Journal articles on the topic 'Bone substitute; Biomaterials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Bone substitute; Biomaterials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Bedini, Rossella, Deborah Meleo, and Raffaella Pecci. "3D Microtomography Characterization of Dental Implantology Bone Substitutes Used In Vivo." Key Engineering Materials 541 (February 2013): 97–113. http://dx.doi.org/10.4028/www.scientific.net/kem.541.97.
Full textYamada, M., T. Ueno, H. Minamikawa, N. Sato, F. Iwasa, N. Hori, and T. Ogawa. "N-acetyl Cysteine Alleviates Cytotoxicity of Bone Substitute." Journal of Dental Research 89, no. 4 (March 3, 2010): 411–16. http://dx.doi.org/10.1177/0022034510363243.
Full textAntunes, Pontes, Monte, Barbosa, and Ferreira. "Optical Properties on Bone Analysis: An Approach to Biomaterials." Proceedings 27, no. 1 (September 27, 2019): 36. http://dx.doi.org/10.3390/proceedings2019027036.
Full textTraini, Tonino, Adriano Piattelli, Sergio Caputi, Marco Degidi, Carlo Mangano, Antonio Scarano, Vittoria Perrotti, and Giovanna Iezzi. "Regeneration of Human Bone Using Different Bone Substitute Biomaterials." Clinical Implant Dentistry and Related Research 17, no. 1 (May 17, 2013): 150–62. http://dx.doi.org/10.1111/cid.12089.
Full textLevandowski, Nelson, Nelson H. A. Camargo, Daiara F. Silva, Gisele M. L. Dalmônico, and Priscila F. Franczak. "Characterization of Different Nanostructured Bone Substitute Biomaterials." Advanced Materials Research 936 (June 2014): 695–700. http://dx.doi.org/10.4028/www.scientific.net/amr.936.695.
Full textGanz, Cornelia, W. Xu, G. Holzhüter, W. Götz, B. Vollmar, and Th Gerber. "Comparison of Bone Substitutes in a Tibia Defect Model in Wistar-Rats." Key Engineering Materials 493-494 (October 2011): 732–38. http://dx.doi.org/10.4028/www.scientific.net/kem.493-494.732.
Full textSchilling, Arndt F., Wolfgang Linhart, Sandra Filke, Matthias Gebauer, Thorsten Schinke, Johannes M. Rueger, and Michael Amling. "Resorbability of bone substitute biomaterials by human osteoclasts." Biomaterials 25, no. 18 (August 2004): 3963–72. http://dx.doi.org/10.1016/j.biomaterials.2003.10.079.
Full textLorenz, Jonas, Tadas Korzinskas, Poju Chia, Sarah Al Maawi, Katrin Eichler, Robert A. Sader, and Shahram Ghanaati. "Do Clinical and Radiological Assessments Contribute to the Understanding of Biomaterials? Results From a Prospective Randomized Sinus Augmentation Split-Mouth Trial." Journal of Oral Implantology 44, no. 1 (February 1, 2018): 62–69. http://dx.doi.org/10.1563/aaid-joi-d-17-00139.
Full textIgarashi, Yuki, and Junichi Matsushita. "Fabrication of Porous β-Tricalcium Phosphate with Collagen Composite Materials." Materials Science Forum 569 (January 2008): 237–40. http://dx.doi.org/10.4028/www.scientific.net/msf.569.237.
Full textGhiretti, Roberto, Carlo F. Grottoli, Alberto Cingolani, and Giuseppe Perale. "Clinical Case Employing Two Different Biomaterials in Bone Regeneration." Applied Sciences 10, no. 13 (June 29, 2020): 4516. http://dx.doi.org/10.3390/app10134516.
Full textTomas, Matej, Marija Čandrlić, Martina Juzbašić, Zrinka Ivanišević, Nikola Matijević, Aleksandar Včev, Olga Cvijanović Peloza, Marko Matijević, and Željka Perić Kačarević. "Synthetic Injectable Biomaterials for Alveolar Bone Regeneration in Animal and Human Studies." Materials 14, no. 11 (May 26, 2021): 2858. http://dx.doi.org/10.3390/ma14112858.
Full textLi, Ye, Shu-Kui Chen, Long Li, Ling Qin, Xin-Luan Wang, and Yu-Xiao Lai. "Bone defect animal models for testing efficacy of bone substitute biomaterials." Journal of Orthopaedic Translation 3, no. 3 (July 2015): 95–104. http://dx.doi.org/10.1016/j.jot.2015.05.002.
Full textIto, Atsuo, and Racquel Z. LeGeros. "Magnesium- and Zinc-Substituted Beta-Tricalcium Phosphates as Potential Bone Substitute Biomaterials." Key Engineering Materials 377 (March 2008): 85–98. http://dx.doi.org/10.4028/www.scientific.net/kem.377.85.
Full textBai, Yunpeng, Takahiro Kanno, Hiroto Tatsumi, Kenichi Miyamoto, Jingjing Sha, Katsumi Hideshima, and Yumi Matsuzaki. "Feasibility of a Three-Dimensional Porous Uncalcined and Unsintered Hydroxyapatite/poly-d/l-lactide Composite as a Regenerative Biomaterial in Maxillofacial Surgery." Materials 11, no. 10 (October 20, 2018): 2047. http://dx.doi.org/10.3390/ma11102047.
Full textChen, Chang Jun, and Min Zhang. "Fabrication Methods of Porous Tantalum Metal Implants for Use as Biomaterials." Advanced Materials Research 476-478 (February 2012): 2063–66. http://dx.doi.org/10.4028/www.scientific.net/amr.476-478.2063.
Full textGerber, Thomas, Gerd Holzhüter, Werner Götz, Volker Bienengräber, Kai-Olaf Henkel, and Elisabeth Rumpel. "Nanostructuring of Biomaterials—A Pathway to Bone Grafting Substitute." European Journal of Trauma 32, no. 2 (April 2006): 132–40. http://dx.doi.org/10.1007/s00068-006-6046-9.
Full textKuo, Yi-Jie, Chun-Jen Liao, Gary Rau, Chia-Hsien Chen, Chih-Hong Yang, and Yang-Hwei Tsuang. "THE USE OF POLY(L-LACTIC-CO-GLYCOLIC ACID)/TRICALCIUM PHOSPHATE AS A BONE SUBSTITUTE IN RABBIT FEMUR DEFECTS MODEL." Biomedical Engineering: Applications, Basis and Communications 22, no. 04 (August 2010): 263–70. http://dx.doi.org/10.4015/s1016237210002092.
Full textDaculsi, G. "Biphasic Calcium Phosphate Granules Concept for Injectable and Mouldable Bone Substitute." Advances in Science and Technology 49 (October 2006): 9–13. http://dx.doi.org/10.4028/www.scientific.net/ast.49.9.
Full textBerberi, Antoine, Malkan Abdrashidova Amkhadova, Antoine Samarani, and Georges Aoun. "PHYSICOCHEMICAL CHARACTERIZATION: COMPARATIVE EVALUATION OF ALLOGRAFT BIOMATERIALS AND AUTOGENOUS BONE." Russian Journal of Dentistry 21, no. 5 (October 15, 2017): 233–37. http://dx.doi.org/10.18821/1728-2802-2017-21-5-233-237.
Full textMeskhi, K. T., and A. G. Aganesov. "Modern Synthetic Substitute of Bone Tissue." N.N. Priorov Journal of Traumatology and Orthopedics 19, no. 2 (June 15, 2012): 16–19. http://dx.doi.org/10.17816/vto20120216-19.
Full textKnaack, David, M. E. P. Goad, Maria Aiolova, Christian Rey, Ali Tofighi, Pramod Chakravarthy, and D. Duke Lee. "Resorbable calcium phosphate bone substitute." Journal of Biomedical Materials Research 43, no. 4 (1998): 399–409. http://dx.doi.org/10.1002/(sici)1097-4636(199824)43:4<399::aid-jbm7>3.0.co;2-j.
Full textBarbeck, Mike, Marie-Luise Schröder, Said Alkildani, Ole Jung, and Ronald E. Unger. "Exploring the Biomaterial-Induced Secretome: Physical Bone Substitute Characteristics Influence the Cytokine Expression of Macrophages." International Journal of Molecular Sciences 22, no. 9 (April 24, 2021): 4442. http://dx.doi.org/10.3390/ijms22094442.
Full textToda, Erina, Yunpeng Bai, Jingjing Sha, Quang Ngoc Dong, Huy Xuan Ngo, Takashi Suyama, Kenichi Miyamoto, Yumi Matsuzaki, and Takahiro Kanno. "Feasibility of Application of the Newly Developed Nano-Biomaterial, β-TCP/PDLLA, in Maxillofacial Reconstructive Surgery: A Pilot Rat Study." Nanomaterials 11, no. 2 (January 25, 2021): 303. http://dx.doi.org/10.3390/nano11020303.
Full textWang, Xin, Yan Luo, Yan Yang, Baoyu Zheng, Fuhua Yan, Fei Wei, Thor E. Friis, Ross W. Crawford, and Yin Xiao. "Alteration of clot architecture using bone substitute biomaterials (beta-tricalcium phosphate) significantly delays the early bone healing process." Journal of Materials Chemistry B 6, no. 48 (2018): 8204–13. http://dx.doi.org/10.1039/c8tb01747f.
Full textShao, Anliang, You Ling, Liang Chen, Lina Wei, Changfa Fan, Dan Lei, Liming Xu, and Chengbin Wang. "GGTA1/iGb3S Double Knockout Mice: Immunological Properties and Immunogenicity Response to Xenogeneic Bone Matrix." BioMed Research International 2020 (June 4, 2020): 1–11. http://dx.doi.org/10.1155/2020/9680474.
Full textHotz, G., and G. Herr. "Bone substitute with osteoinductive biomaterials — Current and future clinical applications." International Journal of Oral and Maxillofacial Surgery 23, no. 6 (December 1994): 413–17. http://dx.doi.org/10.1016/s0901-5027(05)80033-5.
Full textAlexander, R. E. "Bone substitute with osteoinductive biomaterials: Current and future clinical applications." Journal of Oral and Maxillofacial Surgery 53, no. 6 (June 1995): 731. http://dx.doi.org/10.1016/0278-2391(95)90201-5.
Full textHofmann, M. P., U. Gbureck, C. O. Duncan, M. S. Dover, and J. E. Barralet. "Carvable calcium phosphate bone substitute material." Journal of Biomedical Materials Research Part B: Applied Biomaterials 83B, no. 1 (2007): 1–8. http://dx.doi.org/10.1002/jbm.b.30761.
Full textAl-Maawi, Sarah, James L. Rutkowski, Robert Sader, C. James Kirkpatrick, and Shahram Ghanaati. "The Biomaterial-Induced Cellular Reaction Allows a Novel Classification System Regardless of the Biomaterials Origin." Journal of Oral Implantology 46, no. 3 (February 18, 2020): 190–207. http://dx.doi.org/10.1563/aaid-joi-d-19-00201.
Full textKastrin, Matevž, Vilma Urbančič Rovan, and Igor Frangež. "Possible Advantages of S53P4 Bioactive Glass in the Treatment of Septic Osteoarthritis of the First Metatarsophalangeal Joint in the Diabetic Foot." Journal of Clinical Medicine 10, no. 6 (March 15, 2021): 1208. http://dx.doi.org/10.3390/jcm10061208.
Full textWegst, Ulrike G. K., Matthew Schecter, Amalie E. Donius, and Philipp M. Hunger. "Biomaterials by freeze casting." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368, no. 1917 (April 28, 2010): 2099–121. http://dx.doi.org/10.1098/rsta.2010.0014.
Full textKashan, Jenan S., Wisam K. Hamdan, and Baha Fakhri. "Bone Defect Animal Model for Hybrid Polymer Matrix Nano Composite as Bone Substitute Biomaterials." Al-Khwarizmi Engineering Journal 14, no. 3 (September 6, 2018): 149–55. http://dx.doi.org/10.22153/https://doi.org/10.22153/kej.2018.03.004.
Full textNoorjahan, S. E., and T. P. Sastry. "Physiologically clotted fibrin-calcined bone composite—A possible bone graft substitute." Journal of Biomedical Materials Research Part B: Applied Biomaterials 75B, no. 2 (2005): 343–50. http://dx.doi.org/10.1002/jbm.b.30309.
Full textSchneider, Oliver D., Dirk Mohn, Roland Fuhrer, Karina Klein, Käthi Kämpf, Katja M. R. Nuss, Michèle Sidler, Katalin Zlinszky, Brigitte von Rechenberg, and Wendelin J. Stark. "Biocompatibility and Bone Formation of Flexible, Cotton Wool-like PLGA/Calcium Phosphate Nanocomposites in Sheep." Open Orthopaedics Journal 5, no. 1 (March 16, 2011): 63–71. http://dx.doi.org/10.2174/1874325001105010063.
Full textNeimane, Laura, Andrejs Skagers, Girts Salms, and Liga Berzina-Cimdina. "Radiodensitometric Analysis of Maxillary Sinus-Lift Areas Enforced with Bone Substitute Materials Containing Calcium Phophate." Acta Chirurgica Latviensis 12, no. 1 (December 1, 2012): 41–44. http://dx.doi.org/10.2478/v10163-012-0009-5.
Full textDaculsi, G., Eric Aguado, Pierre Corre, Xavier Bourges, Serge Baroth, and Eric Goyenvalle. "Improvement of Radio Opacity of Injectable Bone Substitute MBCP GelTM for Minimal Invasive Surgery MIS." Key Engineering Materials 361-363 (November 2007): 1277–80. http://dx.doi.org/10.4028/www.scientific.net/kem.361-363.1277.
Full textHaddock, Sean M., Jack C. Debes, Eric A. Nauman, Keith E. Fong, Yves P. Arramon, and Tony M. Keaveny. "Structure-function relationships for coralline hydroxyapatite bone substitute." Journal of Biomedical Materials Research 47, no. 1 (October 1999): 71–78. http://dx.doi.org/10.1002/(sici)1097-4636(199910)47:1<71::aid-jbm10>3.0.co;2-u.
Full textLi, Guanbao, Pinquan Li, Qiuan Chen, Hnin Ei Thu, and Zahid Hussain. "Current Updates on Bone Grafting Biomaterials and Recombinant Human Growth Factors Implanted Biotherapy for Spinal Fusion: A Review of Human Clinical Studies." Current Drug Delivery 16, no. 2 (December 14, 2018): 94–110. http://dx.doi.org/10.2174/1567201815666181024142354.
Full textBongio, Matilde, Jeroen J. J. P. van den Beucken, Sander C. G. Leeuwenburgh, and John A. Jansen. "Preclinical evaluation of injectable bone substitute materials." Journal of Tissue Engineering and Regenerative Medicine 9, no. 3 (November 8, 2012): 191–209. http://dx.doi.org/10.1002/term.1637.
Full textShavandi, Amin, Alaa El-Din A. Bekhit, Zhi Fa Sun, and Azam Ali. "A Review of Synthesis Methods, Properties and Use of Hydroxyapatite as a Substitute of Bone." Journal of Biomimetics, Biomaterials and Biomedical Engineering 25 (October 2015): 98–117. http://dx.doi.org/10.4028/www.scientific.net/jbbbe.25.98.
Full textGomes Machado, Callinca Paolla, Andrea Vaz Braga Pintor, and Mônica Diuana Calasans Maia. "Evaluation of strontium-containing hydroxyapatite as bone substitute in sheep tibiae." Brazilian Journal of Implantology and Health Sciences 1, no. 7 (December 18, 2019): 153–64. http://dx.doi.org/10.36557/2674-8169.2019v1n7p153-164.
Full textChang, Hong, Haibo Xiang, Zilong Yao, Shenyu Yang, Mei Tu, Xianrong Zhang, and Bin Yu. "Strontium-substituted calcium sulfate hemihydrate/hydroxyapatite scaffold enhances bone regeneration by recruiting bone mesenchymal stromal cells." Journal of Biomaterials Applications 35, no. 1 (March 31, 2020): 97–107. http://dx.doi.org/10.1177/0885328220915816.
Full textMiramond, T., Pascal Borget, Serge Baroth, and Daculsi Guy. "Comparative Critical Study of Commercial Calcium Phosphate Bone Substitutes in Terms of Physic-Chemical Properties." Key Engineering Materials 587 (November 2013): 63–68. http://dx.doi.org/10.4028/www.scientific.net/kem.587.63.
Full textGuo, Hongzhang, Changde Wang, Jixiang Wang, and Yufang He. "Lithium-incorporated deproteinized bovine bone substitute improves osteogenesis in critical-sized bone defect repair." Journal of Biomaterials Applications 32, no. 10 (April 19, 2018): 1421–34. http://dx.doi.org/10.1177/0885328218768185.
Full textGiuliani, Alessandra, Maria Laura Gatto, Luigi Gobbi, Francesco Guido Mangano, and Carlo Mangano. "Integrated 3D Information for Custom-Made Bone Grafts: Focus on Biphasic Calcium Phosphate Bone Substitute Biomaterials." International Journal of Environmental Research and Public Health 17, no. 14 (July 8, 2020): 4931. http://dx.doi.org/10.3390/ijerph17144931.
Full textPramod, VT. "Bone Grafts in Periodontics-A Review." CODS Journal of Dentistry 7, no. 2 (2015): 64–70. http://dx.doi.org/10.5005/cods-7-2-64.
Full textLee, Tien-Ching, Yan-Hsiung Wang, Shih-Hao Huang, Chung-Hwan Chen, Mei-Ling Ho, Yin-Chih Fu, and Chih-Kuang Wang. "Evaluations of clinical-grade bone substitute-combined simvastatin carriers to enhance bone growth: In vitro and in vivo analyses." Journal of Bioactive and Compatible Polymers 33, no. 2 (July 24, 2017): 160–77. http://dx.doi.org/10.1177/0883911517720813.
Full textNiinomi, M., and M. Nakai. "Titanium-Based Biomaterials for Preventing Stress Shielding between Implant Devices and Bone." International Journal of Biomaterials 2011 (2011): 1–10. http://dx.doi.org/10.1155/2011/836587.
Full textCeccarelli, Gabriele, Rossella Presta, Laura Benedetti, Maria Gabriella Cusella De Angelis, Saturnino Marco Lupi, and Ruggero Rodriguez y Baena. "Emerging Perspectives in Scaffold for Tissue Engineering in Oral Surgery." Stem Cells International 2017 (2017): 1–11. http://dx.doi.org/10.1155/2017/4585401.
Full textFirdous, S., M. Fuzail, M. Atif, and M. Nawaz. "Polarimetric characterization of ultra-high molecular weight polyethylene (UHMWPE) for bone substitute biomaterials." Optik 122, no. 2 (January 2011): 99–104. http://dx.doi.org/10.1016/j.ijleo.2009.10.008.
Full text