Academic literature on the topic 'Borne inférieure asymptotique'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Borne inférieure asymptotique.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Borne inférieure asymptotique"

1

Cori, Robert, and Claire Mathieu. "Indecomposable permutations with a given number of cycles." Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings vol. AK,..., Proceedings (January 1, 2009). http://dx.doi.org/10.46298/dmtcs.2750.

Full text
Abstract:
International audience A permutation $a_1a_2 \ldots a_n$ is $\textit{indecomposable}$ if there does not exist $p \lt n$ such that $a_1a_2 \ldots a_p$ is a permutation of $\{ 1,2, \ldots ,p\}$. We compute the asymptotic probability that a permutation of $\mathbb{S}_n$ with $m$ cycles is indecomposable as $n$ goes to infinity with $m/n$ fixed. The error term is $O(\frac{\log(n-m)}{ n-m})$. The asymptotic probability is monotone in $m/n$, and there is no threshold phenomenon: it degrades gracefully from $1$ to $0$. When $n=2m$, a slight majority ($51.1 \ldots$ percent) of the permutations are indecomposable. We also consider indecomposable fixed point free involutions which are in bijection with maps of arbitrary genus on orientable surfaces, for these involutions with $m$ left-to-right maxima we obtain a lower bound for the probability of being indecomposable. Une permutation $a_1a_2 \ldots a_n$ est $\textit{indécomposable}$, s’il n’existe pas de $p \lt n$ tel que $a_1a_2 \ldots a_p$ est une permutation de $\{ 1,2, \ldots ,p\}$. Nous calculons la probabilité pour qu’une permutation de $\mathbb{S}_n$ ayant $m$ cycles soit indécomposable et plus particulièrement son comportement asymptotique lorsque $n$ tend vers l’infini et que $m=n$ est fixé. Cette valeur décroît régulièrement de $1$ à $0$ lorsque $m=n$ croît, et il n’y a pas de phénomène de seuil. Lorsque $n=2m$, une faible majorité ($51.1 \ldots$ pour cent) des permutations sont indécomposables. Nous considérons aussi les involutions sans point fixe indécomposables qui sont en bijection avec les cartes de genre quelconque plongées dans une surface orientable, pour ces involutions ayant $m$ maxima partiels (ou records) nous obtenons une borne inférieure pour leur probabilité d’êtres indécomposables.
APA, Harvard, Vancouver, ISO, and other styles
2

Beaton, Nicholas R., Filippo Disanto, Anthony J. Guttmann, and Simone Rinaldi. "On the enumeration of column-convex permutominoes." Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings vol. AO,..., Proceedings (January 1, 2011). http://dx.doi.org/10.46298/dmtcs.2895.

Full text
Abstract:
International audience We study the enumeration of \emphcolumn-convex permutominoes, i.e. column-convex polyominoes defined by a pair of permutations. We provide a direct recursive construction for the column-convex permutominoes of a given size, based on the application of the ECO method and generating trees, which leads to a functional equation. Then we obtain some upper and lower bounds for the number of column-convex permutominoes, and conjecture its asymptotic behavior using numerical analysis. Nous étudions l'énumeration des \emphpermutominos verticalement convexes, c.à.d. les polyominos verticalement convexes définis par un couple de permutations. Nous donnons une construction recursive directe pour ces permutominos de taille fixée, basée sur une application de la méthode ECO et les arbres de génération, qui nous amène à une équat ion fonctionelle. Ensuite nous obtenons des bornes superieures et inférieures pour le nombre de ces permutominos convexes et nous conjecturons leur comportement asymptotique à l'aide d'analyses numériques.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Borne inférieure asymptotique"

1

Cai, Jiatu. "Méthodes asymptotiques en contrôle stochastique et applications à la finance." Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCC338.

Full text
Abstract:
Dans cette thèse, nous étudions plusieurs problèmes de mathématiques financières liés à la présence d’imperfections sur les marchés. Notre approche principale pour leur résolution est l’utilisation d’un cadre asymptotique pertinent dans lequel nous parvenons à obtenir des solutions approchées explicites pour les problèmes de contrôle associés. Dans la première partie de cette thèse, nous nous intéressons à l’évaluation et la couverture des options européennes. Nous considérons tout d’abord la problématique de l’optimisation des dates de rebalancement d’une couverture à temps discret en présence d’une tendance dans la dynamique du sous-jacent. Nous montrons que dans cette situation, il est possible de générer un rendement positif tout en couvrant l’option et nous décrivons une stratégie de rebalancement asymptotiquement optimale pour un critère de type moyenne-variance. Ensuite, nous proposons un cadre asymptotique pour la gestion des options européennes en présence de coûts de transaction proportionnels. En s’inspirant des travaux de Leland, nous développons une méthode alternative de construction de portefeuilles de réplication permettant de minimiser les erreurs de couverture. La seconde partie de ce manuscrit est dédiée à la question du suivi d’une cible stochastique. L’objectif de l’agent est de rester proche de cette cible tout en minimisant le coût de suivi. Dans une asymptotique de coûts petits, nous démontrons l’existence d’une borne inférieure pour la fonction valeur associée à ce problème d’optimisation. Cette borne est interprétée en terme du contrôle ergodique du mouvement brownien. Nous fournissons également de nombreux exemples pour lesquels la borne inférieure est explicite et atteinte par une stratégie que nous décrivons. Dans la dernière partie de cette thèse, nous considérons le problème de consommation et investissement en présence de taxes sur le rendement des capitaux. Nous obtenons tout d’abord un développement asymptotique de la fonction valeur associée que nous interprétons de manière probabiliste. Puis, dans le cas d’un marché avec changements de régime et pour un investisseur dont l’utilité est du type Epstein-Zin, nous résolvons explicitement le problème en décrivant une stratégie de consommation-investissement optimale. Enfin, nous étudions l’impact joint de coûts de transaction et de taxes sur le rendement des capitaux. Nous établissons dans ce cadre un système d’équations avec termes correcteurs permettant d’unifier les résultats de [ST13] et[CD13]
In this thesis, we study several mathematical finance problems related to the presence of market imperfections. Our main approach for solving them is to establish a relevant asymptotic framework in which explicit approximate solutions can be obtained for the associated control problems. In the first part of this thesis, we are interested in the pricing and hedging of European options. We first consider the question of determining the optimal rebalancing dates for a replicating portfolio in the presence of a drift in the underlying dynamics. We show that in this situation, it is possible to generate positive returns while hedging the option and describe a rebalancing strategy which is asymptotically optimal for a mean-variance type criterion. Then we propose an asymptotic framework for options risk management under proportional transaction costs. Inspired by Leland’s approach, we develop an alternative way to build hedging portfolios enabling us to minimize hedging errors. The second part of this manuscript is devoted to the issue of tracking a stochastic target. The agent aims at staying close to the target while minimizing tracking efforts. In a small costs asymptotics, we establish a lower bound for the value function associated to this optimization problem. This bound is interpreted in term of ergodic control of Brownian motion. We also provide numerous examples for which the lower bound is explicit and attained by a strategy that we describe. In the last part of this thesis, we focus on the problem of consumption-investment with capital gains taxes. We first obtain an asymptotic expansion for the associated value function that we interpret in a probabilistic way. Then, in the case of a market with regime-switching and for an investor with recursive utility of Epstein-Zin type, we solve the problem explicitly by providing a closed-form consumption-investment strategy. Finally, we study the joint impact of transaction costs and capital gains taxes. We provide a system of corrector equations which enables us to unify the results in [ST13] and [CD13]
APA, Harvard, Vancouver, ISO, and other styles
2

Ménard, Pierre. "Sur la notion d'optimalité dans les problèmes de bandit stochastique." Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30087/document.

Full text
Abstract:
Cette thèse s'inscrit dans les domaines de l'apprentissage statistique et de la statistique séquentielle. Le cadre principal est celui des problèmes de bandit stochastique à plusieurs bras. Dans une première partie, on commence par revisiter les bornes inférieures sur le regret. On obtient ainsi des bornes non-asymptotiques dépendantes de la distribution que l'on prouve de manière très simple en se limitant à quelques propriétés bien connues de la divergence de Kullback-Leibler. Puis, on propose des algorithmes pour la minimisation du regret dans les problèmes de bandit stochastique paramétrique dont les bras appartiennent à une certaine famille exponentielle ou non-paramétrique en supposant seulement que les bras sont à support dans l'intervalle unité, pour lesquels on prouve l'optimalité asymptotique (au sens de la borne inférieure de Lai et Robbins) et l'optimalité minimax. On analyse aussi la complexité pour l'échantillonnage séquentielle visant à identifier la distribution ayant la moyenne la plus proche d'un seuil fixé, avec ou sans l'hypothèse que les moyennes des bras forment une suite croissante. Ce travail est motivé par l'étude des essais cliniques de phase I, où l'hypothèse de croissance est naturelle. Finalement, on étend l'inégalité de Fano qui contrôle la probabilité d'évènements disjoints avec une moyenne de divergences de Kullback-leibler à des variables aléatoires arbitraires bornées sur l'intervalle unité. Plusieurs nouvelles applications en découlent, les plus importantes étant une borne inférieure sur la vitesse de concentration de l'a posteriori Bayésien et une borne inférieure sur le regret pour un problème de bandit non-stochastique
The topics addressed in this thesis lie in statistical machine learning and sequential statistic. Our main framework is the stochastic multi-armed bandit problems. In this work we revisit lower bounds on the regret. We obtain non-asymptotic, distribution-dependent bounds and provide simple proofs based only on well-known properties of Kullback-Leibler divergence. These bounds show in particular that in the initial phase the regret grows almost linearly, and that the well-known logarithmic growth of the regret only holds in a final phase. Then, we propose algorithms for regret minimization in stochastic bandit models with exponential families of distributions or with distribution only assumed to be supported by the unit interval, that are simultaneously asymptotically optimal (in the sense of Lai and Robbins lower bound) and minimax optimal. We also analyze the sample complexity of sequentially identifying the distribution whose expectation is the closest to some given threshold, with and without the assumption that the mean values of the distributions are increasing. This work is motivated by phase I clinical trials, a practically important setting where the arm means are increasing by nature. Finally we extend Fano's inequality, which controls the average probability of (disjoint) events in terms of the average of some Kullback-Leibler divergences, to work with arbitrary unit-valued random variables. Several novel applications are provided, in which the consideration of random variables is particularly handy. The most important applications deal with the problem of Bayesian posterior concentration (minimax or distribution-dependent) rates and with a lower bound on the regret in non-stochastic sequential learning
APA, Harvard, Vancouver, ISO, and other styles
3

El, Korso Mohammed Nabil, and Korso Mohammed Nabil El. "Analyse de performances en traitement d'antenne. : bornes inférieures de l'erreur quadratique moyenne et seuil de résolution limite." Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00625681.

Full text
Abstract:
Ce manuscrit est dédié à l'analyse de performances en traitement d'antenne pour l'estimation des paramètres d'intérêt à l'aide d'un réseau de capteurs. Il est divisé en deux parties :- Tout d'abord, nous présentons l'étude de certaines bornes inférieures de l'erreur quadratique moyenne liées à la localisation de sources dans le contexte champ proche. Nous utilisons la borne de Cramér-Rao pour l'étude de la zone asymptotique (notamment en terme de rapport signal à bruit avec un nombre fini d'observations). Puis, nous étudions d'autres bornes inférieures de l'erreur quadratique moyenne qui permettent de prévoir le phénomène de décrochement de l'erreur quadratique moyenne des estimateurs (on cite, par exemple, la borne de McAulay-Seidman, la borne de Hammersley-Chapman-Robbins et la borne de Fourier Cramér-Rao).- Deuxièmement, nous nous concentrons sur le concept du seuil statistique de résolution limite, c'est-à-dire, la distance minimale entre deux signaux noyés dans un bruit additif qui permet une "correcte" estimation des paramètres. Nous présentons quelques applications bien connues en traitement d'antenne avant d'étendre les concepts existants au cas de signaux multidimensionnels. Par la suite, nous étudions la validité de notre extension en utilisant un test d'hypothèses binaire. Enfin, nous appliquons notre extension à certains modèles d'observation multidimensionnels
APA, Harvard, Vancouver, ISO, and other styles
4

El, Korso Mohammed Nabil. "Analyse de performances en traitement d'antenne : bornes inférieures de l'erreur quadratique moyenne et seuil de résolution limite." Thesis, Paris 11, 2011. http://www.theses.fr/2011PA112074/document.

Full text
Abstract:
Ce manuscrit est dédié à l’analyse de performances en traitement d’antenne pour l’estimation des paramètres d’intérêt à l’aide d’un réseau de capteurs. Il est divisé en deux parties :– Tout d’abord, nous présentons l’étude de certaines bornes inférieures de l’erreur quadratique moyenne liées à la localisation de sources dans le contexte champ proche. Nous utilisons la borne de Cramér-Rao pour l’étude de la zone asymptotique (notamment en terme de rapport signal à bruit avec un nombre fini d’observations). Puis, nous étudions d’autres bornes inférieures de l’erreur quadratique moyenne qui permettent de prévoir le phénomène de décrochement de l’erreur quadratique moyenne des estimateurs (on cite, par exemple, la borne de McAulay-Seidman, la borne de Hammersley-Chapman-Robbins et la borne de Fourier Cramér-Rao).– Deuxièmement, nous nous concentrons sur le concept du seuil statistique de résolution limite, c’est-à-dire, la distance minimale entre deux signaux noyés dans un bruit additif qui permet une ”correcte” estimation des paramètres. Nous présentons quelques applications bien connues en traitement d’antenne avant d’étendre les concepts existants au cas de signaux multidimensionnels. Par la suite, nous étudions la validité de notre extension en utilisant un test d’hypothèses binaire. Enfin, nous appliquons notre extension à certains modèles d’observation multidimensionnels
This manuscript concerns the performance analysis in array signal processing. It can bedivided into two parts :- First, we present the study of some lower bounds on the mean square error related to the source localization in the near eld context. Using the Cramér-Rao bound, we investigate the mean square error of the maximum likelihood estimator w.r.t. the direction of arrivals in the so-called asymptotic area (i.e., for a high signal to noise ratio with a nite number of observations.) Then, using other bounds than the Cramér-Rao bound, we predict the threshold phenomena.- Secondly, we focus on the concept of the statistical resolution limit (i.e., the minimum distance between two closely spaced signals embedded in an additive noise that allows a correct resolvability/parameter estimation.) We de ne and derive the statistical resolution limit using the Cramér-Rao bound and the hypothesis test approaches for the mono-dimensional case. Then, we extend this concept to the multidimensional case. Finally, a generalized likelihood ratio test based framework for the multidimensional statistical resolution limit is given to assess the validity of the proposed extension
APA, Harvard, Vancouver, ISO, and other styles
5

Bacharach, Lucien. "Caractérisation des limites fondamentales de l'erreur quadratique moyenne pour l'estimation de signaux comportant des points de rupture." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS322/document.

Full text
Abstract:
Cette thèse porte sur l'étude des performances d'estimateurs en traitement du signal, et s'attache en particulier à étudier les bornes inférieures de l'erreur quadratique moyenne (EQM) pour l'estimation de points de rupture, afin de caractériser le comportement d'estimateurs, tels que celui du maximum de vraisemblance (dans le contexte fréquentiste), mais surtout du maximum a posteriori ou de la moyenne conditionnelle (dans le contexte bayésien). La difficulté majeure provient du fait que, pour un signal échantillonné, les paramètres d'intérêt (à savoir les points de rupture) appartiennent à un espace discret. En conséquence, les résultats asymptotiques classiques (comme la normalité asymptotique du maximum de vraisemblance) ou la borne de Cramér-Rao ne s'appliquent plus. Quelques résultats sur la distribution asymptotique du maximum de vraisemblance provenant de la communauté mathématique sont actuellement disponibles, mais leur applicabilité à des problèmes pratiques de traitement du signal n'est pas immédiate. Si l'on décide de concentrer nos efforts sur l'EQM des estimateurs comme indicateur de performance, un travail important autour des bornes inférieures de l'EQM a été réalisé ces dernières années. Plusieurs études ont ainsi permis de proposer des inégalités plus précises que la borne de Cramér-Rao. Ces dernières jouissent en outre de conditions de régularité plus faibles, et ce, même en régime non asymptotique, permettant ainsi de délimiter la plage de fonctionnement optimal des estimateurs. Le but de cette thèse est, d'une part, de compléter la caractérisation de la zone asymptotique (en particulier lorsque le rapport signal sur bruit est élevé et/ou pour un nombre d'observations infini) dans un contexte d'estimation de points de rupture. D'autre part, le but est de donner les limites fondamentales de l'EQM d'un estimateur dans la plage non asymptotique. Les outils utilisés ici sont les bornes inférieures de l’EQM de la famille Weiss-Weinstein qui est déjà connue pour être plus précise que la borne de Cramér-Rao dans les contextes, entre autres, de l’analyse spectrale et du traitement d’antenne. Nous fournissons une forme compacte de cette famille dans le cas d’un seul et de plusieurs points de ruptures puis, nous étendons notre analyse aux cas où les paramètres des distributions sont inconnus. Nous fournissons également une analyse de la robustesse de cette famille vis-à-vis des lois a priori utilisées dans nos modèles. Enfin, nous appliquons ces bornes à plusieurs problèmes pratiques : données gaussiennes, poissonniennes et processus exponentiels
This thesis deals with the study of estimators' performance in signal processing. The focus is the analysis of the lower bounds on the Mean Square Error (MSE) for abrupt change-point estimation. Such tools will help to characterize performance of maximum likelihood estimator in the frequentist context but also maximum a posteriori and conditional mean estimators in the Bayesian context. The main difficulty comes from the fact that, when dealing with sampled signals, the parameters of interest (i.e., the change points) lie on a discrete space. Consequently, the classical large sample theory results (e.g., asymptotic normality of the maximum likelihood estimator) or the Cramér-Rao bound do not apply. Some results concerning the asymptotic distribution of the maximum likelihood only are available in the mathematics literature but are currently of limited interest for practical signal processing problems. When the MSE of estimators is chosen as performance criterion, an important amount of work has been provided concerning lower bounds on the MSE in the last years. Then, several studies have proposed new inequalities leading to tighter lower bounds in comparison with the Cramér-Rao bound. These new lower bounds have less regularity conditions and are able to handle estimators’ MSE behavior in both asymptotic and non-asymptotic areas. The goal of this thesis is to complete previous results on lower bounds in the asymptotic area (i.e. when the number of samples and/or the signal-to-noise ratio is high) for change-point estimation but, also, to provide an analysis in the non-asymptotic region. The tools used here will be the lower bounds of the Weiss-Weinstein family which are already known in signal processing to outperform the Cramér-Rao bound for applications such as spectral analysis or array processing. A closed-form expression of this family is provided for a single and multiple change points and some extensions are given when the parameters of the distributions on each segment are unknown. An analysis in terms of robustness with respect to the prior influence on our models is also provided. Finally, we apply our results to specific problems such as: Gaussian data, Poisson data and exponentially distributed data
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography