Academic literature on the topic 'Boolean of Polyhedral Solids'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Boolean of Polyhedral Solids.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Boolean of Polyhedral Solids"
I.CHUBAREV, ALEXANDER. "ROBUST SET OPERATIONS ON POLYHEDRAL SOLIDS: A FIXED PRECISION APPROACH." International Journal of Computational Geometry & Applications 06, no. 02 (June 1996): 187–204. http://dx.doi.org/10.1142/s0218195996000137.
Full textJUAN-ARINYO, ROBERT, ÀLVAR VINACUA, and PERE BRUNET. "CLASSIFICATION OF A POINT WITH RESPECT TO A POLYHEDRON VERTEX." International Journal of Computational Geometry & Applications 06, no. 02 (June 1996): 157–67. http://dx.doi.org/10.1142/s0218195996000113.
Full textWang, C. C. L. "Approximate Boolean Operations on Large Polyhedral Solids with Partial Mesh Reconstruction." IEEE Transactions on Visualization and Computer Graphics 17, no. 6 (June 2011): 836–49. http://dx.doi.org/10.1109/tvcg.2010.106.
Full textToriya, H., T. Takamura, T. Satoh, and H. Chiyokura. "Boolean operations for solids with free-form surfaces through polyhedral approximation." Visual Computer 7, no. 2-3 (March 1991): 87–96. http://dx.doi.org/10.1007/bf01901179.
Full textMenon, Jai, and Baining Guo. "Free-Form Modeling in Bilateral Brep and CSG Representation Schemes." International Journal of Computational Geometry & Applications 08, no. 05n06 (October 1998): 537–75. http://dx.doi.org/10.1142/s0218195998000278.
Full textLandier, Sâm. "Boolean Operations on Arbitrary Polyhedral Meshes." Procedia Engineering 124 (2015): 200–212. http://dx.doi.org/10.1016/j.proeng.2015.10.133.
Full textDiazzi, Lorenzo, and Marco Attene. "Convex polyhedral meshing for robust solid modeling." ACM Transactions on Graphics 40, no. 6 (December 2021): 1–16. http://dx.doi.org/10.1145/3478513.3480564.
Full textVerroust, A. "Visualization algorithm for CSG polyhedral solids." Computer-Aided Design 19, no. 10 (December 1987): 527–33. http://dx.doi.org/10.1016/0010-4485(87)90089-3.
Full textHoffmann, C. M., J. E. Hopcroft, and M. J. Karasick. "Robust set operations on polyhedral solids." IEEE Computer Graphics and Applications 9, no. 6 (November 1989): 50–59. http://dx.doi.org/10.1109/38.41469.
Full textLandier, Sâm. "Boolean operations on arbitrary polygonal and polyhedral meshes." Computer-Aided Design 85 (April 2017): 138–53. http://dx.doi.org/10.1016/j.cad.2016.07.013.
Full textDissertations / Theses on the topic "Boolean of Polyhedral Solids"
ARRUDA, MARCOS CHATAIGNIER DE. "BOOLEAN OPERATIONS WITH COMPOUND SOLIDS REPRESENTED BY BOUNDARY." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2005. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=6688@1.
Full textTECNOLOGIA EM COMPUTAÇÃO GRÁFICA
Num modelador de sólidos, uma das ferramentas mais poderosas para a criação de objetos tridimensionais de qualquer nível de complexidade geométrica é a aplicação das operações booleanas. Elas são formas intuitivas e populares de combinar sólidos, baseadas nas operações aplicadas a conjuntos. Os tipos principais de operações booleanas comumente aplicadas a sólidos são: união, interseção e diferença. Havendo interesse prático, para garantir que os objetos resultantes possuam a mesma dimensão dos objetos originais, sem partes soltas ou pendentes, o processo de regularização é aplicado. Regularizar significa restringir o resultado de tal forma que apenas volumes preenchíveis possam existir. Na prática, a regularização é realizada classificando-se os elementos topológicos e eliminando-se estruturas de dimensão inferior. A proposta deste trabalho é o desenvolvimento de um algoritmo genérico que permita a aplicação do conjunto de operações booleanas em um ambiente de modelagem geométrica aplicada à análise por elementos finitos e que agregue as seguintes funcionalidades: trabalhar com um número indefinido de entidades topológicas (conceito de Grupo), trabalhar com objetos de dimensões diferentes, trabalhar com objetos non-manifold, trabalhar com objetos não necessariamente poliedrais ou planos e garantir a eficiência, robustez e aplicabilidade em qualquer ambiente de modelagem baseado em representação B-Rep. Neste contexto, apresenta-se a implementação do algoritmo num modelador geométrico pré- existente, denominado MG, seguindo o conceito de programação orientada a objetos e mantendo a interface com o usuário simples e eficiente.
In a solid modeler, one of the most powerful tools to create threedimensional objects with any level of geometric complexity is the application of the Boolean set operations. They are intuitive and popular ways to combine solids, based on the operations applied to sets. The main types of Boolean operations commonly applied to solids are: union, intersection and difference. If there is practical interest, in order to assure that the resulting objects have the same dimension of the original objects, without loose or dangling parts, the regularization process is applied. To regularize means to restrict the result in a way that only filling volumes are allowed. In practice, the regularization is performed classifying the topological elements and removing the lower dimensional structures. The objective of this work is the development of a generic algorithm that allows the application of the Boolean set operations in a geometric modeling environment applied to finite element analysis, which aggregates the following functionalities: working with an undefined number of topological entities (Group concept), working with objects of different dimensions, working with nonmanifold objects, working with objects not necessarily plane or polyhedrical and assuring the efficiency, robustness and applicability in any modeling environment based on B-Rep representation. In this context, the implementation of the algorithm in a pre-existing geometric modeler named MG is presented, using the concept of object oriented programming and keeping the user interface simple and efficient.
VELAYUTHAM, PRAKASH SANKAREN. "AN EFFICIENT ALGORITHM FOR CONVERTING POLYHEDRAL OBJECTS WITH WINGED-EDGE DATA STRUCTURE TO OCTREE DATA STRUCTURE." University of Cincinnati / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1109366602.
Full textSathua, Chandra Sekhar. "Multi-linear Disassembly Path Determination: A Geometric Approach." Thesis, 2022. https://etd.iisc.ac.in/handle/2005/5859.
Full textBiswas, Arpan. "Segmentation And Parameter Assignment In Constructing Continuous Model From Discrete Representation." Thesis, 1997. https://etd.iisc.ac.in/handle/2005/1764.
Full textBiswas, Arpan. "Segmentation And Parameter Assignment In Constructing Continuous Model From Discrete Representation." Thesis, 1997. http://etd.iisc.ernet.in/handle/2005/1764.
Full text(9435722), Pavankumar Vaitheeswaran. "Interface Balance Laws, Growth Conditions and Explicit Interface Modeling Using Algebraic Level Sets for Multiphase Solids with Inhomogeneous Surface Stress." Thesis, 2020.
Find full textBook chapters on the topic "Boolean of Polyhedral Solids"
Toriya, H., T. Takamura, T. Satoh, and H. Chiyokura. "Boolean Operations of Solids with Free-From Surfarces Through Polyhedral Approximation." In New Advances in Computer Graphics, 405–20. Tokyo: Springer Japan, 1989. http://dx.doi.org/10.1007/978-4-431-68093-2_26.
Full textAyala, D., P. Brunet, R. Joan-Arinyo, and I. Navazo. "Multiresolution Approximation of Polyhedral Solids." In CAD Systems Development, 327–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60718-9_23.
Full textAndújar, Carlos, Dolors Ayala, and Pere Brunet. "Validity-Preserving Simplification of Very Complex Polyhedral Solids." In Eurographics, 1–10. Vienna: Springer Vienna, 1999. http://dx.doi.org/10.1007/978-3-7091-6805-9_1.
Full textSatoh, T., T. Takamura, H. Toriya, and H. Chiyokura. "Boolean Operations on Solids Bounded by a Variety of Surfaces." In Modeling in Computer Graphics, 141–54. Tokyo: Springer Japan, 1991. http://dx.doi.org/10.1007/978-4-431-68147-2_9.
Full textPriyakumari, Chakkingal P., and Eluvathingal D. Jemmis. "Electron-Counting Rules in Cluster Bonding - Polyhedral Boranes, Elemental Boron, and Boron-Rich Solids." In The Chemical Bond, 113–48. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527664658.ch5.
Full text"Boolean Operations and Composite Solids." In Modelling with AutoCAD 2000, 210–13. Routledge, 2012. http://dx.doi.org/10.4324/9780080511887-34.
Full textMcFarlane, Bob. "Boolean operations and composite solids." In Modelling with Autocad 2004, 217–20. Elsevier, 2004. http://dx.doi.org/10.1016/b978-0-7506-6433-2.50034-7.
Full textMcFarlane, Bob. "Boolean operations and composite solids." In Modelling with Autocad 2002, 205–8. Elsevier, 2002. http://dx.doi.org/10.1016/b978-0-08-051189-4.50035-2.
Full textConference papers on the topic "Boolean of Polyhedral Solids"
Rashid, Mark M., Mili Selimotic, and Tarig Dinar. "General Polyhedral Finite Elements for Rapid Nonlinear Analysis." In ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/detc2008-49248.
Full textBao, Zhuojun. "Extended Bintrees for Representing the Spatial Decomposition of 3D Objects." In ASME 1999 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/detc99/dac-8683.
Full textDaniels, Joel, Elaine Cohen, and David Johnson. "Converting Molecular Meshes Into Smooth Interpolatory Spline Solid Models." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-85363.
Full textShuai Zheng, Jun Hong, and Kang Jia. "Boolean operations on triangulated solids." In 2013 IEEE International Symposium on Assembly and Manufacturing (ISAM). IEEE, 2013. http://dx.doi.org/10.1109/isam.2013.6643476.
Full textBiermann, Henning, Daniel Kristjansson, and Denis Zorin. "Approximate Boolean operations on free-form solids." In the 28th annual conference. New York, New York, USA: ACM Press, 2001. http://dx.doi.org/10.1145/383259.383280.
Full textAdams, Bart, and Philip Dutré. "Interactive boolean operations on surfel-bounded solids." In ACM SIGGRAPH 2003 Papers. New York, New York, USA: ACM Press, 2003. http://dx.doi.org/10.1145/1201775.882320.
Full textZhang, B., L. Deng, P. Liu, W. Wang, and X. Wang. "Particle Tracking Optimization for Boolean Solids in JCOGIN." In 2020 ANS Virtual Winter Meeting. AMNS, 2020. http://dx.doi.org/10.13182/t123-33341.
Full textSrinivas, Y. L., and Debasish Dutta. "A Solution to the Missing-View Problem for Polyhedral Solids." In ASME 1991 Design Technical Conferences. American Society of Mechanical Engineers, 1991. http://dx.doi.org/10.1115/detc1991-0126.
Full textMenon, Sreekumar, and Yong Se Kim. "Handling Blending Features in Form Feature Recognition Using Convex Decomposition." In ASME 1994 International Computers in Engineering Conference and Exhibition and the ASME 1994 8th Annual Database Symposium collocated with the ASME 1994 Design Technical Conferences. American Society of Mechanical Engineers, 1994. http://dx.doi.org/10.1115/cie1994-0390.
Full textHubbard, Carol, and Yong Se Kim. "Geometric Assistance for the Construction of Non-Polyhedral Solids From Orthographic Views." In ASME 1997 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/detc97/cie-4288.
Full text