exons, intron 2, intron 7, all other exon/intron junctions, and 380 bp of the promoter region of CYP21B were automatically sequenced. Poly(A) RNA was extracted from tumor tissue, dot blotted on a nylon membrane, and hybridized with 32P-labeled P450 side-chain cleavage, P450 17-α-hydroxylase, and P450c21 complementary DNA probes. We detected heterozygous germline mutations (exon 7, Val 281Leu) in two patients, one with a cortisol-producing adenoma and the other with an androgen-secreting adrenocortical carcinoma. A somatic, heterozygous microdeletion was found in exon 3 of one aldosterone-producing adenoma. The P450c21 gene expression correlated with the clinical phenotype of the tumor, with low P450c21 messenger RNA expression in nonfunctional adenomas (18.8%, 1.5%) compared with high P450c21 expression in aldosterone- and cortisol-producing adenomas (84 ± 8% and 101 ± 4%, respectively, vs. normal adrenals, 100 ± 10%). In conclusion, the prevalence of heterozygous germline mutations in the CYP21B gene was higher in patients with adrenocortical tumors (11%; 95% confidence interval, 1–34%) than in the general European population (2%; 95% confidence interval, 1.93–2.06%), but this difference is questionable because of the low number of subjects in our series. The pathophysiological significance of this finding in the presence of one normal CYP21B gene seems to be low, suggesting that 21-hydroxylase deficiency is not a major predisposing factor for adrenal tumor formation.
APA, Harvard, Vancouver, ISO, and other styles
7

Peng, Lishun, Changying Zeng, Lei Shi, Hongmei Cai, and Fangsen Xu. "Transcriptional Profiling Reveals Adaptive Responses to Boron Defi ciency Stress in Arabidopsis." Zeitschrift für Naturforschung C 67, no. 9-10 (October 1, 2012): 510–24. http://dx.doi.org/10.1515/znc-2012-9-1009.

Full text
Abstract:
Boron (B) is a micronutrient for vascular plants, and B deficiency has been recognized as a limiting factor for crop production in many areas worldwide. To gain a better insight into the adaptability mechanism of plant responses to B starvation, an Arabidopsis whole genome Affymetrix GeneChip was used to evaluate global gene expression alterations in response to short- and long-term B deficiency stress. A large number of B deficiency-responsive genes were identified and grouped by their functions. Genes linked to jasmonic acid (JA) showed the most prominent response under B deficiency. The transcripts for biosynthesis and regulation of JA were constantly induced during short- and long-term B deficiency stress. A set of well-known JA-dependent process and responsive genes showed the same expression profile. This suggested that JA could be a pivotal player in the integration of adaptive responses to B deficiency stress. Moreover, other functional groups of B deficiency-responsive genes (including various encoding the biosynthesis of antioxidants, the basic components of Ca2+ signalling, protein kinases, cell wall-modifying enzymes and proteins, H+-ATPase, K+ transporters, and a set of enzymes involved in central metabolism and cellular growth) were also observed, and their physiological roles under B deficiency stress are discussed. These results provide some information for a better understanding of plant-adaptive responses to B deficiency stress and potential strategies to improve B efficiency in crops
APA, Harvard, Vancouver, ISO, and other styles
8

Carling, Tobias, Jonas Rastad, Eva Szabó, Gunnar Westin, and Göran Åkerström. "Reduced Parathyroid Vitamin D Receptor Messenger Ribonucleic Acid Levels in Primary and Secondary Hyperparathyroidism*." Journal of Clinical Endocrinology & Metabolism 85, no. 5 (May 1, 2000): 2000–2003. http://dx.doi.org/10.1210/jcem.85.5.6607.

Full text
Abstract:
Abstract Vitamin D, via its receptor (VDR), inhibits the hormone secretion and proliferation of parathyroid cells. Vitamin D deficiency and reduced parathyroid VDR expression has been associated with development of hyperparathyroidism (HPT) secondary to uremia. VDR polymorphisms may influence VDR messenger RNA (mRNA) levels and have been coupled to an increased risk of parathyroid adenoma of primary HPT. VDR mRNA relative to glyceraldehyde-3-phosphate dehydrogenase mRNA levels were determined by RNase protection assay in 42 single parathyroid adenomas of patients with primary HPT, 23 hyperplastic glands of eight patients with uremic HPT, and 15 normal human parathyroid glands. The adenomas and hyperplasias demonstrated similar VDR mRNA levels, which were reduced (42 ± 2.8% and 44 ± 4.0%) compared with the normal glands (P < 0.0001). Comparison of parathyroid adenoma with a normal-sized parathyroid gland of the same individual (n = 3 pairs) showed a 20–58% reduction in the tumor. Nodularly enlarged glands represent a more advanced form of secondary HPT and showed greater reduction in the VDR mRNA levels than the diffusely enlarged glands (P < 0.005). The reduced VDR expression is likely to impair the 1,25(OH)2D3-mediated control of parathyroid functions, and to be of importance for the pathogenesis of not only uremic but also primary HPT. Circulating factors like calcium, PTH, and 1,25(OH)2D3 seem to be less likely candidates mediating the decreased VDR gene expression in HPT.
APA, Harvard, Vancouver, ISO, and other styles
9

Bekker, R. A., and Yu V. Bykov. "BORON PREPARATIONS IN PSYCHIATRY AND NEUROLOGY: THEIR RISE, FALL AND RENEWED INTEREST." Acta Biomedica Scientifica 3, no. 4 (July 28, 2018): 85–100. http://dx.doi.org/10.29413/abs.2018-3.4.13.

Full text
Abstract:
The use of boron preparations (borax and boric acid) in medicine began long before their isolation in pure form. The mineral water of boron-containing sources has been historically used to treat skin diseases, to wash eyes, to disinfect wounds, etc. Also, what is of interest in the context of this article, boron-containing waters were used as calming, anti- anxiety, anticonvulsant and sleep-promoting remedy. In 1777, boric acid was first isolated from the mineral water of a healing spring source in Florence. Historically, first name of this compound was sal sedativum (“soothing salt”). However, the discovery of boron toxicity led to the cessation of its internal use. In recent decades, it has been found that boron is a microelement necessary for many metabolic processes in the body. It affects memory, cognitive functions, anxiety level, sleep, mood, regulates calcium and magnesium exchange, metabolism of vitamin D and sex steroids. It has been shown that some cases of treatment resistance to standard therapy, for example in epilepsy, anxiety and depression, are related to boron deficiency. In this regard, interest in the use of boron preparations in psychiatry and neurology, but in much smaller doses and on new scientific grounds, flared up again.
APA, Harvard, Vancouver, ISO, and other styles
10

Boehmer, Annemie L. M., Albert O. Brinkmann, Lodewijk A. Sandkuijl, Dicky J. J. Halley, Martinus F. Niermeijer, Stefan Andersson, Frank H. de Jong, et al. "17β-Hydroxysteroid Dehydrogenase-3 Deficiency: Diagnosis, Phenotypic Variability, Population Genetics, and Worldwide Distribution of Ancient and de Novo Mutations1." Journal of Clinical Endocrinology & Metabolism 84, no. 12 (December 1, 1999): 4713–21. http://dx.doi.org/10.1210/jcem.84.12.6174.

Full text
Abstract:
17β-Hydroxysteroid dehydrogenase-3 (17βHSD3) deficiency is an autosomal recessive form of male pseudohermaphroditism caused by mutations in the HSD17B3 gene. In a nationwide study on male pseudohermaphroditism among all pediatric endocrinologists and clinical geneticists in The Netherlands, 18 17βHSD3-deficient index cases were identified, 12 of whom initially had received the tentative diagnosis androgen insensitivity syndrome (AIS). The phenotypes and genotypes of these patients were studied. Endocrine diagnostic methods were evaluated in comparison to mutation analysis of the HSD17B3 gene. RT-PCR studies were performed on testicular ribonucleic acid of patients homozygous for two different splice site mutations. The minimal incidence of 17βHSD3 deficiency in The Netherlands and the corresponding carrier frequency were calculated. Haplotype analysis of the chromosomal region of the HSD17B3 gene in Europeans, North Americans, Latin Americans, Australians, and Arabs was used to establish whether recurrent identical mutations were ancient or had repeatedly occurred de novo. In genotypically identical cases, phenotypic variation for external sexual development was observed. Gonadotropin-stimulated serum testosterone/androstenedione ratios in 17βHSD3-deficient patients were discriminative in all cases and did not overlap with ratios in normal controls or with ratios in AIS patients. In all investigated patients both HSD17B3 alleles were mutated. The intronic mutations 325+ 4;A→T and 655–1;G→A disrupted normal splicing, but a small amount of wild-type messenger ribonucleic acid was still made in patients homozygous for 655–1;G→A. The minimal incidence of 17βHSD3 deficiency in The Netherlands was shown to be 1:147,000, with a heterozygote frequency of 1:135. At least 4 mutations, 325 + 4;A→T, N74T, 655–1;G→A, and R80Q, found worldwide, appeared to be ancient and originating from genetic founders. Their dispersion could be reconstructed through historical analysis. The HSD17B3 gene mutations 326–1;G→C and P282L were de novo mutations. 17βHSD3 deficiency can be reliably diagnosed by endocrine evaluation and mutation analysis. Phenotypic variation can occur between families with the same homozygous mutations. The incidence of 17βHSD3 deficiency is 0.65 times the incidence of AIS, which is thought to be the most frequent known cause of male pseudohermaphroditism without dysgenic gonads. A global inventory of affected cases demonstrated the ancient origin of at least four mutations. The mutational history of this genetic locus offers views into human diversity and disease, provided by national and international collaboration.
APA, Harvard, Vancouver, ISO, and other styles
11

Góth, László, Teréz Nagy, and Miklós Káplár. "Acatalasemia and type 2 diabetes mellitus." Orvosi Hetilap 156, no. 10 (March 2015): 393–98. http://dx.doi.org/10.1556/oh.2015.30095.

Full text
Abstract:
The catalase enzyme decomposes the toxic concentrations of hydrogen peroxide into oxygen and water. Hydrogen peroxide is a highly reactive small molecule and its excessive concentration may cause significant damages to proteins, deoxyribonucleic acid, ribonucleic acid and lipids. Acatalasemia refers to inherited deficiency of the catalase enzyme. In this review the authors discuss the possible role of the human catalase enzyme, the metabolism of hydrogen peroxide, and the phenomenon of hydrogen peroxide paradox. In addition, they review data obtained from Hungarian acatalasemic patients indicating an increased frequency of type 2 diabetes mellitus, especially in female patients, and an early onset of type 2 diabetes in these patients. There are 10 catalase gene variants which appear to be responsible for decreased blood catalase activity in acatalasemic patients with type 2 diabetes. It is assumed that low levels of blood catalase may cause an increased concentration of hydrogen peroxide which may contribute to the pathogenesis of type 2 diabetes mellitus. Orv. Hetil., 2015, 156(10), 393–398.
APA, Harvard, Vancouver, ISO, and other styles
12

Banjari, Ines, Vlatka Matokovic, and Vedrana Skoro. "The question is whether intake of folic acid from diet alone during pregnancy is sufficient." Medical review 67, no. 9-10 (2014): 313–21. http://dx.doi.org/10.2298/mpns1410313b.

Full text
Abstract:
Pregnancy and Folic Acid. Pregnancy is the most important period in life of every woman, partially for the number of physiological adaptations she is going through, partially for the expectance of new life. In addition, pregnancy is the ?critical window? for development later in childhood, as a period of foetal programming during which nutrition plays one of crucial roles. Despite the general belief that nutrition through pregnancy is adequate and characterized by better nutritional habits, a number of studies do not corroborate this belief. Role of Folic Acid. An adequate folate blood level is necessary for normal cell growth, synthesis of several compounds including deoxyribonucleic acid and ribonucleic acid, proper brain and neurologic functions; it is included in the regulation of homocysteine level, and closely related to the vitamin B12 metabolism. Folate deficiency in pregnancy is related to neural tube defects, other neurological disorders, preterm delivery and low birth weight. Food sources. A correlation between folate and the prevention of broad spectrum of chronic diseases has been confirmed. Emerging evidence from the epigenetic studies is now bringing even more light on the level of significance of folic acid. A wide range of plant and animal foods are the natural sources of folate; liver, yeast, mushrooms, and green leafy vegetables being the most significant. Different ways of food preparation influence the folate stability and its bioavailability varies from 25 to 50% from foods, 85% from enriched foods or 100% from supplements. Conclusion. A great amount of scientific results has led to official recommendations for folic acid supplementation in pregnant women as well as in a number of obligatory or voluntary fortification programmes in order to prevent the folate deficiency on the level of different population groups. Nevertheless, there must be a certain level of precaution for elderly because folate can mask the vitamin B12 deficiency with possible fatal outcomes.
APA, Harvard, Vancouver, ISO, and other styles
13

Jíchová, Šárka, Olga Gawryś, Elżbieta Kompanowska-Jezierska, Janusz Sadowski, Vojtěch Melenovský, Lenka Hošková, Luděk Červenka, Petr Kala, Josef Veselka, and Věra Čertíková Chábová. "Kidney Response to Chemotherapy-Induced Heart Failure: mRNA Analysis in Normotensive and Ren-2 Transgenic Hypertensive Rats." International Journal of Molecular Sciences 22, no. 16 (August 6, 2021): 8475. http://dx.doi.org/10.3390/ijms22168475.

Full text
Abstract:
The aim of the present study was to perform kidney messenger ribonucleic acid (mRNA) analysis in normotensive, Hannover Sprague–Dawley (HanSD) rats and hypertensive, Ren-2 renin transgenic rats (TGR) after doxorubicin-induced heart failure (HF) with specific focus on genes that are implicated in the pathophysiology of HF-associated cardiorenal syndrome. We found that in both strains renin and angiotensin-converting enzyme mRNA expressions were upregulated indicating that the vasoconstrictor axis of the renin–angiotensin system was activated. We found that pre-proendothelin-1, endothelin-converting enzyme type 1 and endothelin type A receptor mRNA expressions were upregulated in HanSD rats, but not in TGR, suggesting the activation of endothelin system in HanSD rats, but not in TGR. We found that mRNA expression of cytochrome P-450 subfamily 2C23 was downregulated in TGR and not in HanSD rats, suggesting the deficiency in the intrarenal cytochrome P450-dependent pathway of arachidonic acid metabolism in TGR. These results should be the basis for future studies evaluating the pathophysiology of cardiorenal syndrome secondary to chemotherapy-induced HF in order to potentially develop new therapeutic approaches.
APA, Harvard, Vancouver, ISO, and other styles
14

Petruliak, Ya, M. Fershal, and M. Galas. "HYDROXY ACIDS AND POLYOLS AS POTENTIAL EXTRACTANTS FOR IONMETRIC DETERMINATION OF BORON IN SOILS." Scientific Bulletin of the Uzhhorod University. Series «Chemistry» 46, no. 2 (February 10, 2022): 41–48. http://dx.doi.org/10.24144/2414-0260.2021.2.41-48.

Full text
Abstract:
Boron is an essential element for plants, animals, and humans. Its deficiency in plants may result in reduced growth rates, yield loss, and even death. At the same time, excess of boron is toxic for both plants and living organisms. Boron is important for steroid hormones production, vitamin D and minerals metabolism, formation of bone tissue, and affects estrogen and testosterone levels. The primary source of boron for humans and other living organisms is plant-origin food. The richest ones are fruits and nuts. High concentrations of boron are found in raisins (22 mg/kg), peanuts (17 mg/kg), peanut butter (14,5 mg/kg). In the agriculture the boron monitoring in soils and water irrigation is particularly important because this element is crucial for plant growth Boron deficiency has a drastic effect on fruit quality and yield, even when there are only mild or moderate foliar symptoms. The main source of boron for plants is soil and water. Quantitative determination of boron in soil extracts can be performed using spectrophotometric, potentiometric, chromatographic, atomic absorption spectrophotometric, and inductively coupled plasma techniques. The most popular are inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS). These methods are described in the appropriate standards PN-EN ISO 11885:2009 and PN-EN ISO 17294–1:2007. Boric acid is known to form complexes through esterification reactions with hydroxy-group in molecules of amino- and carboxylic acids, carbohydrates, nucleotides and vitamins that can be used for boron extraction from soils. Partial esterification results in monoesters (1:1 complex) and complete esterification leads to the bicyclic diester (1:2 complex). In present research the tetrafluoroborate selective sensor applicable for fluoroborate formation reaction monitoring was used as an analytical tool for the investigation of an impact of soil extraction procedure for boron analysis. The investigation of alternative soil boron extraction procedures using α-hydroxy acids (and other cis-diol containing compounds) and subsequent quantitative analysis of boron by kinetic-potentiometric monitoring of fluoroborate formation rate with use of previously developed [BF4]¯-selective electrode have been performed. The kinetics of complex destruction under fluoride containing acidified media by means of kinetic-potentiometric analysis has been investigated. The possible boron losses during its extraction from soils have been checked.
APA, Harvard, Vancouver, ISO, and other styles
15

Clemente, Junia Maria, Herminia Emilia Prieto Martinez, Adriene Woods Pedrosa, Yonara Poltronieri Neves, Paulo Roberto Cecon, and John Lonfover Jifon. "Boron, Copper, and Zinc Affect the Productivity, Cup Quality, and Chemical Compounds in Coffee Beans." Journal of Food Quality 2018 (2018): 1–14. http://dx.doi.org/10.1155/2018/7960231.

Full text
Abstract:
Micronutrients perform specific and essential functions in plant metabolism, and their deficiency may lead to metabolic disturbances that affect coffee production and quality beverage. In Brazil, the B, Cu, and Zn are the main micronutrients, and these are provided by soil or foliar fertilization, frequently with low recovery efficiency. This work objected verifying the feasibility of supplying of B, Cu, and Zn via insertion of tablets in the orthotropic branch of Coffea arabica, as well as to evaluate the coffee plant response in terms of productivity and quality of the beverage. Adult plants received B, Cu, and Zn, each micronutrient alone or combined with the other two, by foliar fertilization or by tablets inserted in the trunk base. The productivity, cupping quality, and some chemical indicators of beans quality were evaluated in two crop seasons. Boron, copper, and zinc supplied by foliar spray or solid injections in the trunk influenced the chemical composition and quality of the coffee beans, characterized by the cupping test and the levels of caffeine, trigonelline, sucrose, glucose, arabinose, mannose, 3-caffeoylquinic acid, 5-caffeoylquinic acid, polyphenol oxidase activity, and total phenolic compounds. Copper and zinc were equivalent in either form of supply regarding the production and quality of coffee.
APA, Harvard, Vancouver, ISO, and other styles
16

Marwa Abbas Abdulrazzak Kubba. "A Review Article: Categorization, Advancement and Obstacles of Genetic factors and types of Spinal Muscular Degeneration." International Journal for Research in Applied Sciences and Biotechnology 8, no. 2 (March 6, 2021): 29–37. http://dx.doi.org/10.31033/ijrasb.8.2.4.

Full text
Abstract:
SMA (Spinal muscular atrophies) are category of hereditary inflammation in the funiculars and lower brain stem, tissue fatigue, and degeneration characterized by motor neuron failure. The analytic and genetic phenotypes incorporate a diverse continuum distinguished depending on age of onset, tissue participation arrangement, and inheritance arrangement. Rapid advancements in genetic science have expedite the discovery of causative genes over the past few years, and provide significant access in awareness the biochemical and neurological basis of Spinal muscular atrophies and insights into the motor neurons' selective deficiency. Popular path physiological topics include Ribonucleic Acid metabolism and splicing abnormalities, axonal transmission, and motor neurons' advancement and communication. These also collectively revealed possible innovative prevention methods and comprehensive attempts are what benefits does the company offer? Although a range of promising therapeutic therapies for Spinal muscular atrophies is emerging, it is essential to identify therapeutic windows and establish responsive and appropriate biomarkers to promote future analytic trial success. This research offers a description of Spinal muscular atrophies' logical manifestations and genetics. It discusses recent advancements in learning—mechanisms for the pathogenesis of inflammation and new treatment methods.
APA, Harvard, Vancouver, ISO, and other styles
17

Zhang, Li, J. Ian Mason, Yasuhiro Naiki, Kenneth C. Copeland, Mariano Castro-Magana, Timothy T. Gordon-Walker, Ying T. Chang, and Songya Pang. "Characterization of Two Novel Homozygous Missense Mutations Involving Codon 6 and 259 of Type II 3β-Hydroxysteroid Dehydrogenase (3βHSD) Gene Causing, Respectively, Nonsalt-Wasting and Salt-Wasting 3βHSD Deficiency Disorder1." Journal of Clinical Endocrinology & Metabolism 85, no. 4 (April 1, 2000): 1678–85. http://dx.doi.org/10.1210/jcem.85.4.6539.

Full text
Abstract:
We identified two homozygous missense mutations in the human type II 3β-hydroxysteroid dehydrogenase (3βHSD) gene, the first in codon 6 of exon II [CTT (Leu) to TTT (Phe)] in a male infant with hyperpigmented scrotum and hypospadias, raised as a male and no apparent salt-wasting since neonatal age, and the second in codon 259 of exon IV [ACG (Thr) to ATG (Met)] in a male pseudohermaphrodite with labial scrotal folds, microphallus, chordee, and fourth degree hypospadias, raised as a female and with salt-wasting disorder since neonatal age. In vitro transient expression of mutant type II 3βHSD complementary DNAs of L6F, T259M, as well as T259R for comparison was examined by a site-directed mutagenesis and transfection of construct into COS-1 and COS-7 cells. Northern blot analysis revealed expression of similar amounts of type II 3βHSD messenger ribonucleic acid from the COS-1 cells transfected by L6F, T259M, T259R, and wild-type (WT) complementary DNAs. Western immunoblot analysis revealed a similar amount of L6F mutant protein compared to WT enzyme from COS-1 cells, but neither L6F from COS-7 cells nor T259M or T259R mutant protein in COS-1 or COS-7 cells was detectable. Enzyme activity in intact COS-1 cells using 1 μmol/L pregnenolone as substrate in the medium after 6 h revealed relative conversion rates of pregnenolone to progesterone of 46% by WT enzyme, 22% by L6F enzyme, and 8% by T259M enzyme and less than 4% activity by T259R enzyme. Using 1 μmol/L dehydroepiandrosterone as substrate, the relative conversion rate of dehydroepiandrosterone to androstenedione after 6 was 89% by WT enzyme, 35% by L6F enzyme, 5.1% by T259M enzyme and no activity by T259R enzyme. However, the L6F mutant 3βHSD activity, despite its demonstration in the intact cells, was not detected in homogenates of COS-1 cells or in immunoblots of COS-7 cells, suggestive of the relatively unstable nature of this protein in vitro, possibly attributable to the decreased 3βHSD activity. In the case of T259M and T259R mutations, consistently undetectable proteins in both COS cells despite detectable messenger ribonucleic acids indicate severely labile proteins resulting in either no or very little enzyme activity, and these data further substantiate the deleterious effect of a structural change in this predicted putative steroid-binding domain of the gene. In conclusion, the findings of the in vitro study of mutant type II 3βHSD enzyme activities correlated with a less severe clinical phenotype of nonsalt-wasting and a lesser degree of genital ambiguity in the patient with homozygous L6F mutation compared to a more severe clinical phenotype of salt-wasting and severe degree of genital ambiguity in the patient with homozygous T259M mutation in the gene.
APA, Harvard, Vancouver, ISO, and other styles
18

Yu, Dawen, Shuhua Yu, Volker Schuster, Klaus Kruse, Carol L. Clericuzio, and Lee S. Weinstein. "Identification of Two Novel Deletion Mutations within the Gsα Gene (GNAS1) in Albright Hereditary Osteodystrophy1." Journal of Clinical Endocrinology & Metabolism 84, no. 9 (September 1, 1999): 3254–59. http://dx.doi.org/10.1210/jcem.84.9.5970.

Full text
Abstract:
Albright hereditary osteodystrophy (AHO) is a genetic disorder characterized by short stature, skeletal defects, and obesity. Within AHO kindreds, some affected family members have only the somatic features of AHO [pseudopseudohypoparathyroidism (PPHP)], whereas others have these features in association with resistance to multiple hormones that stimulate adenylyl cyclase within their target tissues[ pseudohypoparathyroidism type Ia (PHP Ia)]. Affected members of most AHO kindreds (both those with PPHP and those with PHP Ia) have a partial deficiency of Gsα, the α-subunit of the G protein that couples receptors to adenylyl cyclase stimulation, and in a number of cases heterozygous loss of function mutations within the Gsα gene (GNAS1) have been identified. Using PCR with the attachment of a high melting domain (GC-clamp) and temperature gradient gel electrophoresis, two novel heterozygous frameshift mutations within GNAS1 were found in two AHO kindreds. In one kindred all affected members (both PHP Ia and PPHP) had a heterozygous 2-bp deletion in exon 8, whereas in the second kindred a heterozygous 2-bp deletion in exon 4 was identified in all affected members examined. In both cases the frameshift encoded a premature termination codon several codons downstream of the deletion. In the latter kindred affected members were previously shown to have decreased levels of GNAS1 messenger ribonucleic acid expression. These results further underscore the genetic heterogeneity of AHO and provides further evidence that PHP Ia and PPHP are two clinical presentations of a common genetic defect. Serial measurements of thyroid function in members of kindred 1 indicate that TSH resistance progresses with age and becomes more evident after the first year of life.
APA, Harvard, Vancouver, ISO, and other styles
19

Chabre, Olivier, Stéphanie Portrat-Doyen, Philippe Chaffanjon, Josiane Vivier, Panagiotis Liakos, Françoise Labat-Moleur, Edmond Chambaz, Yves Morel, and Geneviève Defaye. "Bilateral Laparoscopic Adrenalectomy for Congenital Adrenal Hyperplasia with Severe Hypertension, Resulting from Two Novel Mutations in Splice Donor Sites of CYP11B1." Journal of Clinical Endocrinology & Metabolism 85, no. 11 (November 1, 2000): 4060–68. http://dx.doi.org/10.1210/jcem.85.11.6897.

Full text
Abstract:
We present an in vivo and in vitro study of congenital adrenal hyperplasia in a patient with 11β-hydroxylase deficiency. Sequencing of the CYP11B1 gene showed two new base substitutions, a conservative 954 G→C transversion at the last base of exon 5 (T318T), and a IVS8 + 4A→G transition in intron 8. In addition, two polymorphisms were found in exons 1 and 2. The genetically female patient was raised as a male because of severe pseudohermaphroditism. Glucocorticoid-suppressive treatment encountered difficulties in equilibration and compliance, resulting in uncontrolled hypertension with pronounced hypertrophic cardiomyopathy. At 42 yr of age the occurrence of central retinal vein occlusion with permanent loss of left eye vision led to the decision to perform bilateral laparoscopic adrenalectomy. Surgery was followed by normalization of blood pressure and good compliance with glucocorticoid and androgen substitutive therapies. In vitro, adrenal cells in culture and isolated mitochondria showed extremely low 11β-hydroxylase activity. Analysis of adrenal CYP11B1 messenger ribonucleic acid (mRNA) by RT-PCR and sequencing showed the expression of a shorter mRNA that lacked exon 8 and did not contain either the exon 5 mutation or the exon 1 and 2 polymorphisms. This suggested that one CYP11B1 allele carried the intron 8 mutation, responsible for skipping exon 8. The other allele carried the exon 5 mutation, and its mRNA was not detectable. Western blot analysis showed weak expression of a shorter CYP11B immunoreactive band of 43 kDa, consistent with truncation of exon 8. Thus, bilateral adrenalectomy in this patient allowed effective treatment of severe hypertension and helped in understanding the mechanisms and physiopathological consequences of two novel mutations of CYP11B1.
APA, Harvard, Vancouver, ISO, and other styles
20

Ishikawa, Mayumi, Susumu Yokoya, Katsuhiko Tachibana, Yukihiro Hasegawa, Toshiaki Yasuda, Etsurou Tokuhiro, Yoshihide Hashimoto, and Toshiaki Tanaka. "Serum Levels of 20-Kilodalton Human Growth Hormone (GH) Are Parallel Those of 22-Kilodalton Human GH in Normal and Short Children." Journal of Clinical Endocrinology & Metabolism 84, no. 1 (January 1, 1999): 98–104. http://dx.doi.org/10.1210/jcem.84.1.5402.

Full text
Abstract:
Twenty-kilodalton human GH (20K), which is one of the human GH (hGH) variants, is thought to be produced by alternative premessenger ribonucleic acid splicing. However, its physiological role is still unclear due to the lack of a specific assay. We have measured serum 20K and 22-kDa hGH (22K) by specific ELISAs to investigate the physiological role of 20K in children. The subjects were 162 normal children, aged 1 month to 20 yr; 12 patients with GH deficiency (GHD), aged 11 months to 13 yr; 57 children with non-GHD short stature, aged 2–17 yr; and 13 girls with Turner’s syndrome, aged 5 months to 15 yr. Samples were collected at random from normal children and were collected after hGH provocative tests and 3-h nocturnal sleep from GHD, non-GHD short stature, and Turner’s syndrome children. The mean basal serum concentrations of 22K and 20K were 2.4 ± 2.8 ng/mL and 152.3 ± 184.0 pg/mL in normal boys and 2.5 ± 3.1 ng/mL and 130.6 ± 171.5 pg/mL in normal girls, respectively. The percentages of 20K (%20K) were 5.8 ± 2.1% and 6.0 ± 3.2% in 83 normal boys and 79 normal girls, respectively. There was no significant difference in %20K either among ages or between the prepubertal stage and the pubertal stage in normal boys and girls. The mean %20K values in basal samples of provocative tests in 12 patients with GHD, non-GHD short stature, and Turner’s syndrome were 6.5 ± 2.4%, 6.5 ± 3.8%, and 5.9 ± 3.2%, respectively. There was no significant difference in %20K among normal children and these growth disorders, and there was no significant difference in %20K throughout the hGH provocative tests and 3-h nocturnal sleep in these growth disorders. There was also no significant correlation between the percentage of 20K and the height sd score or body mass index in either normal children or subjects with these growth disorders. In conclusion, the %20K is constant, regardless of age, sex, puberty, height sd score, body mass index, and GH secretion status. The regulation of serum 20K levels remains to be established.
APA, Harvard, Vancouver, ISO, and other styles
21

Ali, Inaam N., Muthana M. Awad, and Alaa S. Mahmood. "Effect of Methotrexate and Omega-3 Combination on Cytogenetic Changes of Bone Marrow and Some Enzymatic Antioxidants: An Experimental Study." Yemeni Journal for Medical Sciences 11, no. 1 (August 3, 2017): 1–7. http://dx.doi.org/10.20428/yjms.11.1.1.

Full text
Abstract:
Introduction Methods Resuts Discussion Conclusions Acknowledgments Authors' contributions Competing interests Ethical approval References Effect of Methotrexate and Omega-3 Combination on Cytogenetic Changes of Bone Marrow and Some Enzymatic Antioxidants: An Experimental Study Inaam N. Ali1, Muthana M. Awad2, Alaa S. Mahmood2,* 1 Water and Environment Directorate, Ministry of Sciences and Technology, Baghdad, Iraq 2 Department of Biology, College of Science, University of Anbar, Anbar, Iraq * Corresponding author: A. S. Mahmood (alaashm91@gmail.com) Abstract: Objective: To assess the effect of methotrexate and omega-3 combination on cytogenetic changes of bone marrow and activities of some enzymatic antioxidants. Methods: Fifty-six mature male Wistar rats were divided into two experimental groups and a control group. The first experimental group was sub-divided into three sub-groups depending on the concentration of methotrexate (MTX): X1 (0.05 mg/kg MTX), X2 (0.125 mg/kg MTX) and X3 (0.250 mg/kg MTX), which were given intraperitoneally on a weekly basis for eight weeks. The second experimental group (MTX and omega-3 group) was also sub-divided into three sub-groups (Y1, Y2 and Y3), which were injected intraperitoneally with 0.05, 0.125 and 0.25 mg/kg MTX, respectively, weekly for eight weeks accompanied by the oral administration of 300 mg/kg omega-3. The rats of the control group were given distilled water. The enzymatic activity of catalase (CAT), superoxide dismutase (SOD) and glutathione reductase (GR) were measured in the sera of rats. In addition, the mitotic index (MI) and chromosomal aberrations of bone marrow were also studied. Results: MTX resulted in a significant decrease in the activities of CAT, SOD and GR compared to the controls. It also increased the MI and chromosomal aberrations of rat bone marrows. On the other hand, omega-3 significantly increased the activities of the investigated enzymatic antioxidants and reduced the MI and chromosomal aberrations in treated mice when given in combination with MTX. Conclusions: MTX has a genotoxic effect on the bone marrow by increasing the MI and all types of chromosomal aberrations and decreasing the enzymatic activity of CAT, SOD and GR. The addition of omega-3 can lead to a protective effect by reducing the toxic and mutagenic effects of MTX. Keywords: Methotrexate, Omega-3, Antioxidant, Wistar rat, Chromosomal aberration, Mitotic index 1. Introduction Methotrexate (MTX) is a folic acid antagonist because of their chemical similarity [1]. Vezmar et al. [2] showed that MTX affects the synthesis of nucleic acids deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) by interfering with the biosynthesis of thymine and purines. It also directly affects the rapidly dividing and intact cells, especially those in the mucous membranes of the mouth, intestine and bone marrow [3]. Omega-3 is a type of unsaturated fats, which are classified as essential fatty acids that cannot be manufactured by the body and should be taken with food [4]. Sources of omega-3 include fish oils, such as salmon, sardines and tuna, as well as soybeans, walnuts, raisins and linseed, almonds and olive oils [5]. Omega-3 is used in the prevention of a number of diseases such as rheumatoid arthritis, ulcerative colitis, asthma, atherosclerosis, cancer, and cardiovascular diseases [6]. A large amount of evidence indicates that omega-3 fatty acids have significant health benefits, including anti-inflammatory and antioxidant properties besides their effect on blood cholesterol levels [7]. Antioxidants retard the oxidation process by different mechanisms such as the removal of free radicals [8]. Enzymatic antioxidants include catalase (CAT), which is the first line of defense in the cell that removes hydrogen peroxide formed during biological processes by converting it into an aldehyde, and superoxide dismutase (SOD). There are three major families of SOD enzymes: manganese SOD (Mn-SOD) in the mitochondria and peroxisomes, iron SOD (Fe-SOD) in prokaryote cells and copper/zinc SOD (Cu-Zn SOD) in the cytoplasm of eukaryote cells [9]. Therefore, changes in the metal co-factors (manganese, iron, copper and zinc) can alter the effectiveness of SOD and may lead to diseases as a result of oxidative stress [10]. Glutathione reductase (GR) is also an enzymatic antioxidant that converts the oxidized glutathione to the reduced glutathione in the presence of NADPH, which is oxidized to NADP [11]. Therefore, the aim of the present study was to assess the effects of MTX and omega-3 on the cytogenetic changes of bone marrow as well as the activities of CAT, SOD and GR enzymatic antioxidants in male rats. 2. Method 2.1. Laboratory animals and experimental design Fifty-six mature male Wistar rats (Rattus norvegicus), aged 10–12 weeks old and weighing 250–300 gm, were used in the present study. The rats were kept in separate cages, with natural 13- hour light and 11-hour dark periods in a contamination-free environment with a controlled temperature (28.0 ± 1.0°C). In addition, rats were maintained on a standard diet and tap water ad libitum. The rats were randomly allocated to two experimental groups and a control group. The first experimental group (MTX group) included 24 rats injected intraperitoneally with different MTX dilutions with distilled water [12]. It was sub-divided into three sub-groups (eight rats per sub-group) according to MTX concentration as follows: X1 (0.05 mg/kg MTX), X2 (0.125mg/kg MTX) and X3 (0.25 mg/kg MTX). All rats were given a single dose of the specified MTX concentration weekly for eight weeks. The second experimental group (MTX and omega-3 group) included 24 rats allocated to three sub-groups (Y1, Y2 and Y3), which were injected intraperitoneally with 0.05, 0.125 and 0.25 mg/kg MTX, respectively, weekly for eight weeks accompanied by the oral administration of 300 mg/kg omega-3. The control group included eight rats that were intraperitoneally injected with distilled water and given a single dose of distilled water orally weekly for eight weeks. 2.2. Blood collection and processing After the end of the dosing period, 5 ml of blood were withdrawn from the heart (by cardiac puncture) using a 5 cc disposable syringe. The collected blood was immediately poured into a clean sterile screw-capped tube (plain tube) and left for coagulation in a water bath at 37°C for 15 minutes. After coagulation of blood, the plain tube was centrifuged for 5 minutes at 1500 rpm. Then the samples were stored at -20°C for subsequent analysis. 2.3. Measurement of the activity of antioxidant enzymes The antioxidant activities of CAT, SOD and GR were measured using enzyme-linked immunosorbent assay kits purchased from Kamiya Biomedical Company (Seattle, WA, US), according to the manufacturer's instructions. 2.4. Cytogenetic study of bone marrow Rats were killed by cervical dislocation, and their hip bones were cleaned from surrounding muscles and then dissected by cutting both ends of the bone. Five milliliters of physiological buffered saline were injected inside the bone to withdraw bone marrow into a test tube. Tubes were centrifuged at 2000 rpm/10 minutes. The supernatant was then removed, and 10 ml of KCL solution (0.075 M) were added to the sediment. The mixture was then incubated at 37 °C in a water bath for 30 minutes, with shaking from time to time. The tubes were then centrifuged at 2000rpm/10 minutes to remove the supernatant. However, 5 ml of a freshly prepared fixative solution (methanol: glacial acetic acid 1:3) were added gradually in the form of droplets into the inner wall of the tube with constant mixing. After that, the tubes were placed at 4 °C for half an hour to fix the cells. This process was repeated for three times, and the cells were then suspended in 2 ml of the fixative solution. The tubes were centrifuged at 2000 rpm for 5 minutes, and the supernatant was then removed while the cells were re-suspended in 1-2 ml of cold fixative solution. After shaking the tubes, 4–5 drops were then taken from each tube onto a clean slide from a height of about three feet to provide an opportunity for the cells and nuclei to spread well. The slides were stained with acridine orange solution (0.01%) for 4–5 minutes, incubated in Sorensen’s buffer (0.06M, pH 6.5) for a minute. and then examined using a fluorescence microscope Olympus BX 51 America at a wavelength of 450–500 nm [13, 14]. A total of 1000 cells were examined, and both dividing and non-dividing cells were calculated [13]. Mitotic index (MI) was calculated according to the following formula [13]: MI= No. of dividing cells / 1000 × 100 2.5. Analysis of chromosomal aberrations of bone marrow cells A total of 1000 dividing cells were examined on the stained slides under a fluorescence microscope at a wavelength of 45–500 nm. The examined cells were at the first metaphase of the mitotic division, where chromosomal aberrations are clear and can be easily seen [13]. 2.6. Statistical analysis Data were analyzed using the Statistical Analysis System (SAS®) software, version 9.1 (Cary, NC, USA) [15]. Effects were expressed as mean ± standard error (SE) and statistically compared using a completely randomized design analysis of variance and least significant differences. Differences at P values <5 were considered statistically significant. 3. Results 3.1. Effects of MTX and MTX-omega-3 combination on antioxidant enzymatic activities Table (1) shows significantly lower SOD activities among rats treated with MTX or MTX-omega-3 compared to controls. Moreover, sera of rats receiving relatively high doses of MTX (sub-groups X2 and X3) showed the lowest enzymatic activities of 4.29 ± 0.01 IU and 3.93 ± 0.11 IU, respectively. On the other hand, CAT activity differed significantly between treated and control rats as well as among treated rats themselves, In this respect, the controls showed the highest activity of 39.38 ±0.02 IU, while those receiving the highest MTX concentration, either alone or in combination with omega-3 (sub-groups X3 and Y3), showed the lowest activities of 30.97 ± 0.03 IU and 32.12± 0.06 IU, respectively. Regarding GR activity, control rats showed a higher activity of 53.09± 0.05 IU compared to treated ones; however, the differences in GR activities in rats given low doses of MTX, either alone or in combination with omega-3 (sub-groups X1 and Y1), were not statistically significant. On the other hand, rats in sub-groups X3 and Y3 showed the lowest GR activities of 34.59 ± 0.63 IU and 37.15 ±0.01, respectively, with statistically significant differences from other sub-groups. 3.2. Effects of MTX and MTX-omega-3 combination on mitotic index of bone marrow cells Figure (1) shows a significant decrease in the MI in all treated groups compared to control. In addition, there was a reverse association between MTX concentration and MI, where rats treated with the highest dose of MTX (sub-group X3) showed a significant decrease in MI compared to all other treated rat sub-groups. In addition, rats in sub-groups treated with MTX and omega-3 (sub-groups Y1, Y2 and Y3) showed a significant increase in MI compared to their counterpart rats receiving MTX only. Table 1. Activity of antioxidant enzymes in rats treated with MTX and MTX-omega-3 Group Enzymatic activity (mean± SE) SOD (IU) CAT (IU) GR (µmol) Control 6.41±0.02 a 39.38±0.02 a 53.09±0.05 a X1 (0.05 mg MTX/ kg) 5.33±0.01 b 37.81±0.01 c 51.12±0.06 a Y1 (0.05 mg MTX + 300 mg omega-3/ kg) 6.08±0.04 a 38.40±0.02 b 51.97±0.03 a X2 (0.125 mg MTX/ kg) 4.29±0.01 cd 33.13±0.01 e 42.34±0.03 b Y2 (0.125 mg MTX + 300 mg omega-3/ kg) 4.99±0.40 b 36.68±0.02 d 43.02±3.04 b X3 (0.25 mg MTX/ kg) 3.93±0.11 d 30.97±0.03 g 34.59±0.63 c Y3 (0.25 mg MTX + 300 mg omega-3/ kg) 4.47±0.02 c 32.12±0.06 f 37.15±0.01 c SE, Standard error; IU, international unit; SOD, superoxide dismutase; CAT, catalase; GR, glutathione reductase; *statistically significant at P < 0.05; **statistically significant at P < 0.01. Means with different letters within the same column showed a statistically significant difference. 3.3. Effects of MTX and MTX-omega-3 combination on chromosomal aberrations of bone marrow cells Rats receiving higher concentrations of MTX (sub-group X3) showed a significant increase in all types of chromosomal aberrations, i.e., chromatid gaps, chromosome gaps, chromatid breaks, chromosome breaks, deletions and simple fragments (Figure 2 and Table 2) than those of the control group or other treated sub-groups. All rats treated with MTX-omega-3 combination showed a significant decrease in almost all types of chromosomal aberrations compared to their counterpart rats receiving MTX alone (Table 2). Figure 1. Effect of MTX and MTX-omega-3 on the MI of bone marrow cells of treated rats compared to the controls. The groups X1 (0.05 MTX), X2 (0.125 MTX) and X3 (0.250 MTX) were compared to the control group, while the groups Y1 (0.05 MTX+ omega-3), Y2 (0.125 MTX+ omega-3) and Y3 (0.25 MTX+ omega-3) were compared to X1, X2 and X3, respectively. Figure 2. Effect of MTX and MTX-omega-3 on chromosomal aberration as seen under fluorescence microscope after staining with acridine orange: (1) a simple fragment; (2) a chromatid gap; (3) a chromosomal gap (A) and a chromosomal break (B). 4. Discussion The present experiment reveals that the addition of omega-3 to MTX alleviates its effects on the activities of the antioxidant enzymes CAT, SOD and GR, and decreases the MI as well as all types of chromosomal aberrations in the bone marrow cells. Daham et al. [16] showed that the decline in antioxidants associated with chemotherapy is attributed to the increase in lipid peroxidation caused by these kinds of drugs, which increase the level of free radicals. In addition, Weijl et al. [17] showed that some chemotherapeutic drugs have a negative effect on the antioxidant levels such as GR, whose activity decreases as a result of its involvement in many cellular processes such as cell defenses against the toxicity of some compounds. Al-Dalawy et al. [18] found that the decrease in the level of SOD is an evidence of its increased activity due to the increased release of free radicals. MTX causes an increase in the release of free radicals, including the OH radical that causes direct damage to DNA [16]. Al-Helaly [19] showed that the amount of food taken has an effect on antioxidants, where nutritional deficiency decreases the antioxidant levels, thus increasing free radicals that cause damage to DNA. Table 2. Chromosomal aberrations of bone marrow cells in rats treated with MTX and MTX-omega-3 Group Type of chromosomal aberration(mean ± SE) Chromatid gap Chromosome Gap Chromatid breaks Chromosome breaks Deletion Simple Fragments Chromosomal aberration (%) Control 1.33±0.33 e 0.00±0.00 e 1.67±0.33 c 0.33±0.15 c 0.00±0.00 0.67±0.33 cd 0.04±0.005 f X1 2.75±0.47 cd 1.50±0.28 cd 2.50±0.64 bc 1.00±0.41 bc 0.50±0.28 bc 0.75±0.25 bcd 0.09±0.02 de Y1 1.75±0.47 de 0.75±0.25 de 1.50±0.28 c 1.00±0.00 bc 0.75±0.25 abc 0.75±0.25 abc 0.065±0.005 ef X2 4.67±0.33 b 2.67±0.33 ab 2.67±0.33 bc 1.67±0.33 ab 0.67±0.33 abc 1.67±0.33 ab 0.14±0.006 bc Y2 3.00±0.00 c 2.00±0.00 bc 3.00±0.057 bc 1.33±0.33 b 0.67±0.33 abc 0.33±0.15 d 0.106±0.003 cd X3 6.80±0.37 a 3.00±0.31 a 4.60±0.74 a 2.40±0.24 a 1.40±0.24 a 1.80±0.37 a 0.20±0.017 a Y3 5.60±0.40 ab 2.40±0.24 ab 3.60±0.24 ab 1.80±0.20 ab 1.20±0.20 ab 1.40±0.24 abc 0.16±0.003 b LSD 1.231** 0.814** 0.602** 0.841** 0.774* 0.941** 3.499* SE, Standard error; * statistically significant at P < 0.05; ** statistically significant at P < 0.01. Means with different letters within the same column showed a statistically significant difference. X1 (0.05 mg MTX/ kg); X2 (0.125 mg MTX/ kg); X3 (0.25 mg MTX/ kg); Y1 (0.05 mg MTX + 300 mg omega-3/ kg); Y2 (0.125 mg MTX + 300 mg omega-3/ kg); Y3 (0.25 mg MTX + 300 mg omega-3/ kg). In the present study, the intraperitoneal administration of MTX to rats also caused a decrease in the MI of bone marrow and a significant increase in the rate of abnormal chromosomal aberration compared to the control rats. This finding is consistent with those reported previously [20], [21]. The effect of MTX can be attributed to its ability to interfere with the genetic material, leading to the appearance of toxic and mutagenic consequences. Rushworth et al. [22] reported that MTX leads to a lack of dihydrofolate reductase, which is the key to the growth and cell division processes. This, in turn, leads to a reduction of the nucleotides involved in the building of DNA and, therefore, to a stop or obstruction of the repair mechanisms of the damaged DNA. In addition, Wong and Choi [23] concluded that MTX inhibits the action of enzymes controlling the purine metabolism, which leads to the accumulation of adenosine in addition to the damage of the molecule itself and to the occurrence of chromosomal aberrations. Jafer et al. [24] reported the ability of MTX to induce chromosomal aberration in humans or animals by preventing the repair of DNA and affecting the proteins found in chromosomes. These findings were also confirmed by Hussain et al. [25], who found that MTX causes an increase in chromosomal aberrations. In the present study, the MI showed a significant increase in rat sub-groups treated with MTX-omega-3 combination, but there was a decrease in the rate of chromosomal aberration, which confirms the role of omega-3 unsaturated fatty acids in protecting the cell from the impact of free radicals [26], [27]. Attia and Nasr [28] reported the antioxidant effect of omega-3, which was attributed to the reduction in lipid peroxidation and the increase in SOD and CAT or the stimulation of GR. It is noteworthy that GR leads to the synthesis of reduced glutathione, which is important in the defense of the cell against toxic substances and the prevention of the occurrence of mutations [29]. 5. Conclusions MTX significantly decreases the activity of enzymatic antioxidants, reduce the MI and increase the chromosomal aberrations of all types in bone marrow. This gives further evidence on the genotoxic effects of MTX on the bone marrow. On the other hand, omega-3 shows a protective effect by reducing the toxic and mutagenic effects of MTX. Acknowledgments The authors thank the staff of the Water and Environment Directorate, Ministry of Science and Technology, Baghdad, Iraq for their cooperation. They also thank Dr. Jasim Al-Niami for his technical and scientific guidance. Authors' contributions INA, MMA and ASM contributed to the study design and analyzed data. All authors contributed to the manuscript drafting and revising and approved the final submission. Competing interests The authors declare that they have no competing interests associated with this article. Ethical approval The ethical clearance of this study was obtained from the Ethics Committee of the College of Science, University of Anbar (Reference No. A. D. 51 in 30/8/2015). References Yuen CW, Winter ME. Methotrexate (MTX). In: Basic clinical pharmacokinetics, Winter ME, editor. Philadelphia, USA: Lippincott Williams & Wilkins; 2010. p.p. 304–25. Google Scholar Vezmar S, Becker A, Bode U, Jaehde U. Biochemical and clinical aspects of methotrexate neurotoxicity. Chemotherapy 2003; 49: 92–104. DOI PubMed - Google Scholar Tian H, Cronstein BN. Understanding the mechanisms of action of methotrexate implications for the treatment of rheumatoid arthritis. Bull NYU Hosp Jt Dis 2007; 65: 168–73. PubMed - Google Scholar El-Khayat Z, Rasheed WI, Elias T, Hussein J, Oraby F, Badawi M, et al. Protective effect of either dietary or pharmaceutical n-3 fatty acids on bone loss in ovariectomized rats. Maced J Med Sci 2010; 3: 9–16. DOI - Google Scholar Kris-Etherton PM, Harris WS, Appel LJ; Nutrition Committee. Fish consumption, fish oil, omega-3 fatty acids and cardiovascular disease. Arterioscler Thromb Vasc Biol 2003; 23: e20–30. DOI - PubMed - Google Scholar Calder PC. Polyunsaturated fatty acids and inflammation. Prostaglandins Leukot Essent Fatty Acids 2006; 75: 197–202. DOI - PubMed - Google Scholar Begin ME, Ells G, Das UN, Horrobin DF. Differential killing of human carcinoma cells supplemented with n-3 and n-6 polyunsaturated fatty acids. J Natl Cancer Inst 1986; 77: 1053–62. DOI - PubMed - Google Scholar Shan B, Cai YZ, Sun M, Corke H. Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. J Agric Food Chem. 2005; 53: 7749–59. DOI - PubMed - Google Scholar Matiax J, Quiles JL, Huertas JR, Battino M. Tissue specific interactions of exercise, dietary fatty acids, and vitamin E in lipid peroxidation. Free Radic Biol Med 1998; 24 : 511–21. DOI - PubMed - Google Scholar Dean RT, Fu S, Stocker R, Davies MJ. Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 1997; 324: 1–8. PubMed - Google Scholar Bashir A, Perham RN, Scrutton NS, Berry A. Altering Kinetic mechanism and enzyme stability by mutagenesis of the dimmer interface of glutathione reductase. Biochem J 1995; 312: 527–33. PubMed - Google Scholar Perret-Gentil MI. Rat Biomethodology. Laboratory Animal Resources Center. The University of Texas at San Antonio. [Cited 1 Feb. 2015]. Available from: https://www.utdallas.edu/research/docs/rat_biomethodology/ Allen JW, Shuler CF, Menders RW, Olatt SA. A simplified technique for in vivo analysis of sister chromatid exchange using 50 bromodeoxyuridine tablets. Cytogenet Cell Genet 1977; 18: 231–7. DOI PubMed - Google Scholar Forsum U, Hallén A. Acridine orange staining of urethral and cervical smears for the diagnosis of gonorrhea. Acta Derm Venereol 1979; 59: 281–2. PubMed - Google Scholar Statistical Analysis System user's guide. Version 9.1. Cary, NC, USA: SAS Institute Inc.; 2012. Daham HH, Rahim SM, Al-Hmesh MJ. The effect of radiotherapy and chemotherapy in several physiological and biochemical parameters in cancer patients. Tikrit J Pure Sci 2012; 17: 83–91. Weijl N, Elseendoorm TJ, Lentjes EG, Hopman CD, Wipkink-Bakker A, Zwinderman AH, et al. Supplementation with antioxidant micronutrients and chemotherapy-induced toxicity in cancer patients treated with cisplatin-based chemotherapy: a randomised, double-blind placebo-controlled study. Eur J Cancer 2004; 40: 1713–23. DOI - PubMed - Google Scholar Al-Dalawy SS, Al-Salehy FK, Al-Sanafi AI. Efficient enzymatic antioxidants for oxidative stress syndrome in patients with hypertension. J Dhi Qar Sci 2008; 2: 32–3. Al-Helaly LA. Some antioxidant enzymes in workers exposed to pollutants. Raf J Sci 2011; 22: 29–38. Google Scholar Othman GO. Protective effects of linseed oil against methotrexate induced genotoxicity in bone marrow cells of albino mice Mus musculus. ZJPAS. 2016; 28: 49–53. Google Scholar Ashoka CH, Vijayalaxmi KK. Cytogenetic effects of methotrexate in bone marrow cells of Swiss albino mice. Int J Sci Res Edu 2016; 4: 4828–34. DOI - Google Scholar Rushworth D, Mathews A, Alpert A, Cooper Dihydrofolate reductase and thymidylate synthase transgenes resistant to methotrexate interact to permit novel transgene regulation. J Biol Chem 2015; 290: 22970–9. DOI - PubMed - Google Scholar Wong PT, Choi SK. Mechanisms and implications of dual-acting methotrexate in folate-targeted nanotherapeutic delivery. Int J Mol Sci 2015; 16: 1772–90. DOI - PubMed - Google Scholar Jafer ZMT, Shubber EK, Amash HS. Cytogenetic analysis of Chinese hamster lung fibroblasts spontaneously resistant to methotrexate. Nucleus 2001; 44: 28–35. Google Scholar Hussain ZK, AL-Mhdawi F, AL-Bakri N. Effect of methotrexate drug on some parameters of kidney in newborn mice. Iraqi J Sci 2014; 55: 968–73. Google Scholar Ghazi-Khansari M, Mohammadi-Bardbori A. Captopril ameliorates toxicity induced by paraquat in mitochondria isolated from the rat liver. Toxicol in Vitro 2007; 21: 403–7. DOI - PubMed - Google Scholar Dinic-olivira RJ, Sousa C, Remiao F, Durte JA, Navarro SA, Bastos L, et al. Full survival of paraquat-exposed rats after treatment with sodium salicylate. Free Radic Biol Med 2007; 42: 1017–28. DOI - PubMed - Google Scholar Attia AM, Nasr HM. Dimethoate-induced changes in biochemical parameters of experimental rat serum and its neutralization by black seed (Nigella sativa) oil. Slovak J Anim Sci 2009; 42: 87–94. Google Scholar Al-Rubaie AH.M. Effect of natural honey and mitomycin C on the effectiveness of the enzyme glutathione reductase in mice Mus musculus. Babylon Uni J 2008; 15: 1385–91.
APA, Harvard, Vancouver, ISO, and other styles
22

Ali, Inaam N., Muthana M. Awad, and Alaa S. Mahmood. "Effect of Methotrexate and Omega-3 Combination on Cytogenetic Changes of Bone Marrow and Some Enzymatic Antioxidants: An Experimental Study." Yemeni Journal for Medical Sciences 11, no. 1 (August 3, 2017): 1–7. http://dx.doi.org/10.20428/yjms.v11i1.1059.

Full text
Abstract:
Introduction Methods Resuts Discussion Conclusions Acknowledgments Authors' contributions Competing interests Ethical approval References Effect of Methotrexate and Omega-3 Combination on Cytogenetic Changes of Bone Marrow and Some Enzymatic Antioxidants: An Experimental Study Inaam N. Ali1, Muthana M. Awad2, Alaa S. Mahmood2,* 1 Water and Environment Directorate, Ministry of Sciences and Technology, Baghdad, Iraq 2 Department of Biology, College of Science, University of Anbar, Anbar, Iraq * Corresponding author: A. S. Mahmood (alaashm91@gmail.com) Abstract: Objective: To assess the effect of methotrexate and omega-3 combination on cytogenetic changes of bone marrow and activities of some enzymatic antioxidants. Methods: Fifty-six mature male Wistar rats were divided into two experimental groups and a control group. The first experimental group was sub-divided into three sub-groups depending on the concentration of methotrexate (MTX): X1 (0.05 mg/kg MTX), X2 (0.125 mg/kg MTX) and X3 (0.250 mg/kg MTX), which were given intraperitoneally on a weekly basis for eight weeks. The second experimental group (MTX and omega-3 group) was also sub-divided into three sub-groups (Y1, Y2 and Y3), which were injected intraperitoneally with 0.05, 0.125 and 0.25 mg/kg MTX, respectively, weekly for eight weeks accompanied by the oral administration of 300 mg/kg omega-3. The rats of the control group were given distilled water. The enzymatic activity of catalase (CAT), superoxide dismutase (SOD) and glutathione reductase (GR) were measured in the sera of rats. In addition, the mitotic index (MI) and chromosomal aberrations of bone marrow were also studied. Results: MTX resulted in a significant decrease in the activities of CAT, SOD and GR compared to the controls. It also increased the MI and chromosomal aberrations of rat bone marrows. On the other hand, omega-3 significantly increased the activities of the investigated enzymatic antioxidants and reduced the MI and chromosomal aberrations in treated mice when given in combination with MTX. Conclusions: MTX has a genotoxic effect on the bone marrow by increasing the MI and all types of chromosomal aberrations and decreasing the enzymatic activity of CAT, SOD and GR. The addition of omega-3 can lead to a protective effect by reducing the toxic and mutagenic effects of MTX. Keywords: Methotrexate, Omega-3, Antioxidant, Wistar rat, Chromosomal aberration, Mitotic index 1. Introduction Methotrexate (MTX) is a folic acid antagonist because of their chemical similarity [1]. Vezmar et al. [2] showed that MTX affects the synthesis of nucleic acids deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) by interfering with the biosynthesis of thymine and purines. It also directly affects the rapidly dividing and intact cells, especially those in the mucous membranes of the mouth, intestine and bone marrow [3]. Omega-3 is a type of unsaturated fats, which are classified as essential fatty acids that cannot be manufactured by the body and should be taken with food [4]. Sources of omega-3 include fish oils, such as salmon, sardines and tuna, as well as soybeans, walnuts, raisins and linseed, almonds and olive oils [5]. Omega-3 is used in the prevention of a number of diseases such as rheumatoid arthritis, ulcerative colitis, asthma, atherosclerosis, cancer, and cardiovascular diseases [6]. A large amount of evidence indicates that omega-3 fatty acids have significant health benefits, including anti-inflammatory and antioxidant properties besides their effect on blood cholesterol levels [7]. Antioxidants retard the oxidation process by different mechanisms such as the removal of free radicals [8]. Enzymatic antioxidants include catalase (CAT), which is the first line of defense in the cell that removes hydrogen peroxide formed during biological processes by converting it into an aldehyde, and superoxide dismutase (SOD). There are three major families of SOD enzymes: manganese SOD (Mn-SOD) in the mitochondria and peroxisomes, iron SOD (Fe-SOD) in prokaryote cells and copper/zinc SOD (Cu-Zn SOD) in the cytoplasm of eukaryote cells [9]. Therefore, changes in the metal co-factors (manganese, iron, copper and zinc) can alter the effectiveness of SOD and may lead to diseases as a result of oxidative stress [10]. Glutathione reductase (GR) is also an enzymatic antioxidant that converts the oxidized glutathione to the reduced glutathione in the presence of NADPH, which is oxidized to NADP [11]. Therefore, the aim of the present study was to assess the effects of MTX and omega-3 on the cytogenetic changes of bone marrow as well as the activities of CAT, SOD and GR enzymatic antioxidants in male rats. 2. Method 2.1. Laboratory animals and experimental design Fifty-six mature male Wistar rats (Rattus norvegicus), aged 10–12 weeks old and weighing 250–300 gm, were used in the present study. The rats were kept in separate cages, with natural 13- hour light and 11-hour dark periods in a contamination-free environment with a controlled temperature (28.0 ± 1.0°C). In addition, rats were maintained on a standard diet and tap water ad libitum. The rats were randomly allocated to two experimental groups and a control group. The first experimental group (MTX group) included 24 rats injected intraperitoneally with different MTX dilutions with distilled water [12]. It was sub-divided into three sub-groups (eight rats per sub-group) according to MTX concentration as follows: X1 (0.05 mg/kg MTX), X2 (0.125mg/kg MTX) and X3 (0.25 mg/kg MTX). All rats were given a single dose of the specified MTX concentration weekly for eight weeks. The second experimental group (MTX and omega-3 group) included 24 rats allocated to three sub-groups (Y1, Y2 and Y3), which were injected intraperitoneally with 0.05, 0.125 and 0.25 mg/kg MTX, respectively, weekly for eight weeks accompanied by the oral administration of 300 mg/kg omega-3. The control group included eight rats that were intraperitoneally injected with distilled water and given a single dose of distilled water orally weekly for eight weeks. 2.2. Blood collection and processing After the end of the dosing period, 5 ml of blood were withdrawn from the heart (by cardiac puncture) using a 5 cc disposable syringe. The collected blood was immediately poured into a clean sterile screw-capped tube (plain tube) and left for coagulation in a water bath at 37°C for 15 minutes. After coagulation of blood, the plain tube was centrifuged for 5 minutes at 1500 rpm. Then the samples were stored at -20°C for subsequent analysis. 2.3. Measurement of the activity of antioxidant enzymes The antioxidant activities of CAT, SOD and GR were measured using enzyme-linked immunosorbent assay kits purchased from Kamiya Biomedical Company (Seattle, WA, US), according to the manufacturer's instructions. 2.4. Cytogenetic study of bone marrow Rats were killed by cervical dislocation, and their hip bones were cleaned from surrounding muscles and then dissected by cutting both ends of the bone. Five milliliters of physiological buffered saline were injected inside the bone to withdraw bone marrow into a test tube. Tubes were centrifuged at 2000 rpm/10 minutes. The supernatant was then removed, and 10 ml of KCL solution (0.075 M) were added to the sediment. The mixture was then incubated at 37 °C in a water bath for 30 minutes, with shaking from time to time. The tubes were then centrifuged at 2000rpm/10 minutes to remove the supernatant. However, 5 ml of a freshly prepared fixative solution (methanol: glacial acetic acid 1:3) were added gradually in the form of droplets into the inner wall of the tube with constant mixing. After that, the tubes were placed at 4 °C for half an hour to fix the cells. This process was repeated for three times, and the cells were then suspended in 2 ml of the fixative solution. The tubes were centrifuged at 2000 rpm for 5 minutes, and the supernatant was then removed while the cells were re-suspended in 1-2 ml of cold fixative solution. After shaking the tubes, 4–5 drops were then taken from each tube onto a clean slide from a height of about three feet to provide an opportunity for the cells and nuclei to spread well. The slides were stained with acridine orange solution (0.01%) for 4–5 minutes, incubated in Sorensen’s buffer (0.06M, pH 6.5) for a minute. and then examined using a fluorescence microscope Olympus BX 51 America at a wavelength of 450–500 nm [13, 14]. A total of 1000 cells were examined, and both dividing and non-dividing cells were calculated [13]. Mitotic index (MI) was calculated according to the following formula [13]: MI= No. of dividing cells / 1000 × 100 2.5. Analysis of chromosomal aberrations of bone marrow cells A total of 1000 dividing cells were examined on the stained slides under a fluorescence microscope at a wavelength of 45–500 nm. The examined cells were at the first metaphase of the mitotic division, where chromosomal aberrations are clear and can be easily seen [13]. 2.6. Statistical analysis Data were analyzed using the Statistical Analysis System (SAS®) software, version 9.1 (Cary, NC, USA) [15]. Effects were expressed as mean ± standard error (SE) and statistically compared using a completely randomized design analysis of variance and least significant differences. Differences at P values <5 were considered statistically significant. 3. Results 3.1. Effects of MTX and MTX-omega-3 combination on antioxidant enzymatic activities Table (1) shows significantly lower SOD activities among rats treated with MTX or MTX-omega-3 compared to controls. Moreover, sera of rats receiving relatively high doses of MTX (sub-groups X2 and X3) showed the lowest enzymatic activities of 4.29 ± 0.01 IU and 3.93 ± 0.11 IU, respectively. On the other hand, CAT activity differed significantly between treated and control rats as well as among treated rats themselves, In this respect, the controls showed the highest activity of 39.38 ±0.02 IU, while those receiving the highest MTX concentration, either alone or in combination with omega-3 (sub-groups X3 and Y3), showed the lowest activities of 30.97 ± 0.03 IU and 32.12± 0.06 IU, respectively. Regarding GR activity, control rats showed a higher activity of 53.09± 0.05 IU compared to treated ones; however, the differences in GR activities in rats given low doses of MTX, either alone or in combination with omega-3 (sub-groups X1 and Y1), were not statistically significant. On the other hand, rats in sub-groups X3 and Y3 showed the lowest GR activities of 34.59 ± 0.63 IU and 37.15 ±0.01, respectively, with statistically significant differences from other sub-groups. 3.2. Effects of MTX and MTX-omega-3 combination on mitotic index of bone marrow cells Figure (1) shows a significant decrease in the MI in all treated groups compared to control. In addition, there was a reverse association between MTX concentration and MI, where rats treated with the highest dose of MTX (sub-group X3) showed a significant decrease in MI compared to all other treated rat sub-groups. In addition, rats in sub-groups treated with MTX and omega-3 (sub-groups Y1, Y2 and Y3) showed a significant increase in MI compared to their counterpart rats receiving MTX only. Table 1. Activity of antioxidant enzymes in rats treated with MTX and MTX-omega-3 Group Enzymatic activity (mean± SE) SOD (IU) CAT (IU) GR (µmol) Control 6.41±0.02 a 39.38±0.02 a 53.09±0.05 a X1 (0.05 mg MTX/ kg) 5.33±0.01 b 37.81±0.01 c 51.12±0.06 a Y1 (0.05 mg MTX + 300 mg omega-3/ kg) 6.08±0.04 a 38.40±0.02 b 51.97±0.03 a X2 (0.125 mg MTX/ kg) 4.29±0.01 cd 33.13±0.01 e 42.34±0.03 b Y2 (0.125 mg MTX + 300 mg omega-3/ kg) 4.99±0.40 b 36.68±0.02 d 43.02±3.04 b X3 (0.25 mg MTX/ kg) 3.93±0.11 d 30.97±0.03 g 34.59±0.63 c Y3 (0.25 mg MTX + 300 mg omega-3/ kg) 4.47±0.02 c 32.12±0.06 f 37.15±0.01 c SE, Standard error; IU, international unit; SOD, superoxide dismutase; CAT, catalase; GR, glutathione reductase; *statistically significant at P < 0.05; **statistically significant at P < 0.01. Means with different letters within the same column showed a statistically significant difference. 3.3. Effects of MTX and MTX-omega-3 combination on chromosomal aberrations of bone marrow cells Rats receiving higher concentrations of MTX (sub-group X3) showed a significant increase in all types of chromosomal aberrations, i.e., chromatid gaps, chromosome gaps, chromatid breaks, chromosome breaks, deletions and simple fragments (Figure 2 and Table 2) than those of the control group or other treated sub-groups. All rats treated with MTX-omega-3 combination showed a significant decrease in almost all types of chromosomal aberrations compared to their counterpart rats receiving MTX alone (Table 2). Figure 1. Effect of MTX and MTX-omega-3 on the MI of bone marrow cells of treated rats compared to the controls. The groups X1 (0.05 MTX), X2 (0.125 MTX) and X3 (0.250 MTX) were compared to the control group, while the groups Y1 (0.05 MTX+ omega-3), Y2 (0.125 MTX+ omega-3) and Y3 (0.25 MTX+ omega-3) were compared to X1, X2 and X3, respectively. Figure 2. Effect of MTX and MTX-omega-3 on chromosomal aberration as seen under fluorescence microscope after staining with acridine orange: (1) a simple fragment; (2) a chromatid gap; (3) a chromosomal gap (A) and a chromosomal break (B). 4. Discussion The present experiment reveals that the addition of omega-3 to MTX alleviates its effects on the activities of the antioxidant enzymes CAT, SOD and GR, and decreases the MI as well as all types of chromosomal aberrations in the bone marrow cells. Daham et al. [16] showed that the decline in antioxidants associated with chemotherapy is attributed to the increase in lipid peroxidation caused by these kinds of drugs, which increase the level of free radicals. In addition, Weijl et al. [17] showed that some chemotherapeutic drugs have a negative effect on the antioxidant levels such as GR, whose activity decreases as a result of its involvement in many cellular processes such as cell defenses against the toxicity of some compounds. Al-Dalawy et al. [18] found that the decrease in the level of SOD is an evidence of its increased activity due to the increased release of free radicals. MTX causes an increase in the release of free radicals, including the OH radical that causes direct damage to DNA [16]. Al-Helaly [19] showed that the amount of food taken has an effect on antioxidants, where nutritional deficiency decreases the antioxidant levels, thus increasing free radicals that cause damage to DNA. Table 2. Chromosomal aberrations of bone marrow cells in rats treated with MTX and MTX-omega-3 Group Type of chromosomal aberration(mean ± SE) Chromatid gap Chromosome Gap Chromatid breaks Chromosome breaks Deletion Simple Fragments Chromosomal aberration (%) Control 1.33±0.33 e 0.00±0.00 e 1.67±0.33 c 0.33±0.15 c 0.00±0.00 0.67±0.33 cd 0.04±0.005 f X1 2.75±0.47 cd 1.50±0.28 cd 2.50±0.64 bc 1.00±0.41 bc 0.50±0.28 bc 0.75±0.25 bcd 0.09±0.02 de Y1 1.75±0.47 de 0.75±0.25 de 1.50±0.28 c 1.00±0.00 bc 0.75±0.25 abc 0.75±0.25 abc 0.065±0.005 ef X2 4.67±0.33 b 2.67±0.33 ab 2.67±0.33 bc 1.67±0.33 ab 0.67±0.33 abc 1.67±0.33 ab 0.14±0.006 bc Y2 3.00±0.00 c 2.00±0.00 bc 3.00±0.057 bc 1.33±0.33 b 0.67±0.33 abc 0.33±0.15 d 0.106±0.003 cd X3 6.80±0.37 a 3.00±0.31 a 4.60±0.74 a 2.40±0.24 a 1.40±0.24 a 1.80±0.37 a 0.20±0.017 a Y3 5.60±0.40 ab 2.40±0.24 ab 3.60±0.24 ab 1.80±0.20 ab 1.20±0.20 ab 1.40±0.24 abc 0.16±0.003 b LSD 1.231** 0.814** 0.602** 0.841** 0.774* 0.941** 3.499* SE, Standard error; * statistically significant at P < 0.05; ** statistically significant at P < 0.01. Means with different letters within the same column showed a statistically significant difference. X1 (0.05 mg MTX/ kg); X2 (0.125 mg MTX/ kg); X3 (0.25 mg MTX/ kg); Y1 (0.05 mg MTX + 300 mg omega-3/ kg); Y2 (0.125 mg MTX + 300 mg omega-3/ kg); Y3 (0.25 mg MTX + 300 mg omega-3/ kg). In the present study, the intraperitoneal administration of MTX to rats also caused a decrease in the MI of bone marrow and a significant increase in the rate of abnormal chromosomal aberration compared to the control rats. This finding is consistent with those reported previously [20], [21]. The effect of MTX can be attributed to its ability to interfere with the genetic material, leading to the appearance of toxic and mutagenic consequences. Rushworth et al. [22] reported that MTX leads to a lack of dihydrofolate reductase, which is the key to the growth and cell division processes. This, in turn, leads to a reduction of the nucleotides involved in the building of DNA and, therefore, to a stop or obstruction of the repair mechanisms of the damaged DNA. In addition, Wong and Choi [23] concluded that MTX inhibits the action of enzymes controlling the purine metabolism, which leads to the accumulation of adenosine in addition to the damage of the molecule itself and to the occurrence of chromosomal aberrations. Jafer et al. [24] reported the ability of MTX to induce chromosomal aberration in humans or animals by preventing the repair of DNA and affecting the proteins found in chromosomes. These findings were also confirmed by Hussain et al. [25], who found that MTX causes an increase in chromosomal aberrations. In the present study, the MI showed a significant increase in rat sub-groups treated with MTX-omega-3 combination, but there was a decrease in the rate of chromosomal aberration, which confirms the role of omega-3 unsaturated fatty acids in protecting the cell from the impact of free radicals [26], [27]. Attia and Nasr [28] reported the antioxidant effect of omega-3, which was attributed to the reduction in lipid peroxidation and the increase in SOD and CAT or the stimulation of GR. It is noteworthy that GR leads to the synthesis of reduced glutathione, which is important in the defense of the cell against toxic substances and the prevention of the occurrence of mutations [29]. 5. Conclusions MTX significantly decreases the activity of enzymatic antioxidants, reduce the MI and increase the chromosomal aberrations of all types in bone marrow. This gives further evidence on the genotoxic effects of MTX on the bone marrow. On the other hand, omega-3 shows a protective effect by reducing the toxic and mutagenic effects of MTX. Acknowledgments The authors thank the staff of the Water and Environment Directorate, Ministry of Science and Technology, Baghdad, Iraq for their cooperation. They also thank Dr. Jasim Al-Niami for his technical and scientific guidance. Authors' contributions INA, MMA and ASM contributed to the study design and analyzed data. All authors contributed to the manuscript drafting and revising and approved the final submission. Competing interests The authors declare that they have no competing interests associated with this article. Ethical approval The ethical clearance of this study was obtained from the Ethics Committee of the College of Science, University of Anbar (Reference No. A. D. 51 in 30/8/2015). References Yuen CW, Winter ME. Methotrexate (MTX). In: Basic clinical pharmacokinetics, Winter ME, editor. Philadelphia, USA: Lippincott Williams & Wilkins; 2010. p.p. 304–25. Google Scholar Vezmar S, Becker A, Bode U, Jaehde U. Biochemical and clinical aspects of methotrexate neurotoxicity. Chemotherapy 2003; 49: 92–104. DOI PubMed - Google Scholar Tian H, Cronstein BN. Understanding the mechanisms of action of methotrexate implications for the treatment of rheumatoid arthritis. Bull NYU Hosp Jt Dis 2007; 65: 168–73. PubMed - Google Scholar El-Khayat Z, Rasheed WI, Elias T, Hussein J, Oraby F, Badawi M, et al. Protective effect of either dietary or pharmaceutical n-3 fatty acids on bone loss in ovariectomized rats. Maced J Med Sci 2010; 3: 9–16. DOI - Google Scholar Kris-Etherton PM, Harris WS, Appel LJ; Nutrition Committee. Fish consumption, fish oil, omega-3 fatty acids and cardiovascular disease. Arterioscler Thromb Vasc Biol 2003; 23: e20–30. DOI - PubMed - Google Scholar Calder PC. Polyunsaturated fatty acids and inflammation. Prostaglandins Leukot Essent Fatty Acids 2006; 75: 197–202. DOI - PubMed - Google Scholar Begin ME, Ells G, Das UN, Horrobin DF. Differential killing of human carcinoma cells supplemented with n-3 and n-6 polyunsaturated fatty acids. J Natl Cancer Inst 1986; 77: 1053–62. DOI - PubMed - Google Scholar Shan B, Cai YZ, Sun M, Corke H. Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. J Agric Food Chem. 2005; 53: 7749–59. DOI - PubMed - Google Scholar Matiax J, Quiles JL, Huertas JR, Battino M. Tissue specific interactions of exercise, dietary fatty acids, and vitamin E in lipid peroxidation. Free Radic Biol Med 1998; 24 : 511–21. DOI - PubMed - Google Scholar Dean RT, Fu S, Stocker R, Davies MJ. Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 1997; 324: 1–8. PubMed - Google Scholar Bashir A, Perham RN, Scrutton NS, Berry A. Altering Kinetic mechanism and enzyme stability by mutagenesis of the dimmer interface of glutathione reductase. Biochem J 1995; 312: 527–33. PubMed - Google Scholar Perret-Gentil MI. Rat Biomethodology. Laboratory Animal Resources Center. The University of Texas at San Antonio. [Cited 1 Feb. 2015]. Available from: https://www.utdallas.edu/research/docs/rat_biomethodology/ Allen JW, Shuler CF, Menders RW, Olatt SA. A simplified technique for in vivo analysis of sister chromatid exchange using 50 bromodeoxyuridine tablets. Cytogenet Cell Genet 1977; 18: 231–7. DOI PubMed - Google Scholar Forsum U, Hallén A. Acridine orange staining of urethral and cervical smears for the diagnosis of gonorrhea. Acta Derm Venereol 1979; 59: 281–2. PubMed - Google Scholar Statistical Analysis System user's guide. Version 9.1. Cary, NC, USA: SAS Institute Inc.; 2012. Daham HH, Rahim SM, Al-Hmesh MJ. The effect of radiotherapy and chemotherapy in several physiological and biochemical parameters in cancer patients. Tikrit J Pure Sci 2012; 17: 83–91. Weijl N, Elseendoorm TJ, Lentjes EG, Hopman CD, Wipkink-Bakker A, Zwinderman AH, et al. Supplementation with antioxidant micronutrients and chemotherapy-induced toxicity in cancer patients treated with cisplatin-based chemotherapy: a randomised, double-blind placebo-controlled study. Eur J Cancer 2004; 40: 1713–23. DOI - PubMed - Google Scholar Al-Dalawy SS, Al-Salehy FK, Al-Sanafi AI. Efficient enzymatic antioxidants for oxidative stress syndrome in patients with hypertension. J Dhi Qar Sci 2008; 2: 32–3. Al-Helaly LA. Some antioxidant enzymes in workers exposed to pollutants. Raf J Sci 2011; 22: 29–38. Google Scholar Othman GO. Protective effects of linseed oil against methotrexate induced genotoxicity in bone marrow cells of albino mice Mus musculus. ZJPAS. 2016; 28: 49–53. Google Scholar Ashoka CH, Vijayalaxmi KK. Cytogenetic effects of methotrexate in bone marrow cells of Swiss albino mice. Int J Sci Res Edu 2016; 4: 4828–34. DOI - Google Scholar Rushworth D, Mathews A, Alpert A, Cooper Dihydrofolate reductase and thymidylate synthase transgenes resistant to methotrexate interact to permit novel transgene regulation. J Biol Chem 2015; 290: 22970–9. DOI - PubMed - Google Scholar Wong PT, Choi SK. Mechanisms and implications of dual-acting methotrexate in folate-targeted nanotherapeutic delivery. Int J Mol Sci 2015; 16: 1772–90. DOI - PubMed - Google Scholar Jafer ZMT, Shubber EK, Amash HS. Cytogenetic analysis of Chinese hamster lung fibroblasts spontaneously resistant to methotrexate. Nucleus 2001; 44: 28–35. Google Scholar Hussain ZK, AL-Mhdawi F, AL-Bakri N. Effect of methotrexate drug on some parameters of kidney in newborn mice. Iraqi J Sci 2014; 55: 968–73. Google Scholar Ghazi-Khansari M, Mohammadi-Bardbori A. Captopril ameliorates toxicity induced by paraquat in mitochondria isolated from the rat liver. Toxicol in Vitro 2007; 21: 403–7. DOI - PubMed - Google Scholar Dinic-olivira RJ, Sousa C, Remiao F, Durte JA, Navarro SA, Bastos L, et al. Full survival of paraquat-exposed rats after treatment with sodium salicylate. Free Radic Biol Med 2007; 42: 1017–28. DOI - PubMed - Google Scholar Attia AM, Nasr HM. Dimethoate-induced changes in biochemical parameters of experimental rat serum and its neutralization by black seed (Nigella sativa) oil. Slovak J Anim Sci 2009; 42: 87–94. Google Scholar Al-Rubaie AH.M. Effect of natural honey and mitomycin C on the effectiveness of the enzyme glutathione reductase in mice Mus musculus. Babylon Uni J 2008; 15: 1385–91.
APA, Harvard, Vancouver, ISO, and other styles
23

Alves, Luiziene Soares, Larissa Gasparelo Morais, Munir Mauad, Diego de Mello Conde de Brito, André Marques dos Santos, Rosane Nora Castro, and Sonia Regina de Souza. "Grain production, fatty acid and oil profile from sunflower cultivars receiving different boron doses." Bioscience Journal 36, no. 4 (March 17, 2020). http://dx.doi.org/10.14393/bj-v36n4a2020-48018.

Full text
Abstract:
Among the main factors that affect the productivity of crops is deficiency of nutrients. Boron (B) is an essential micronutrient for plants, and sunflower is one of the most sensitive plants to deficiency of the element. Its inadequate supply can impair sunflower plants’ metabolism and grain and oil yield. The objective of this study was to assess the effect of different boron doses on the production of sunflower grains and the content and quality of the oil obtained from them. The experimental design was randomized blocks in a factorial scheme with three cultivars (Helio251, BRS323, BRS324) and four B doses (0, 2.5, 5.0, 8.0 kg ha-1). Two harvests were performed, the first in the R5 reproductive stage and the second at the end of the R9 cycle. In both cases, the levels of B in the capitulum were measured. At the end of the cycle, the grain yield, crude protein and oil content in the grains and fatty acid profile were analyzed. The cultivars responded differently to the treatments with B. The boron fertilization influenced the grain yield and oil content, but was not correlated with the profile of the majority unsaturated fatty acids and crude protein in the grains. Variations were observed in the fatty acid profile between the cultivars, an important aspect that needs to be evaluated according to the purpose of the production. In soil with lower availability of B, cultivar BRS323 was most efficient in B uptake, grain yield and oil content and quality.
APA, Harvard, Vancouver, ISO, and other styles
24

Whiley, Penny A. F., Liza O’Donnell, Sarah C. Moody, David J. Handelsman, Julia C. Young, Elizabeth A. Richards, Kristian Almstrup, Patrick S. Western, and Kate L. Loveland. "Activin A Determines Steroid Levels and Composition in the Fetal Testis." Endocrinology 161, no. 7 (April 10, 2020). http://dx.doi.org/10.1210/endocr/bqaa058.

Full text
Abstract:
Abstract Activin A promotes fetal mouse testis development, including driving Sertoli cell proliferation and cord morphogenesis, but its mechanisms of action are undefined. We performed ribonucleic acid sequencing (RNA-seq) on testicular somatic cells from fetal activin A-deficient mice (Inhba KO) and wildtype littermates at embryonic day (E) E13.5 and E15.5. Analysis of whole gonads provided validation, and cultures with a pathway inhibitor discerned acute from chronic effects of altered activin A bioactivity. Activin A deficiency predominantly affects the Sertoli cell transcriptome. New candidate targets include Minar1, Sel1l3, Vnn1, Sfrp4, Masp1, Nell1, Tthy1 and Prss12. Importantly, the testosterone (T) biosynthetic enzymes present in fetal Sertoli cells, Hsd17b1 and Hsd17b3, were identified as activin-responsive. Activin-deficient testes contained elevated androstenedione (A4), displayed an Inhba gene dose-dependent A4/T ratio, and contained 11-keto androgens. The remarkable accumulation of lipid droplets in both Sertoli and germ cells at E15.5 indicated impaired lipid metabolism in the absence of activin A. This demonstrated for the first time that activin A acts on Sertoli cells to determine local steroid production during fetal testis development. These outcomes reveal how compounds that perturb fetal steroidogenesis can function through cell-specific mechanisms and can indicate how altered activin levels in utero may impact testis development.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography