Dissertations / Theses on the topic 'Borate de zinc hydraté'

To see the other types of publications on this topic, follow the link: Borate de zinc hydraté.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 15 dissertations / theses for your research on the topic 'Borate de zinc hydraté.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Doumert, Bertrand. "Apport de la RMN 1D/2D à l'étude de systèmes inorganiques boratés : caractérisation structurale du réseau vitreux borophosphate et réactivité des retardateurs de flamme APP-ZBH." Electronic Thesis or Diss., Université de Lille (2022-....), 2023. https://pepite-depot.univ-lille.fr/ToutIDP/EDSMRE/2023/2023ULILR067.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La spectroscopie par Résonance Magnétique Nucléaire (RMN) à l'état solide est devenue une technique incontournable pour caractériser les matériaux inorganiques oxydes. Ces dernières années, la résolution des spectres RMN a été significativement améliorée par le développement de spectromètres de plus en plus puissants. Dans le contexte Lillois, cette amélioration de la résolution a particulièrement bénéficié aux études sur les matériaux boratés synthétisés par les différentes équipes de recherche de l'université. L'objectif de cette thèse est de soutenir le développement des études par RMN sur les matériaux boratés préparés localement en montrant notamment les apports des techniques de RMN de corrélation. Deux types de matériaux ont ainsi été sélectionnés pour l'étude : les verres de borophosphate de zinc préparés au LASIRE et les systèmes retardateurs de flamme à base de borate de zinc hydraté et de polyphosphate d'ammonium préparés à l'UMET.Les matériaux vitreux étudiés sont des borophosphates de zinc de composition xB2O3 - (50-x/2)ZnO - (50-x/2)P2O5, connus pour leur faible température de transition vitreuse (Tg) et leur bonne durabilité chimique. Les analyses par spectroscopie RMN avancée 11B et 31P 1D/2D ont permis de relier l'effet de formateur mixte observé sur la Tg avec la structure du réseau vitreux.Les systèmes de retardateur de flamme basés sur le borate de zinc hydraté (ZBH) et le polyphosphate d'ammonium (APP) sont couramment utilisés dans l'industrie. Les analyse par RMN 1D/2D de ce travail ont contribué à la compréhension du mécanisme de dégradation thermique de chaque composé dans un premier temps et à la compréhension de la réactivité entre les deux composés dans un second temps
Solid-state Nuclear Magnetic Resonance (NMR) spectroscopy has become an essential technique for characterizing inorganic oxide materials. In recent years, the resolution of NMR spectra has been significantly improved by the development of increasingly powerful spectrometers. In the Lille context, this improvement in resolution has particularly benefited studies on borate materials synthesized by the university's various research teams. The aim of this thesis is to support the development of NMR studies on locally-prepared borate materials, in particular by demonstrating the benefits of correlation NMR techniques. Two types of materials have been selected for study: zinc borophosphate glasses prepared at LASIRE, and flame-retardant systems based on hydrated zinc borate and ammonium polyphosphate prepared at UMET.The glassy materials studied are zinc borophosphates with the composition xB2O3 - (50-x/2)ZnO - (50-x/2)P2O5, known for their low glass transition temperature (Tg) and good chemical durability. Analyses by 11B and 31P 1D/2D advanced NMR spectroscopy linked the mixed-former effect observed on Tg with the structure of the glassy network.Flame retardant systems based on hydrated zinc borate (ZBH) and ammonium polyphosphate (APP) are commonly used in industry. The 1D/2D NMR analyses in this work have contributed to understanding the thermal degradation mechanism of each compound in the first instance, and to understanding the reactivity between the two compounds in the second
2

Gurhan, Deniz. "Zinc Borate Production In A Batch Reactor." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/3/12606996/index.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Zinc borate is a flame retardant additive used in polymers, wood applications and textile products. There are different types of zinc borate having different chemical composition and structure. In this study, the production of zinc borate that had the molecular formula of 2ZnO.3B2O3.3,5H2O was studied. The aim of this study was to investigate the effects of reaction parameters on the properties of zinc borate that had been synthesized by the reaction of boric acid and zinc oxide at the existence of the seed crystals and to determine the optimum experimental conditions for zinc borate production reaction. Reaction kinetics was also investigated to find a suitable kinetics model. The effect of boric acid to zinc oxide ratio -H3BO3:ZnO ratio- (3:1, 3.5:1, 5:1 and 7:1), the particle size of zinc oxide (10µ
m and 25µ
m), stirring rate (275 rpm, 400 rpm, 800 rpm and 1600 rpm), temperature (75°
, 85°
and 95°
) and size of seed crystals (10µ
m and smaller size) on reaction rate, reaction completion time, composition and particle size distribution of zinc borate were investigated. Experiments were performed in a continuously stirring, temperature controlled batch reactor with a volume of 1.5L. During the experiments samples were taken to be analyzed in regular time intervals. The analyses of the samples gave the concentration change of zinc oxide and boron oxide in the solid as well as the conversion of zinc oxide to zinc borate with respect to time and the rate of reaction was calculated. The products were also analyzed for particle size distribution. The experimental results showed that the reaction rate increased with the increasing H3BO3:ZnO ratio, particle size of zinc oxide, stirring rate and temperature. The reaction completion time was also decreased by increasing H3BO3:ZnO ratio, stirring rate and temperature. The particle size of final product, zinc borate, decreased with increasing stirring rate and size of zinc borate used as seed and increased with increasing particle size of zinc oxide used as reactant. The average particle sizes of the final product zinc borates synthesized at the end of the experiments were ranged between 4.3 µ
m and 16.6 µ
m. The zinc borate production reaction was mainly fitted the unreacted core model for the case of diffusion through product layer controls.
3

Eltepe, Hüdal Emre Balköse Devrim. "The Development of Zinc Borate Production Process/." [s.l.]: [s.n.], 2004. http://library.iyte.edu.tr/tezler/master/kimyamuh/T000499.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Erdoğdu, Cem Aykut Balköse Devrim. "The development of synergistic heat stabilizers for PVC from Zinc Borate-Zinc Phosphate/." [s.l.]: [s.n.], 2004. http://library.iyte.edu.tr/tezler/master/kimyamuh/T000509.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ozkaraca, Ayse Cagil. "Flame Retrdancy Effects Of Zinc Borate And Nanoclay In Abs." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613425/index.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
In this thesis there were two main purposes, the first one being to investigate effects of zinc borate (ZB) on the flammability behavior of ABS when used with and without a traditional brominated flame retardant (BFR) / antimony trioxide (AO) system. The second purpose was to investigate contribution of nanoclays (NC) to the flame retardancy performance of the same traditional BFR compound with various combinations of AO and ZB again in ABS matrix. For these purposes, materials were melt compounded by using a laboratory scale twin-screw extruder, while specimens were produced by injection or compression molding. Flame retardancy of the specimens were investigated by Mass Loss Cone Calorimeter (MLC), Limiting Oxygen Index (LOI) measurements and UL-94 vertical burning tests. Other characterization techniques required in this thesis were
X-ray diffraction analysis, scanning and transmission electron microscopy, thermogravimetric analysis and tensile tests. Studies for the first purpose indicated that almost all flame retardancy parameters were preserved when antimony trioxide were replaced with zinc borate as much as in the ratio of 1:3. Residue analyses revealed that predominant flame retardancy mechanism of traditional system was gas phase action, while zinc borate contributes especially in the condensed phase action by forming thicker and stronger char layer. Investigations for the second purpose basically concluded that use of nanoclays improved all flame retardancy parameters significantly. Residue analyses pointed out that nanoclays especially contribute to the formation of stronger and carbonaceoussilicate char acting as a barrier to heat and flammable gases and retarding volatilization via tortuous pathway. As an additional third purpose in this thesis, usability of three boron compounds (zinc borate ZB, boric acid BA, boron oxide BO) with two traditional flame retardants (organic phosphinate OP and melamine cyanurate MC) in neat PET and recycled PET were also examined leading to some promising results in MLC parameters.
6

Yao, Zhao Yue. "Synthesis, structure, and mechanical properties of lead- and zinc-copper borate glasses." Thesis, Rennes 1, 2016. http://www.theses.fr/2016REN1S080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Le but de ce travail est d'étudier l'effet de la teneur en cuivre et de la valence des atomes de cuivre sur la structure et les propriétés mécanique du verre. Des verres de zinc- et plomb- cuivre borate ont été étudiés. Les changements structurels avec le remplacement de PbO ou ZnO par CuO sont observés par réflectance infrarouge et Raman. L'état d'oxydation, l'environnement du site et la liaison caractéristique d'ions de cuivre ont été étudiés par spectroscopie optique et de résonance de spin électronique. Les propriétés mécaniques ont été déterminées et corrélées à la structure du verre et à sa composition, en mettant l'accent sur les propriétés élastiques, le comportement d'indentation (dureté et micro-fissures), la ténacité et la dépendance à la température de l'élasticité. Le cuivre a une tendance à stabiliser le bore en coordinence trigonale et donne une structure de type métaborate plus homogène. L'ajout d'ions de cuivre au verre métaborate améliore les performances mécaniques (modules d'élasticité et dureté), et diminue la sensibilité à la température ainsi que le taux de ramollissement des verres au plomb. Toutefois, l'ajout d'ions de cuivre dans les verres au zinc a des effets opposés sur ces propriétés. Les changements chimiques à la surface des verres de borates de cuivre et de zinc après traitement thermique sont également étudiés. L'étude par nanoindentation et par rayage montre que la couche cristallisée améliore la résistance mécanique de la surface du verre
The aim of this work is to study the effect of copper content and copper valence on the structural and mechanical properties of glass. Zinc- and lead- copper borate glasses were studied. Their structural changes with the substitution of CuO for ZnO or PbO are followed by Raman and reflectance infrared. The oxidation state, site environment and bonding characteristic of copper ions are studied by optical and electron spin resonance spectroscopy. The mechanical properties were determined and correlated to the glass structure and composition, with a particular emphasis on the elastic properties, sharp indentation behavior (hardness and micro-cracking), toughness and temperature dependence of elasticity. Copper tends to stabilize trigonal boron and gives a more homogeneous metaborate structure. Adding copper ions to the metaborate glass clearly improves the mechanical performance (elastic moduli and hardness), in the meantime decreases the temperature sensitivity and soften rate of lead borate glasses. However, adding copper ions in zinc borate glasses has opposite effects on these properties. The chemistry changes at zinc-copper-borate glass surface after heat-treatment are also studied. Investigation of the nanoindentation and scratch behavior show that the crystallized layer improves the mechanical resistant of glass surface
7

Baltaci, Berk. "Sytnhesis And Characterization Of Nano Zinc Borate And Its Usage As A Flame Retardant For Polymers." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612701/index.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The objectives of this study are to synthesize sub-micron sized zinc borate and to use them with other flame retardant additives in poly(ethylene terephthalate) (PET) based composites. The study can be divided into two parts. In the first part, it was aimed to synthesize sub-micron sized zinc borate (2ZnO.3B2O3.3.5H2O) with the reaction of zinc oxide and boric acid. For this purpose, low molecular weight additives or surfactants were used in the syntheses to prevent the agglomeration and to decrease particle size. Effect of type of surfactant and its concentration
effect of using nano-sized zinc oxide as reactant on the synthesis, properties and morphology of 2ZnO.3B2O3.3.5H2O were investigated. Synthesized zinc borates were characterized by X-Ray diffraction (XRD), Scanning Electron Microscope (SEM) and Thermogravimetric Analysis (TGA). The results were compared with a commercial zinc borate, Firebrake (FB). Characterization results showed that at least in one dimension sub-micron size was obtained and synthesized zinc borates did not lose their hydration water until the process temperature of the composites. In the second part of the study, PET based composites, which mainly included synthesized sub-micron sized zinc borates were prepared by using a co-rotating twin screw extruder and injection molding machine. Synergist materials such as boron phosphate (BP) and triphenyl phosphate (TPP) were also used in the composite preparation. The composites were characterized in terms of flammability and mechanical properties. Flammability of composites was determined by using a Limiting Oxygen Index (LOI) test. Mechanical properties such as tensile strength, elastic modulus, elongation at break and impact strength were also studied. According to LOI and impact tests, the composites containing 3 wt. % BP and 2 wt. % zinc borate which was modified with poly(styrene-co-maleic anhydride), 2PSMA05/3BP and 2PSMA1/3BP have higher LOI and impact values when compared to neat PET.
8

Zhao, Chuanli. "The influence of solid additives on the tribological properties of lubricants." Thesis, University of Hertfordshire, 2013. http://hdl.handle.net/2299/11082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The present work investigates the tribological properties of solid particles as lubricant additives in lubricants. Two types of solid particles, Ceria nanoparticles (CeO2) and Zinc borate ultrafine powders (ZB UFPs), were used as the lubricant additives in this study. The friction and wear behaviours of these lubricant additives in different base lubricants were identified. With an appropriate application of these solid lubricant additives, the friction reduction and wear resistance properties of the lubricant have been successfully improved. Without assistance of surfactant or surface modification, the two types of solid particles behave very differently. Evident performance was observed that pure ZB UFPs were capable of considerably reducing the friction coefficient of sunflower oil and liquid paraffin when they were used as a lubricant additive without further treatment. On the contrary, CeO2 nanoparticles did not show noticeable contribution to friction reduction when they were used as the only additive in water. Only when surfactant Sorbitan monostearate was employed to enhance the dispersibility of CeO2 nanoparticles in water, the application of this additive was capable of reducing friction coefficient of the water based lubricant effectively. Surface modification of the solid particles was carried out to improve the dispersibility of these particles in base lubricants. Oleic acid (OA) and Hexadecyltrimethoxysilane (HDTMOS) were selected as the modification agents. Modified CeO2 nanoparticles and ZB UFPs revealed outstanding wear resistance property. An improvement of up to 15 times was identified although this improvement on wear resistance, in this case, was often companied by a rise in friction coefficient. Tribo-films generated by tribo-chemical reaction were observed on most of the worn surfaces and the formation of this tribo-film appeared to have played an important role in the friction and wear behaviours of a system. A tenacious tribo-film with good surface coverage was only generated on the worn surface when HDTMOS modified solid particles were used as lubricant additives. The mechanical properties and elemental composition of the tribo-film were studied with nano-indentation and energy-dispersive X-ray spectroscopy (EDS). Finally, based on the experimental evidence, different functionalities of CeO2 nanoparticles and ZB UFPs as solid lubricant additives were recognized.
9

Delaval, Damien. "Développement et caractérisation de systèmes intumescents retardateurs de flamme pour polypropylènes recyclés issus des véhicules usagés." Thesis, Lille 1, 2009. http://www.theses.fr/2009LIL10015/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Un des objectifs de ces travaux a été d’évaluer l’effet du recyclage et de polluants (huile moteur (HM) et éthylène glycol (EG)) sur les propriétés d’usage de polypropylènes chocs issus de véhicules usagés. Le recyclage (ici limité à six cycles d’extrusion) n’entraîne pas de modification significative des propriétés mécaniques. L’étude de la cinétique de cristallisation des polymères pollués a montré que l’EG retarde la cristallisation du copolymère. La cinétique de dégradation a permis de simuler et de quantifier les différentes étapes de dégradation des matériaux. Le comportement au feu des polymères est par ailleurs amélioré de manière significative après recyclage et en présence des polluants, particulièrement dans le cas de la pollution à l’HM. Le deuxième axe de l’étude a été consacré à l’ignifugation des matériaux par des systèmes intumescents (formulation à base de polyphosphate d’ammonium (APP) avec et sans agent de synergie (borate de zinc (ZB))). Dans tous les cas les matériaux recyclés et pollués présentent des performances satisfaisantes. Nous avons montré que l’efficacité du char intumescent est gouvernée par sa vitesse de formation et par sa conductivité thermique qui sont influencées positivement par la pollution (avec APP/ZB) et le recyclage (avec APP) (augmentation de la vitesse et diminution de la conductivité thermique). La caractérisation chimique des structures qui se développent dans des conditions de combustion montre la formation d’une structure phosphocarbonée contenant des polyaromatiques, des pyrophosphates et de l’acide phosphorique ainsi que, dans le cas du ZB, des borophosphates (sa formation permet de renforcer la structure intumescente)
The impact of recycling and pollutants (engine oil (EO) and ethylene glycol (EG)) on the intrinsic properties of polypropylene-based materials coming from end-of-life cars was investigated. Recycling (limited here to six extrusion cycles) is not detrimental to the mechanical properties of the polymeric matrices. The crystallization kinetics study realized on the polluted polymers showed that the presence of EG delays crystallization. The degradation kinetics allowed to simulate and quantify the different degradation steps of the materials. Pollutants and recycling also lead to an improvement of the reaction to fire of our copolymer, especially in the case of EO-containing samples. The second part of the work was devoted to the study of the flame retardant properties of our materials provided by ammonium polyphosphate (APP) with or without zinc borate (ZB) (synergistic agent)). In all cases recycled and polluted materials show satisfying performances. It was found that the efficiency of the protective barrier provided by the char is governed by the rapidity of its formation and its thermal conductivity which are positively influenced by EO (with APP/ZB) and recycling (with APP) (increase of the formation rate and decrease of the conductivity). Chemical characterization of the structures formed in a fire scenario reveals the formation of a phosphocarboneous structure containing polyaromatics, pyrophosphates and phosphoric acid and when zinc borate is used, borophosphates which can reinforce the intumescent structure
10

Delaval, Damien. "Développement et caractérisation de systèmes intumescents retardateurs de flamme pour polypropylènes recyclés issus des véhicules usagés." Electronic Thesis or Diss., Lille 1, 2009. http://www.theses.fr/2009LIL10015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Un des objectifs de ces travaux a été d’évaluer l’effet du recyclage et de polluants (huile moteur (HM) et éthylène glycol (EG)) sur les propriétés d’usage de polypropylènes chocs issus de véhicules usagés. Le recyclage (ici limité à six cycles d’extrusion) n’entraîne pas de modification significative des propriétés mécaniques. L’étude de la cinétique de cristallisation des polymères pollués a montré que l’EG retarde la cristallisation du copolymère. La cinétique de dégradation a permis de simuler et de quantifier les différentes étapes de dégradation des matériaux. Le comportement au feu des polymères est par ailleurs amélioré de manière significative après recyclage et en présence des polluants, particulièrement dans le cas de la pollution à l’HM. Le deuxième axe de l’étude a été consacré à l’ignifugation des matériaux par des systèmes intumescents (formulation à base de polyphosphate d’ammonium (APP) avec et sans agent de synergie (borate de zinc (ZB))). Dans tous les cas les matériaux recyclés et pollués présentent des performances satisfaisantes. Nous avons montré que l’efficacité du char intumescent est gouvernée par sa vitesse de formation et par sa conductivité thermique qui sont influencées positivement par la pollution (avec APP/ZB) et le recyclage (avec APP) (augmentation de la vitesse et diminution de la conductivité thermique). La caractérisation chimique des structures qui se développent dans des conditions de combustion montre la formation d’une structure phosphocarbonée contenant des polyaromatiques, des pyrophosphates et de l’acide phosphorique ainsi que, dans le cas du ZB, des borophosphates (sa formation permet de renforcer la structure intumescente)
The impact of recycling and pollutants (engine oil (EO) and ethylene glycol (EG)) on the intrinsic properties of polypropylene-based materials coming from end-of-life cars was investigated. Recycling (limited here to six extrusion cycles) is not detrimental to the mechanical properties of the polymeric matrices. The crystallization kinetics study realized on the polluted polymers showed that the presence of EG delays crystallization. The degradation kinetics allowed to simulate and quantify the different degradation steps of the materials. Pollutants and recycling also lead to an improvement of the reaction to fire of our copolymer, especially in the case of EO-containing samples. The second part of the work was devoted to the study of the flame retardant properties of our materials provided by ammonium polyphosphate (APP) with or without zinc borate (ZB) (synergistic agent)). In all cases recycled and polluted materials show satisfying performances. It was found that the efficiency of the protective barrier provided by the char is governed by the rapidity of its formation and its thermal conductivity which are positively influenced by EO (with APP/ZB) and recycling (with APP) (increase of the formation rate and decrease of the conductivity). Chemical characterization of the structures formed in a fire scenario reveals the formation of a phosphocarboneous structure containing polyaromatics, pyrophosphates and phosphoric acid and when zinc borate is used, borophosphates which can reinforce the intumescent structure
11

Abbali, Zineb. "Etude de la cristallisation de ferrites spinelles dans des verres borates." Grenoble 2 : ANRT, 1988. http://catalogue.bnf.fr/ark:/12148/cb376110731.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

"Zinc Borate Production In A Batch Reactor." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/3/12606996/index.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Rautaray, Rajib Lochan. "Phase Evolution, Powder Morphology and Photoluminescence Behavior of Europium Ion Doped Zinc Oxide and Zinc Oxid-Zinc Borate Powders." Thesis, 2016. http://ethesis.nitrkl.ac.in/8219/1/2016_MT_711CR1107_Phase_Evolution%2C_Powder.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Phosphor materials have performed as a potential candidate in the field of lighting applications. So, in this present work zinc oxide (ZnO) and mixture of ZnO and zinc borate powders were synthesized via borohydride method using sodium borohydride (NaBH4) as a precipitating agent. Thermal behavior of as-synthesized powders was characterized using DSC-TG. In addition, the experimental condition was optimized by varying the parameters such as number of washing and calcination temperature to produce pure ZnO and mixture of ZnO and zinc borate. Moreover, effect of number of washing and precursor salts (such as zinc acetate and zinc chloride) on the phase evolution of ZnO or zinc borate during calcination process was studied in detail. The borohydride derived ZnO-based materials have been used as a host material, and it was doped with 10 mol % trivalent europium (Eu+3) ions for further studying the structure, microstructure and photoluminescence behavior. Structure and powder morphology was studied using XRD and FESEM, respectively. Optical properties of borohydride derived Eu-doped ZnO based powders was studied using UV-vis spectroscopy and photoluminescence spectroscopy. The photoluminescence behavior of Eu-doped pure ZnO as well as Eu-doped ZnO-zinc borate sample was analyzed at an excitation wavelengths of 254 nm, 365nm, and 390 nm. The present research work suggests the potential of borohydride method for the development of Eu-doped pure ZnO and Eu-doped ZnO-zinc borate powders and further proposes the potential of these materials in the field of lighting applications.
14

Paul, Avijit Kumar. "New Anions In The Assembly Of The Open-Framework Compounds : Synthesis, Structure And Properties." Thesis, 2010. https://etd.iisc.ac.in/handle/2005/1928.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Open-framework inorganic materials constitute an important area of study in materials chemistry, because of their potential applications in areas such as sorption and catalysis. After the discovery of nanoporous aluminium phosphates (AlPOs) by Flanigen et al in 1982, there has been a tremendous growth in the area of porous solids that are based on phosphates. Apart from phosphates, phosphites, arsenates, sulfates, sulfites, selenates, selenites etc. have also been investigated. In addition to the different anions, the framework compounds now encompass almost all the elements of the periodic table. The compounds exhibit wide variety and structural diversity. New building units, such as thiosulfate and borate have also been explored as a network builder in the formation of framework structures. In this thesis, the results of the investigations on open-framework metal thiosulfates, metal borates and metal sulfates are presented. The studies are aimed not only at the synthesis of the new compounds based on the new anions, but also their possible applications. In Chapter 1 of the thesis an overview of inorganic open-framework materials with different anions is presented. In Chapter 2 (Part A), the synthesis, structure and transformation of inorganic-organic hybrid open-framework cadmium thiosulfate are presented. The lack of stability of the thiosulfate ion in solution prompted the exploration of new approaches such as low temperature solvothermal methods, use of rigid linkers etc. The transformations of lower to higher dimensional structures have been accomplished. The possible mechanisms for such transformations were investigated. In Part B, the physical and chemical properties of the hybrid cadmium thiosulfate frameworks are presented. The studies indicate that the anionic dyes selectively adsorb on the compounds in the water medium and also desorb reasonably in alcoholic medium. The cadmium thiosulfate compounds appear to be reasonable photocalysts for the photodecomposition of the cationic dyes under UV irradiation as well as under sunlight with good recyclability. The compounds also exhibit heterogeneous catalytic behavior (Lewis acidity) for the cyanosilylation of the imines. In Chapter 3, a new family of organically templated open-framework borate materials is presented. The zinc and aluminoborate structures, prepared in the present study, are rationalized using the HSAB theory. The [B4O9H2] units polymerize differently to form different zinc borate structures. The amine molecules act as a ligand by binding with the metal. The nature of the amine appears to control the dimensionality of the final zinc borate structures. The zinc borate compounds exhibit absorption of UV-light (λ = 365 nm) suggesting that the zinc borate compounds could be exploited for UV-blocking applications. Organically templated aluminoborates have connectivities between the Al3+ ions and the [B5O10] cyclic pentaborate units. The aluminoborate structures exhibit graphite layer and three-dimensional diamond structure. Detailed studies and comparison of the various amine templated open-framework aluminoborate structures reveals subtle relationships between the organic amines (shape and length of the amines) and the final framework structures. In Chapter 3, the synthesis, structure and catalytic studies of a variety of cadmium sulfate phases have been carried out. Polyazaheterocyclic ligands were employed to study their possible role in the formation of such structures. All the compounds have structures built up by the connectivity involving the cadmium octahedra and the sulfate tetrahedra in which the heterocyclic organic molecules act as the ligand. The connectivity between the Cd2+ and (SO4)2− ions form one-, two-and three-dimensionally extended cadmium sulfate phases, though the starting source is cadmium sulfate (CdSO4.8/3H2O) in all the cases. The connectivity between Cd2+ ion and the heterocyclic ligand also gives rise to one-and two-dimensional structures. The interconnectivity between the two units gives rise to the final observed structure. As part of the study, a variety of properties i.e. adsorption-desorption, photocatalytic degradation and cyanosilylation reaction, exhibited by the cadmium sulfate compounds have been investigated and the properties are comparable to the cadmium thiosulfate phases. AlPOs are well known for their many important properties. The wide varieties in their structures and heterogeneous catalytic properties have been extensively investigated. The photocatalytic behaviors, on the contrary, have not been investigated in detail. The photocatalytic properties of the metal-doped AlPOs, for the photodegrdation of organic dyes have been investigated in the Chapter 5. The metal ions (Mg2+, Zn2+ and Co2+) have been substituted in place of Al3+ and Ti4+ in place of both the Al3+ and P5+ in a variety in AlPO structures and the synthesized phases are characterized by a variety of techniques. Photodecomposition studies of organic dye molecules under UV-light were carried out in aqueous medium. The studies suggest that the photocatalytic activity is reasonable and appears to depend on the dopant concentration. Ti-substituted phase exhibits the maximum catalytic activity.
15

Paul, Avijit Kumar. "New Anions In The Assembly Of The Open-Framework Compounds : Synthesis, Structure And Properties." Thesis, 2010. http://hdl.handle.net/2005/1928.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Open-framework inorganic materials constitute an important area of study in materials chemistry, because of their potential applications in areas such as sorption and catalysis. After the discovery of nanoporous aluminium phosphates (AlPOs) by Flanigen et al in 1982, there has been a tremendous growth in the area of porous solids that are based on phosphates. Apart from phosphates, phosphites, arsenates, sulfates, sulfites, selenates, selenites etc. have also been investigated. In addition to the different anions, the framework compounds now encompass almost all the elements of the periodic table. The compounds exhibit wide variety and structural diversity. New building units, such as thiosulfate and borate have also been explored as a network builder in the formation of framework structures. In this thesis, the results of the investigations on open-framework metal thiosulfates, metal borates and metal sulfates are presented. The studies are aimed not only at the synthesis of the new compounds based on the new anions, but also their possible applications. In Chapter 1 of the thesis an overview of inorganic open-framework materials with different anions is presented. In Chapter 2 (Part A), the synthesis, structure and transformation of inorganic-organic hybrid open-framework cadmium thiosulfate are presented. The lack of stability of the thiosulfate ion in solution prompted the exploration of new approaches such as low temperature solvothermal methods, use of rigid linkers etc. The transformations of lower to higher dimensional structures have been accomplished. The possible mechanisms for such transformations were investigated. In Part B, the physical and chemical properties of the hybrid cadmium thiosulfate frameworks are presented. The studies indicate that the anionic dyes selectively adsorb on the compounds in the water medium and also desorb reasonably in alcoholic medium. The cadmium thiosulfate compounds appear to be reasonable photocalysts for the photodecomposition of the cationic dyes under UV irradiation as well as under sunlight with good recyclability. The compounds also exhibit heterogeneous catalytic behavior (Lewis acidity) for the cyanosilylation of the imines. In Chapter 3, a new family of organically templated open-framework borate materials is presented. The zinc and aluminoborate structures, prepared in the present study, are rationalized using the HSAB theory. The [B4O9H2] units polymerize differently to form different zinc borate structures. The amine molecules act as a ligand by binding with the metal. The nature of the amine appears to control the dimensionality of the final zinc borate structures. The zinc borate compounds exhibit absorption of UV-light (λ = 365 nm) suggesting that the zinc borate compounds could be exploited for UV-blocking applications. Organically templated aluminoborates have connectivities between the Al3+ ions and the [B5O10] cyclic pentaborate units. The aluminoborate structures exhibit graphite layer and three-dimensional diamond structure. Detailed studies and comparison of the various amine templated open-framework aluminoborate structures reveals subtle relationships between the organic amines (shape and length of the amines) and the final framework structures. In Chapter 3, the synthesis, structure and catalytic studies of a variety of cadmium sulfate phases have been carried out. Polyazaheterocyclic ligands were employed to study their possible role in the formation of such structures. All the compounds have structures built up by the connectivity involving the cadmium octahedra and the sulfate tetrahedra in which the heterocyclic organic molecules act as the ligand. The connectivity between the Cd2+ and (SO4)2− ions form one-, two-and three-dimensionally extended cadmium sulfate phases, though the starting source is cadmium sulfate (CdSO4.8/3H2O) in all the cases. The connectivity between Cd2+ ion and the heterocyclic ligand also gives rise to one-and two-dimensional structures. The interconnectivity between the two units gives rise to the final observed structure. As part of the study, a variety of properties i.e. adsorption-desorption, photocatalytic degradation and cyanosilylation reaction, exhibited by the cadmium sulfate compounds have been investigated and the properties are comparable to the cadmium thiosulfate phases. AlPOs are well known for their many important properties. The wide varieties in their structures and heterogeneous catalytic properties have been extensively investigated. The photocatalytic behaviors, on the contrary, have not been investigated in detail. The photocatalytic properties of the metal-doped AlPOs, for the photodegrdation of organic dyes have been investigated in the Chapter 5. The metal ions (Mg2+, Zn2+ and Co2+) have been substituted in place of Al3+ and Ti4+ in place of both the Al3+ and P5+ in a variety in AlPO structures and the synthesized phases are characterized by a variety of techniques. Photodecomposition studies of organic dye molecules under UV-light were carried out in aqueous medium. The studies suggest that the photocatalytic activity is reasonable and appears to depend on the dopant concentration. Ti-substituted phase exhibits the maximum catalytic activity.

To the bibliography