Academic literature on the topic 'Boolean'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Boolean.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Boolean"
Chernoskutov, Yu Yu. "On the Syllogistic of G. Boole." Discourse 7, no. 2 (April 29, 2021): 5–15. http://dx.doi.org/10.32603/2412-8562-2021-7-2-5-15.
Full textAllart, Emilie, Joachim Niehren, and Cristian Versari. "Exact Boolean Abstraction of Linear Equation Systems." Computation 9, no. 11 (October 21, 2021): 113. http://dx.doi.org/10.3390/computation9110113.
Full textHuang, Jing Lian, Su Duo Li, Yong Liu, and Ke Yan Deng. "On Analysis and Judgment of Balance for Boolean Functions by E-Derivative." Applied Mechanics and Materials 643 (September 2014): 130–35. http://dx.doi.org/10.4028/www.scientific.net/amm.643.130.
Full textDe Villiers, Michael D. "Teaching Modeling and Axiomatization with Boolean Algebra." Mathematics Teacher 80, no. 7 (October 1987): 528–32. http://dx.doi.org/10.5951/mt.80.7.0528.
Full textChajda, I., and M. Kotrle. "Boolean semirings." Czechoslovak Mathematical Journal 44, no. 4 (1994): 763–67. http://dx.doi.org/10.21136/cmj.1994.128495.
Full textAli M. Ali Rushdi, Ali M. Ali Rushdi. "Satisfiability in Big Boolean Algebras via Boolean-Equation Solving." journal of King Abdulaziz University Engineering Sciences 28, no. 1 (January 2, 2017): 3–18. http://dx.doi.org/10.4197/eng.28-1.1.
Full textWehrung, Friedrich. "Boolean universes above Boolean models." Journal of Symbolic Logic 58, no. 4 (December 1993): 1219–50. http://dx.doi.org/10.2307/2275140.
Full textMadsen, Magnus, Jaco van de Pol, and Troels Henriksen. "Fast and Efficient Boolean Unification for Hindley-Milner-Style Type and Effect Systems." Proceedings of the ACM on Programming Languages 7, OOPSLA2 (October 16, 2023): 516–43. http://dx.doi.org/10.1145/3622816.
Full textStudenic, Paul, David Felson, Maarten de Wit, Farideh Alasti, Tanja A. Stamm, Josef S. Smolen, and Daniel Aletaha. "Testing different thresholds for patient global assessment in defining remission for rheumatoid arthritis: are the current ACR/EULAR Boolean criteria optimal?" Annals of the Rheumatic Diseases 79, no. 4 (February 5, 2020): 445–52. http://dx.doi.org/10.1136/annrheumdis-2019-216529.
Full textStempel, Rachel. "BOOLEAN." Minnesota review 2022, no. 98 (May 1, 2022): 17. http://dx.doi.org/10.1215/00265667-9563639.
Full textDissertations / Theses on the topic "Boolean"
Fish, Washiela. "Boolean ultrapowers." Master's thesis, University of Cape Town, 2000. http://hdl.handle.net/11427/13892.
Full textThe Boolean ultrapower construction is a generalisation of the ordinary ultrapower construction in that an arbitrary complete Boolean algebra replaces the customary powerset Boolean algebra. B. Koppelberg and S. Koppelberg [1976] show that the class of ordinary ultrapowers is properly contained in the class of Boolean ultrapowers thereby justifying the development of a theory for Boolean ultrapowers. This thesis is an exploration into the strategies whereby and the conditions under which aspects of the theory of ordinary ultrapowers can be extended to the theory of Boolean ultrapowers. Mansfield [1971] shows that a finitely iterated Boolean ultrapower is isomorphic to a single Boolean ultrapower under certain conditions. Using a different approach and under somewhat different conditions, Ouwehand and Rose [1998] show that the result also holds for K-bounded Boolean ultrapowers. Mansfield [1971] also proves a Boolean version of the Keisler-Shelah theorem. By redefining the notion of a K-good ultrafilter on a Boolean algebra, Benda [1974] obtains a complete generalisation of a theorem of Keisler which states that an ultrapower is K-saturated iff the ultrafilter is K-good. Potthoff [1974] defines the notion of a limit Boolean ultrapower and shows that, as is the case for ordinary ultrapowers, the complete extensions of a model are characterised by its limit Boolean ultrapowers. Upon the discovery by Frayne, Morel and Scott [1962] of an ultrapower of a simple group which is not simple, Burris and Jeffers [1978] investigate necessary and sufficient conditions for a Boolean ultrapower to be simple, or subdirectly irreducible, provided that the language is countable. Finally, Jipsen, Pinus and Rose [2000] extend the notion of the Rudin-Keisler ordering to ultrafilters on complete Boolean algebras, and prove that by using this definition, Blass' Characterisation Theorem can be generalised for Boolean ultrapowers.
Van, Name Joseph. "Boolean Partition Algebras." Thesis, University of South Florida, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=3560193.
Full textA Boolean partition algebra is a pair (B, F ) where B is a Boolean algebra and F is a filter on the semilattice of partitions of B where [special characters omitted] F = B \ {0}. In this dissertation, we shall investigate the algebraic theory of Boolean partition algebras and their connection with uniform spaces. In particular, we shall show that the category of complete non-Archimedean uniform spaces is equivalent to a subcategory of the category of Boolean partition algebras, and notions such as supercompleteness of non-Archimedean uniform spaces can be formulated in terms of Boolean partition algebras.
Van, Name Joseph Anthony. "Boolean Partition Algebras." Scholar Commons, 2013. http://scholarcommons.usf.edu/etd/4599.
Full textShen, Amelia H. (Amelia Huimin). "Probabilistic representation and manipulation of Boolean functions using free Boolean diagrams." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/34087.
Full textIncludes bibliographical references (p. 145-149).
by Amelia Huimin Shen.
Ph.D.
Skelley, Alan. "Relating the PSPACE reasoning power of Boolean Programs and quantified Boolean formulas." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ53391.pdf.
Full textSchardijn, Amy. "AN INTRODUCTION TO BOOLEAN ALGEBRAS." CSUSB ScholarWorks, 2016. https://scholarworks.lib.csusb.edu/etd/421.
Full textKarlsson, Fredrik. "Dynamics in Boolean Networks." Thesis, Linköping University, Department of Science and Technology, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2888.
Full textIn this thesis several random Boolean networks are simulated. Both completely computer generated network and models for biological networks are simulated. Several different tools are used to gain knowledge about the robustness. These tools are Derrida plots, noise analysis and mean probability for canalizing rules. Some simulations on how entropy works as an indicator on if a network is robust are also included. The noise analysis works by measuring the hamming distance between the state of the network when noise is applied and when no noise is applied. For many of the simulated networks two types of rules are applied: nested canalizing and flat distributed rules. The computer generated networks consists of two types of networks: scale-free and ER-networks. One of the conclusions in this report is that nested canalizing rules are often more robust than flat distributed rules. Another conclusion is that the mean probability for canalizing rules has, for flat distributed rules, a very dominating effect on if the network is robust or not. Yet another conclusion is that the probability distribution for indegrees, for flat distributed rules, has a strong effect on if a network is robust due to the connection between the probability distribution for indegrees and the mean probability for canalizing rules.
Ghanbarnejad, Fakhteh. "Perturbations in Boolean Networks." Doctoral thesis, Universitätsbibliothek Leipzig, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-96825.
Full textSchimanski, Nichole Louise. "Orthomorphisms of Boolean Groups." PDXScholar, 2016. http://pdxscholar.library.pdx.edu/open_access_etds/3100.
Full textBoris, Šobot. "Games on Boolean algebras." Phd thesis, Univerzitet u Novom Sadu, Prirodno-matematički fakultet u Novom Sadu, 2009. http://dx.doi.org/10.2298/NS20090907SOBOT.
Full textForsing je metod široko korišćen u teoriji skupova za dokaze konsistentnosti. Kompletne Bulove algebre igraju glavnu ulogu u primenama forsinga. Stoga je korisno definisati igre na Bulovim algebrama koje karakterišu njihove osobine od značaja za taj metod. Najbolje proučena je Jehova igra, koja ima osobinu da prvi igrač ima pobedničku strategiju akko algebra nije (ω, 2)-distributivna. U tezi definišemo još jednu igru, koja karakteriše kolaps kontinuuma na ω, dokazujemo nekoliko dovoljnih uslova da bi drugi igraš imao pobedničku strategiju, i konstruišemo Bulovu algebru na kojoj je igra neodređena.
Books on the topic "Boolean"
Brown, Frank Markham. Boolean Reasoning. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4757-2078-5.
Full textSchneeweiss, Winfrid G. Boolean Functions. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-45638-1.
Full textVlad, Serban E., ed. Boolean Functions. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2019. http://dx.doi.org/10.1002/9781119517528.
Full textBrown, Frank Markham. Boolean Reasoning: The Logic of Boolean Equations. Boston, MA: Springer US, 1990.
Find full textBrown, Frank Markham. Boolean reasoning: The logic of Boolean equations. Boston: Kluwer Academic Publishers, 1990.
Find full textBrown, Frank Markham. Boolean reasoning: The logic of Boolean equations. 2nd ed. Mineola, N.Y: Dover Publications, 2003.
Find full textSteinbach, Bernd, and Christian Posthoff. Boolean Differential Equations. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-031-79861-0.
Full textSteinbach, Bernd, and Christian Posthoff. Boolean Differential Calculus. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-031-79892-4.
Full textLam, William K. C., and Robert K. Brayton. Timed Boolean Functions. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2688-9.
Full textLam, Tak-Kei, Wai-Chung Tang, Xing Wei, Yi Diao, and David Yu-LiangWu. Boolean Circuit Rewiring. Singapore: John Wiley & Sons Singapore Pte. Ltd, 2016. http://dx.doi.org/10.1002/9781118750124.
Full textBook chapters on the topic "Boolean"
Weik, Martin H. "Boolean." In Computer Science and Communications Dictionary, 138. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_1762.
Full textSchneeweiss, Winfrid G. "Boolean Functions Without Boolean Operators." In Boolean Functions, 131–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-45638-1_7.
Full textRodríguez, Andoni, and César Sánchez. "Boolean Abstractions for Realizability Modulo Theories." In Computer Aided Verification, 305–28. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-37709-9_15.
Full textHailperin, Theodore. "Boole’s Algebra Isn’t Boolean Algebra." In A Boole Anthology, 61–77. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-015-9385-4_4.
Full textGivant, Steven. "Boolean Algebras and Boolean Spaces." In Undergraduate Texts in Mathematics, 326–37. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-68436-9_34.
Full textBrown, Frank Markham. "Boolean Algebras." In Boolean Reasoning, 23–69. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4757-2078-5_2.
Full textBrown, Frank Markham. "Boolean Analysis." In Boolean Reasoning, 87–122. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4757-2078-5_4.
Full textBrown, Frank Markham. "Boolean Identification." In Boolean Reasoning, 193–210. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4757-2078-5_8.
Full textBrown, Frank Markham. "Fundamental Concepts." In Boolean Reasoning, 1–21. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4757-2078-5_1.
Full textBrown, Frank Markham. "The Blake Canonical Form." In Boolean Reasoning, 71–86. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4757-2078-5_3.
Full textConference papers on the topic "Boolean"
Zhang, Zhen, Seung-won Hwang, Kevin Chen-Chuan Chang, Min Wang, Christian A. Lang, and Yuan-chi Chang. "Boolean + ranking." In the 2006 ACM SIGMOD international conference. New York, New York, USA: ACM Press, 2006. http://dx.doi.org/10.1145/1142473.1142515.
Full textMcAllester, David, and Ramin Zabih. "Boolean classes." In Conference proceedings. New York, New York, USA: ACM Press, 1986. http://dx.doi.org/10.1145/28697.28740.
Full textSharad, Mrigank, Charles Augustine, and Kaushik Roy. "Boolean and non-Boolean computation with spin devices." In 2012 IEEE International Electron Devices Meeting (IEDM). IEEE, 2012. http://dx.doi.org/10.1109/iedm.2012.6479026.
Full textIorgulescu, Afrodita. "Quasi-i-Boolean algebras vs. quasi-m Boolean algebras." In Proceedings of the 2019 Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology (EUSFLAT 2019). Paris, France: Atlantis Press, 2019. http://dx.doi.org/10.2991/eusflat-19.2019.48.
Full textLin, Pey-Chang Kent, and Sunil P. Khatri. "Determining gene function in boolean networks using boolean satisfiability." In 2012 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS). IEEE, 2012. http://dx.doi.org/10.1109/gensips.2012.6507757.
Full textShukla, N. "Emerging Hardware Substrates for Boolean and Non-Boolean Computing." In 2018 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2018. http://dx.doi.org/10.7567/ssdm.2018.j-8-01.
Full textHuo, Jiwen, and Wm Cowan. "Comprehending Boolean queries." In the 5th symposium. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1394281.1394314.
Full textMiettinen, Pauli. "Boolean Tensor Factorizations." In 2011 IEEE 11th International Conference on Data Mining (ICDM). IEEE, 2011. http://dx.doi.org/10.1109/icdm.2011.28.
Full textGelbart, Dephne, and J. C. Smith. "Beyond boolean search." In the third international conference. New York, New York, USA: ACM Press, 1991. http://dx.doi.org/10.1145/112646.112674.
Full textSuzuki, Kujira, Kin-ya Sugimoto, and Hisashi Suzuki. "Boolean complex logic." In 2012 Computing, Communications and Applications Conference (ComComAp). IEEE, 2012. http://dx.doi.org/10.1109/comcomap.2012.6154874.
Full textReports on the topic "Boolean"
Prokopyev, Oleg. Stochastic Pseudo-Boolean Optimization. Fort Belvoir, VA: Defense Technical Information Center, July 2011. http://dx.doi.org/10.21236/ada564073.
Full textSchimanski, Nichole. Orthomorphisms of Boolean Groups. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.3097.
Full textLipscomb, Stephen, and Chris Dupilka. Inverse Semigroups and Boolean Matrices,. Fort Belvoir, VA: Defense Technical Information Center, May 1996. http://dx.doi.org/10.21236/ada312447.
Full textChen, Crystal, Charlotte Ellison, Zachary Roth, and Mackenzie Simper. Boolean decomposition of spatiotemporal tensors. Engineer Research and Development Center (U.S.), August 2019. http://dx.doi.org/10.21079/11681/33849.
Full textMcCune, W. Single axioms for Boolean algebra. Office of Scientific and Technical Information (OSTI), June 2000. http://dx.doi.org/10.2172/764208.
Full textBryan, Randal E., and Miroslav N. Velev. Boolean Satisfiability with Transitivity Constraints. Fort Belvoir, VA: Defense Technical Information Center, June 2000. http://dx.doi.org/10.21236/ada382689.
Full textDukes, Michael A., and Frank M. Brown. Proving Boolean Equivalence with Prolog. Fort Belvoir, VA: Defense Technical Information Center, February 1990. http://dx.doi.org/10.21236/ada221766.
Full textCherupally, Sai Kiran. Hierarchical Random Boolean Network Reservoirs. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.6238.
Full textLutz, Carsten, and Ulrike Sattler. The Complexity of Reasoning with Boolean Modal Logics (Extended Version). Aachen University of Technology, 1999. http://dx.doi.org/10.25368/2022.105.
Full textStanica, Pantelimon, Thor Martinsen, Sugata Gangopadhyay, and Brajesh K. Singh. Bent and Generalized Bent Boolean Functions. Fort Belvoir, VA: Defense Technical Information Center, January 2012. http://dx.doi.org/10.21236/ada574574.
Full text