Journal articles on the topic 'Bone regeneration'

To see the other types of publications on this topic, follow the link: Bone regeneration.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Bone regeneration.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Saberian, Elham, Andrej Jenča, Yaser Zafari, Andrej Jenča, Adriána Petrášová, Hadi Zare-Zardini, and Janka Jenčová. "Scaffold Application for Bone Regeneration with Stem Cells in Dentistry: Literature Review." Cells 13, no. 12 (June 19, 2024): 1065. http://dx.doi.org/10.3390/cells13121065.

Full text
Abstract:
Bone tissue injuries within oral and dental contexts often present considerable challenges because traditional treatments may not be able to fully restore lost or damaged bone tissue. Novel approaches involving stem cells and targeted 3D scaffolds have been investigated in the search for workable solutions. The use of scaffolds in stem cell-assisted bone regeneration is a crucial component of tissue engineering techniques designed to overcome the drawbacks of traditional bone grafts. This study provides a detailed review of scaffold applications for bone regeneration with stem cells in dentistry. This review focuses on scaffolds and stem cells while covering a broad range of studies explaining bone regeneration in dentistry through the presentation of studies conducted in this field. The role of different stem cells in regenerative medicine is covered in great detail in the reviewed literature. These studies have addressed a wide range of subjects, including the effects of platelet concentrates during dental surgery or specific combinations, such as human dental pulp stem cells with scaffolds for animal model bone regeneration, to promote bone regeneration in animal models. Noting developments, research works consider methods to improve vascularization and explore the use of 3D-printed scaffolds, secretome applications, mesenchymal stem cells, and biomaterials for oral bone tissue regeneration. This thorough assessment outlines possible developments within these crucial regenerative dentistry cycles and provides insights and suggestions for additional study. Furthermore, alternative creative methods for regenerating bone tissue include biophysical stimuli, mechanical stimulation, magnetic field therapy, laser therapy, nutritional supplements and diet, gene therapy, and biomimetic materials. These innovative approaches offer promising avenues for future research and development in the field of bone tissue regeneration in dentistry.
APA, Harvard, Vancouver, ISO, and other styles
2

Funda, Goker, Silvio Taschieri, Giannì Aldo Bruno, Emma Grecchi, Savadori Paolo, Donati Girolamo, and Massimo Del Fabbro. "Nanotechnology Scaffolds for Alveolar Bone Regeneration." Materials 13, no. 1 (January 3, 2020): 201. http://dx.doi.org/10.3390/ma13010201.

Full text
Abstract:
In oral biology, tissue engineering aims at regenerating functional tissues through a series of key events that occur during alveolar/periodontal tissue formation and growth, by means of scaffolds that deliver signaling molecules and cells. Due to their excellent physicochemical properties and biomimetic features, nanomaterials are attractive alternatives offering many advantages for stimulating cell growth and promoting tissue regeneration through tissue engineering. The main aim of this article was to review the currently available literature to provide an overview of the different nano-scale scaffolds as key factors of tissue engineering for alveolar bone regeneration procedures. In this narrative review, PubMed, Medline, Scopus and Cochrane electronic databases were searched using key words like “tissue engineering”, “regenerative medicine”, “alveolar bone defects”, “alveolar bone regeneration”, “nanomaterials”, “scaffolds”, “nanospheres” and “nanofibrous scaffolds”. No limitation regarding language, publication date and study design was set. Hand-searching of the reference list of identified articles was also undertaken. The aim of this article was to give a brief introduction to review the role of different nanoscaffolds for bone regeneration and the main focus was set to underline their role for alveolar bone regeneration procedures.
APA, Harvard, Vancouver, ISO, and other styles
3

Shimono, M., T. Inoue, and T. Yamamura. "Regeneration of Periodontal Tissues." Advances in Dental Research 2, no. 2 (November 1988): 223–27. http://dx.doi.org/10.1177/08959374880020020501.

Full text
Abstract:
To elucidate the regenerative capability of the periodontal tissues, we carried out two experiments: (1) Regeneration of the gingival tissue following gingivectomy in rats. Ultrastructurally, regenerating junctional epithelium was similar in morphology to that of untreated animals and appeared to attach to the enamel after five days. Basal lamina and hemidesmosomes were produced faster at the enamel interface than at the connective tissue interface. Gingival tissue was completely regenerated seven days after the gingivectomy. (2) Regeneration of the cementum, periodontal ligament, and alveolar bone following intradentinal cavity preparation in dogs. In the early stages, the cavity was filled with an exudate and granulation tissue. Seven days after the operation, osteoblasts and cementoblasts were arranged regularly on the cut surface of the alveolar bone and dentin, respectively. Newly formed bone and cementum, and periodontal ligament grew to resemble pre-existing bone and cementum after 28-42 days. From these results, it is suggested that the periodontal tissues have an extremely high capability of regeneration.
APA, Harvard, Vancouver, ISO, and other styles
4

Batwa, Mohammed, Rand Bakhsh, Zainab Alghamdi, Khaled Ageely, Abdullah Alzahrani, Abdullah Alshahrani, Khalid Mujthil, et al. "Regenerative Therapies in the Treatment of Periodontal Defects." JOURNAL OF HEALTHCARE SCIENCES 03, no. 08 (2023): 254–60. http://dx.doi.org/10.52533/johs.2023.30802.

Full text
Abstract:
Regenerative therapies in periodontics have shown great potential in restoring damaged periodontal tissues. Techniques such as guided tissue regeneration (GTR) and guided bone regeneration (GBR) have been effective in promoting the regeneration of periodontal ligament, cementum, and alveolar bone. These approaches create a conducive environment for cell repopulation and exclusion of non-osteogenic cells, leading to successful periodontal tissue regeneration. Tissue engineering approaches, utilizing stem cells, growth factors, and biomaterial scaffolds, have also shown promise in regenerating multiple periodontal tissues simultaneously. However, challenges such as membrane exposure and infection need to be addressed. Emerging regenerative techniques, including enamel matrix derivatives (EMDs), stem cell-based therapies, growth factor delivery systems, and gene therapies, offer innovative strategies for periodontal defect treatment. Optimization of delivery systems, refinement of biomaterials, and advancements in gene therapy and tissue-specific biomaterials may further enhance the regenerative capacity of periodontal tissues. Despite challenges, regenerative therapies have the potential to revolutionize periodontics and improve clinical outcomes by addressing the root cause of periodontal diseases and promoting long-lasting tissue regeneration.
APA, Harvard, Vancouver, ISO, and other styles
5

Delpierre, Alexis, Guillaume Savard, Matthieu Renaud, and Gael Y. Rochefort. "Tissue Engineering Strategies Applied in Bone Regeneration and Bone Repair." Bioengineering 10, no. 6 (May 25, 2023): 644. http://dx.doi.org/10.3390/bioengineering10060644.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wagner, Johannes Maximilian, Christoph Wallner, Mustafa Becerikli, Felix Reinkemeier, Maxi von Glinski, Alexander Sogorski, Julika Huber, et al. "Role of Autonomous Neuropathy in Diabetic Bone Regeneration." Cells 11, no. 4 (February 10, 2022): 612. http://dx.doi.org/10.3390/cells11040612.

Full text
Abstract:
Diabetes mellitus has multiple negative effects on regenerative processes, especially on wound and fracture healing. Despite the well-known negative effects of diabetes on the autonomous nervous system, only little is known about the role in bone regeneration within this context. Subsequently, we investigated diabetic bone regeneration in db−/db− mice with a special emphasis on the sympathetic nervous system of the bone in a monocortical tibia defect model. Moreover, the effect of pharmacological sympathectomy via administration of 6-OHDA was evaluated in C57Bl6 wildtype mice. Diabetic animals as well as wildtype mice received a treatment of BRL37344, a β3-adrenergic agonist. Bones of animals were examined via µCT, aniline-blue and Masson–Goldner staining for new bone formation, TRAP staining for bone turnover and immunoflourescence staining against tyrosinhydroxylase and stromal cell-derived factor 1 (SDF-1). Sympathectomized wildtype mice showed a significantly decreased bone regeneration, just comparable to db−/db− mice. New bone formation of BRL37344 treated db−/db− and sympathectomized wildtype mice was markedly improved in histology and µCT. Immunoflourescence stainings revealed significantly increased SDF-1 due to BRL37344 treatment in diabetic animals and sympathectomized wildtypes. This study depicts the important role of the sympathetic nervous system for bone regenerative processes using the clinical example of diabetes mellitus type 2. In order to improve and gain further insights into diabetic fracture healing, β3-agonist BRL37344 proved to be a potent treatment option, restoring impaired diabetic bone regeneration.
APA, Harvard, Vancouver, ISO, and other styles
7

Franceschi, R. T. "Biological Approaches to Bone Regeneration by Gene Therapy." Journal of Dental Research 84, no. 12 (December 2005): 1093–103. http://dx.doi.org/10.1177/154405910508401204.

Full text
Abstract:
Safe, effective approaches for bone regeneration are needed to reverse bone loss caused by trauma, disease, and tumor resection. Unfortunately, the science of bone regeneration is still in its infancy, with all current or emerging therapies having serious limitations. Unlike current regenerative therapies that use single regenerative factors, the natural processes of bone formation and repair require the coordinated expression of many molecules, including growth factors, bone morphogenetic proteins, and specific transcription factors. As will be developed in this article, future advances in bone regeneration will likely incorporate therapies that mimic critical aspects of these natural biological processes, using the tools of gene therapy and tissue engineering. This review will summarize current knowledge related to normal bone development and fracture repair, and will describe how gene therapy, in combination with tissue engineering, may mimic critical aspects of these natural processes. Current gene therapy approaches for bone regeneration will then be summarized, including recent work where combinatorial gene therapy was used to express groups of molecules that synergistically interacted to stimulate bone regeneration. Last, proposed future directions for this field will be discussed, where regulated gene expression systems will be combined with cells seeded in precise three-dimensional configurations on synthetic scaffolds to control both temporal and spatial distribution of regenerative factors. It is the premise of this article that such approaches will eventually allow us to achieve the ultimate goal of bone tissue engineering: to reconstruct entire bones with associated joints, ligaments, or sutures. Abbreviations used: BMP, bone morphogenetic protein; FGF, fibroblast growth factor; AER, apical ectodermal ridge; ZPA, zone of polarizing activity; PZ, progress zone; SHH, sonic hedgehog; OSX, osterix transcription factor; FGFR, fibroblast growth factor receptor; PMN, polymorphonuclear neutrophil; PDGF, platelet-derived growth factor; IGF, insulin-like growth factor; TGF-β, tumor-derived growth factor β; CAR, coxsackievirus and adenovirus receptor; MLV, murine leukemia virus; HIV, human immunodeficiency virus; AAV, adeno-associated virus; CAT, computer-aided tomography; CMV, cytomegalovirus; GAM, gene-activated matrix; MSC, marrow stromal cell; MDSC, muscle-derived stem cell; VEGF, vascular endothelial growth factor.
APA, Harvard, Vancouver, ISO, and other styles
8

Petrović, Milica, Ljiljana Kesić, Radmila Obradović, Simona Stojanović, Branislava Stojković, Marija Bojović, Ivana Stanković, Kosta Todorović, Milan Spasić, and Nenad Stošić. "Regenerative periodontal therapy: I part." Acta stomatologica Naissi 37, no. 84 (2021): 2304–13. http://dx.doi.org/10.5937/asn2184304p.

Full text
Abstract:
Introduction: Under the concept of regenerative periodontal therapy, there are two approaches: the first is the passive regeneration conceptthat includes bone substituents and guided periodontal regeneration by using of biomembranes and the second concept of active regeneration that impliesthe use of growth factors. The aim of the passive regeneration, by using of bone matrix (bone substituens) has been stabilization and bone defects management, preventing epithelial tissue growth, as well as saving space for the new tissue regeneration. This concept implies the use of autogenous transplantats, xenografts, allografts, as well as alloplastic materials. The carriers for active tissue regeneration, growth factors -GF are biological mediators that regulate cellular processes and that is crucial for the tissue regeneration. Aim:Presentation ofmodern approaches to periodontal therapy thatare focused on the attachment regeneration and complete reconstruction of periodontal tissue. Conclusion: In the future, periodontal regenerative therapy with periodontalligament progenitor cells should encourage repopulation of the areas that have been affected by periodontal disease.
APA, Harvard, Vancouver, ISO, and other styles
9

Yahav, Amos, Gregori M. Kurtzman, Michael Katzap, Damian Dudek, and David Baranes. "Bone Regeneration." Dental Clinics of North America 64, no. 2 (April 2020): 453–72. http://dx.doi.org/10.1016/j.cden.2019.12.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Malysheva, Kh V., I. M. Spasyuk, O. K. Pavlenko, R. S. Stoika, and O. G. Korchynsky. "Generation of optimized preparations of bone morphogenetic proteins for bone regeneration." Ukrainian Biochemical Journal 88, no. 6 (December 14, 2016): 87–97. http://dx.doi.org/10.15407/ubj88.06.087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Cahaya, Cindy, and Sri Lelyati C. Masulili. "Perkembangan Terkini Membran Guided Tissue Regeneration/Guided Bone Regeneration sebagai Terapi Regenerasi Jaringan Periodontal." Majalah Kedokteran Gigi Indonesia 1, no. 1 (June 1, 2015): 1. http://dx.doi.org/10.22146/majkedgiind.8810.

Full text
Abstract:
Periodontitis adalah salah satu penyakit patologis yang mempengaruhi integritas sistem periodontal yang menyebabkan kerusakan jaringan periodontal yang berlanjut pada kehilangan gigi. Beberapa tahun belakangan ini banyak ketertarikan untuk melakukan usaha regenerasi jaringan periodontal, tidak saja untuk menghentikan proses perjalanan penyakit namun juga mengembalikan jaringan periodontal yang telah hilang. Sasaran dari terapi regeneratif periodontal adalah menggantikan tulang, sementum dan ligamentum periodontal pada permukaan gigi yang terkena penyakit. Prosedur regenerasi antara lain berupa soft tissue graft, bone graft, biomodifikasi akar gigi, guided tissue regeneration sertakombinasi prosedur-prosedur di atas, termasuk prosedur bedah restoratif yang berhubungan dengan rehabilitasi oral dengan penempatan dental implan. Pada tingkat selular, regenerasi periodontal adalah proses kompleks yang membutuhkan proliferasi yang terorganisasi, differensiasi dan pengembangan berbagai tipe sel untuk membentuk perlekatan periodontal. Rasionalisasi penggunaan guided tissue regeneration sebagai membran pembatas adalah menahan epitel dan gingiva jaringan pendukung, sebagai barrier membrane mempertahankan ruang dan gigi serta menstabilkan bekuan darah. Pada makalah ini akan dibahas sekilas mengenai 1. Proses penyembuhan terapi periodontal meliputi regenerasi, repair ataupun pembentukan perlekatan baru. 2. Periodontal spesific tissue engineering. 3. Berbagai jenis membran/guided tissue regeneration yang beredar di pasaran dengan keuntungan dan kerugian sekaligus karakteristik masing-masing membran. 4. Perkembangan membran terbaru sebagai terapi regenerasi penyakit periodontal. Tujuan penulisan untuk memberi gambaran masa depan mengenai terapi regenerasi yang menjanjikan sebagai perkembangan terapi penyakit periodontal. Latest Development of Guided Tissue Regeneration and Guided Bone Regeneration Membrane as Regenerative Therapy on Periodontal Tissue. Periodontitis is a patological state which influences the integrity of periodontal system that could lead to the destruction of the periodontal tissue and end up with tooth loss. Currently, there are so many researches and efforts to regenerate periodontal tissue, not only to stop the process of the disease but also to reconstruct the periodontal tissue. Periodontal regenerative therapy aims at directing the growth of new bone, cementum and periodontal ligament on the affected teeth. Regenerative procedures consist of soft tissue graft, bone graft, roots biomodification, guided tissue regeneration and combination of the procedures, including restorative surgical procedure that is connected with oral rehabilitation with implant placement. At cellular phase, periodontal regeneration is a complex process with well-organized proliferation, distinction, and development of various type of cell to form attachment of periodontal tissue. Rationalization of the use of guided tissue regeneration as barrier membrane is to prohibit the penetration of epithelial and connective tissue migration into the defect, to maintain space, and to stabilize the clot. This research discusses: 1. Healing process on periodontal therapy including regeneration, repair or formation of new attachment. 2. Periodontal specific tissue engineering. 3. Various commercially available membrane/guided tissue regeneration in the market with its advantages and disadvantages and their characteristics. 4. Recent advancement of membrane as regenerative therapy on periodontal disease. In addition, this review is presented to give an outlook for promising regenerative therapy as a part of developing knowledge and skills to treat periodontal disease.
APA, Harvard, Vancouver, ISO, and other styles
12

Takayama, Tadahiro, Kentaro Imamura, and Seiichi Yamano. "Growth Factor Delivery Using a Collagen Membrane for Bone Tissue Regeneration." Biomolecules 13, no. 5 (May 10, 2023): 809. http://dx.doi.org/10.3390/biom13050809.

Full text
Abstract:
The use of biomaterials and bioactive agents has shown promise in bone defect repair, leading to the development of strategies for bone regeneration. Various artificial membranes, especially collagen membranes (CMs) that are widely used for periodontal therapy and provide an extracellular matrix-simulating environment, play a significant role in promoting bone regeneration. In addition, numerous growth factors (GFs) have been used as clinical applications in regenerative therapy. However, it has been established that the unregulated administration of these factors may not work to their full regenerative potential and could also trigger unfavorable side effects. The utilization of these factors in clinical settings is still restricted due to the lack of effective delivery systems and biomaterial carriers. Hence, considering the efficiency of bone regeneration, both spaces maintained using CMs and GFs can synergistically create successful outcomes in bone tissue engineering. Therefore, recent studies have demonstrated a significant interest in the potential of combining CMs and GFs to effectively promote bone repair. This approach holds great promise and has become a focal point in our research. The purpose of this review is to highlight the role of CMs containing GFs in the regeneration of bone tissue, and to discuss their use in preclinical animal models of regeneration. Additionally, the review addresses potential concerns and suggests future research directions for growth factor therapy in the field of regenerative science.
APA, Harvard, Vancouver, ISO, and other styles
13

Maganur, Prabhadevi. "Dental Pulp Stem Cells in Regenerative Therapy." TEXILA INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH 10, no. 2 (April 28, 2023): 70–77. http://dx.doi.org/10.21522/tijar.2014.10.02.art007.

Full text
Abstract:
Stem cells, also known as progenitor/precursor cells, have the unique trait of self-renewal and multi-lineage differentiation. Dental stem cells (DSCs) are holding a pivotal role during recent times as they thrive as the cornerstone for the development of cell transplantation therapies that correct periodontal disorders and damaged dentin. DSCs are used therapeutically for different organ systems and numerous diseases, including neurological disorders, diabetes, liver disease, bone tissue engineering, and dentistry. In dentistry, the focus is on predominantly regenerating the pulp and damaged dentin, repairing perforations, and periodontal regenerations. Above all, whole tooth regeneration has been constantly under research. The next decade could be a crucial junction where huge leaps in stem cell-based regenerative therapies could become a reality with successful tissue engineering therapies this could be a biological alternative to synthetic materials that are in use currently. But dental stem cells have their share of challenges for which the research must happen effectively adhering to social responsibilities at all levels. Keywords: Stem cells, Regeneration, Regenerative therapy, SHED.
APA, Harvard, Vancouver, ISO, and other styles
14

Kreicberga, Inta, and Kristine Salma-Ancane. "Injectable Organic-Inorganic Biocomposites for Bone Tissue Regeneration - A Mini Review." Key Engineering Materials 903 (November 10, 2021): 52–59. http://dx.doi.org/10.4028/www.scientific.net/kem.903.52.

Full text
Abstract:
Bone regeneration is complex physiological process, which include the most common form of regeneration - bone fracture healing and new bone formation. Moreover, large bone defects, infections and bone diseases such as osteoporosis and arthritis can impair bone regeneration. Despite intensive research and development of biomaterials for bone tissue engineering, especially for osteoporotic bone healing, the properties of the fabricated biomaterials are still far from those of unique composite structure of natural bone and desired therapeutic effect not achieved. This mini-review will highlight the various cutting-edge injectable inorganic-organic biocomposites as minimally invasive and regenerative therapeutics for bone tissue regeneration. The review will summarize the main strategic tools for the development of injectable biocomposites: natural or synthetic biopolymer-based hydrogels, bioactive inorganic fillers and biologically active components, as well as the fabrication techniques and synthesis methods.
APA, Harvard, Vancouver, ISO, and other styles
15

Kattimani, Vivekanand Sabanna, Sudheer Kondaka, and Krishna Prasad Lingamaneni. "Hydroxyapatite–-Past, Present, and Future in Bone Regeneration." Bone and Tissue Regeneration Insights 7 (January 2016): BTRI.S36138. http://dx.doi.org/10.4137/btri.s36138.

Full text
Abstract:
Hydroxyapatite (HA) is an essential element required for bone regeneration. Different forms of HA have been used for a long time. The essence of bone regeneration always revolves around the healthy underlying bone or it may be the surroundings that give enough strength. HA is well known for bone regeneration through conduction or by acting as a scaffold for filling of defects from ancient times, but emerging trends of osteoinductive property of HA are much promising for new bone regeneration. Emerging technology has made the dreams of clinicians to realize the use of HA in different forms for various regenerative purposes both in vivo and in vitro. The nanostructured calcium apatite plays an important role in the construction of calcified tissues. The nanostructured material has the ability to attach biological molecules such as proteins, which can be used as functional materials in many aspects, and the capability of synthesizing controlled structures of apatite to simulate the basic structure of bone and other calcified tissues. The process of regeneration requires a biomimetic and biocompatible nanostructured novel material. The nanostructured bioceramic particles are of interest in synthetic bone grafts and bone cements both injectable and controlled setting, so that such composites will reinforce the strength of bioceramics. Extensive research is being carried out for bone regeneration using nanotechnology. Artificial bone formation is not far from now. Nanotechnology has made many dreams come true. This paper gives comprehensive insights into the history and evolution with changing trends in the use of HA for various regenerative purposes.
APA, Harvard, Vancouver, ISO, and other styles
16

Zhang, Maolin, Wenwen Yu, Kunimichi Niibe, Wenjie Zhang, Hiroshi Egusa, Tingting Tang, and Xinquan Jiang. "The Effects of Platelet-Derived Growth Factor-BB on Bone Marrow Stromal Cell-Mediated Vascularized Bone Regeneration." Stem Cells International 2018 (October 31, 2018): 1–16. http://dx.doi.org/10.1155/2018/3272098.

Full text
Abstract:
Regenerative medicine for bone tissue mainly depends on efficient recruitment of endogenous or transplanted stem cells to guide bone regeneration. Platelet-derived growth factor (PDGF) is a functional factor that has been widely used in tissue regeneration and repair. However, the short half-life of PDGF limits its efficacy, and the mechanism by which PDGF regulates stem cell-based bone regeneration still needs to be elucidated. In this study, we established genetically modified PDGF-B-overexpressing bone marrow stromal cells (BMSCs) using a lentiviral vector and then explored the mechanism by which PDGF-BB regulates BMSC-based vascularized bone regeneration. Our results demonstrated that PDGF-BB increased osteogenic differentiation but inhibited adipogenic differentiation of BMSCs via the extracellular signal-related kinase 1/2 (ERK1/2) signaling pathway. In addition, secreted PDGF-BB significantly enhanced human umbilical vein endothelial cell (HUVEC) migration and angiogenesis via the phosphatidylinositol 3 kinase (PI3K)/AKT and ERK1/2 signaling pathways. We evaluated the effect of PDGF-B-modified BMSCs on bone regeneration using a critical-sized rat calvarial defect model. Radiography, micro-CT, and histological analyses revealed that PDGF-BB overexpression improved BMSC-mediated angiogenesis and osteogenesis during bone regeneration. These results suggest that PDGF-BB facilitates BMSC-based bone regeneration by enhancing the osteogenic and angiogenic abilities of BMSCs.
APA, Harvard, Vancouver, ISO, and other styles
17

Gugliandolo, Agnese, Luigia Fonticoli, Oriana Trubiani, Thangavelu S. Rajan, Guya D. Marconi, Placido Bramanti, Emanuela Mazzon, Jacopo Pizzicannella, and Francesca Diomede. "Oral Bone Tissue Regeneration: Mesenchymal Stem Cells, Secretome, and Biomaterials." International Journal of Molecular Sciences 22, no. 10 (May 15, 2021): 5236. http://dx.doi.org/10.3390/ijms22105236.

Full text
Abstract:
In the last few decades, tissue engineering has become one of the most studied medical fields. Even if bone shows self-remodeling properties, in some cases, due to injuries or anomalies, bone regeneration can be required. In particular, oral bone regeneration is needed in the dentistry field, where the functional restoration of tissues near the tooth represents a limit for many dental implants. In this context, the application of biomaterials and mesenchymal stem cells (MSCs) appears promising for bone regeneration. This review focused on in vivo studies that evaluated bone regeneration using biomaterials with MSCs. Different biocompatible biomaterials were enriched with MSCs from different sources. These constructs showed an enhanced bone regenerative power in in vivo models. However, we discussed also a future perspective in tissue engineering using the MSC secretome, namely the conditioned medium and extracellular vesicles. This new approach has already shown promising results for bone tissue regeneration in experimental models.
APA, Harvard, Vancouver, ISO, and other styles
18

Griffiths, R. W. "Bone regeneration with bone substitutes." British Journal of Plastic Surgery 41, no. 4 (July 1988): 448. http://dx.doi.org/10.1016/0007-1226(88)90100-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Frame, John W. "Bone regeneration with bone substitutes." British Journal of Oral and Maxillofacial Surgery 28, no. 1 (February 1990): 70. http://dx.doi.org/10.1016/0266-4356(90)90029-k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Lee, Seung Yeon, and Jin Woo Lee. "Mimicking microbone tissue by 3-dimensional printing." Organoid 4 (April 25, 2024): e4. http://dx.doi.org/10.51335/organoid.2024.4.e4.

Full text
Abstract:
Bones are mineralized connective tissues composed of osteoclasts, osteoblasts, and osteocytes. While bone is one of the few tissues that can regenerate in adulthood, its regeneration is limited in the case of large bone defects due to an environment that is detrimental to bone formation, which can be caused by soft tissue injury and impeded vascularization, ultimately reducing the potential for significant bone creation. Consequently, recent research has focused on tissue engineering and regenerative medicine to address these complex issues. This article reviews recent major advances in the cell components used for bone regeneration studies, specific markers of bone differentiation, 3-dimensional (3D) printing techniques for the structural mimicry of bones, and the use of natural and synthetic biomaterials. Functional bone structures and bone organoids can be created using 3D printing, which allows the reconstruction of bone tissue by attaching living cells to scaffolds. These scaffolds are designed with appropriate shapes and mechanical properties to mimic the bone microenvironment. The application of 3D printing in the development of bone organoids holds promise for providing improved solutions for the development of test systems for disease modeling and drug development.
APA, Harvard, Vancouver, ISO, and other styles
21

Skubis, Aleksandra, Bartosz Sikora, Nikola Zmarzły, Emilia Wojdas, and Urszula Mazurek. "Adipose-derived stem cells: a review of osteogenesis differentiation." Folia Biologica et Oecologica 12 (December 7, 2016): 38–47. http://dx.doi.org/10.1515/fobio-2016-0004.

Full text
Abstract:
This review article provides an overview on adipose-derived stem cells (ADSCs) for implications in bone tissue regeneration. Firstly this article focuses on mesenchymal stem cells (MSCs) which are object of interest in regenerative medicine. Stem cells have unlimited potential for self-renewal and develop into various cell types. They are used for many therapies such as bone tissue regeneration. Adipose tissue is one of the main sources of mesenchymal stem cells (MSCs). Regenerative medicine intends to differentiate ADSC along specific lineage pathways to effect repair of damaged or failing organs. For further clinical applications it is necessary to understand mechanisms involved in ADSCs proliferation and differentiation. Second part of manuscript based on osteogenesis differentiation of stem cells. Bones are highly regenerative organs but there are still many problems with therapy of large bone defects. Sometimes there is necessary to make a replacement or expansion new bone tissue. Stem cells might be a good solution for this especially ADSCs which manage differentiate into osteoblast in in vitro and in vivo conditions.
APA, Harvard, Vancouver, ISO, and other styles
22

Aoki, Kaoru, Hisao Haniu, Yoong Ahm Kim, and Naoto Saito. "The Use of Electrospun Organic and Carbon Nanofibers in Bone Regeneration." Nanomaterials 10, no. 3 (March 20, 2020): 562. http://dx.doi.org/10.3390/nano10030562.

Full text
Abstract:
There has been an increasing amount of research on regenerative medicine for the treatment of bone defects. Scaffolds are needed for the formation of new bone, and various scaffolding materials have been evaluated for bone regeneration. Materials with pores that allow cells to differentiate into osteocytes are preferred in scaffolds for bone regeneration, and porous materials and fibers are well suited for this application. Electrospinning is an effective method for producing a nanosized fiber by applying a high voltage to the needle tip containing a polymer solution. The use of electrospun nanofibers is being studied in the medical field, and its use as a scaffold for bone regeneration therapy has become a topic of growing interest. In this review, we will introduce the potential use of electrospun nanofiber as a scaffold for bone regenerative medicine with a focus on carbon nanofibers produced by the electrospinning method.
APA, Harvard, Vancouver, ISO, and other styles
23

Bauso, Luana Vittoria, Valeria La Fauci, Clelia Longo, and Giovanna Calabrese. "Bone Tissue Engineering and Nanotechnology: A Promising Combination for Bone Regeneration." Biology 13, no. 4 (April 2, 2024): 237. http://dx.doi.org/10.3390/biology13040237.

Full text
Abstract:
Large bone defects are the leading contributor to disability worldwide, affecting approximately 1.71 billion people. Conventional bone graft treatments show several disadvantages that negatively impact their therapeutic outcomes and limit their clinical practice. Therefore, much effort has been made to devise new and more effective approaches. In this context, bone tissue engineering (BTE), involving the use of biomaterials which are able to mimic the natural architecture of bone, has emerged as a key strategy for the regeneration of large defects. However, although different types of biomaterials for bone regeneration have been developed and investigated, to date, none of them has been able to completely fulfill the requirements of an ideal implantable material. In this context, in recent years, the field of nanotechnology and the application of nanomaterials to regenerative medicine have gained significant attention from researchers. Nanotechnology has revolutionized the BTE field due to the possibility of generating nanoengineered particles that are able to overcome the current limitations in regenerative strategies, including reduced cell proliferation and differentiation, the inadequate mechanical strength of biomaterials, and poor production of extrinsic factors which are necessary for efficient osteogenesis. In this review, we report on the latest in vitro and in vivo studies on the impact of nanotechnology in the field of BTE, focusing on the effects of nanoparticles on the properties of cells and the use of biomaterials for bone regeneration.
APA, Harvard, Vancouver, ISO, and other styles
24

Johnson, S. L., and J. A. Weston. "Temperature-sensitive mutations that cause stage-specific defects in Zebrafish fin regeneration." Genetics 141, no. 4 (December 1, 1995): 1583–95. http://dx.doi.org/10.1093/genetics/141.4.1583.

Full text
Abstract:
Abstract When amputated, the fins of adult zebrafish rapidly regenerate the missing tissue. Fin regeneration proceeds through several stages, including wound healing, establishment of the wound epithelium, recruitment of the blastema from mesenchymal cells underlying the wound epithelium, and differentiation and outgrowth of the regenerate. We screened for temperature-sensitive mutations that affect the regeneration of the fin. Seven mutations were identified, including five that fail to regenerate their fins, one that causes slow growth during regeneration, and one that causes dysmorphic bumps or tumors to develop in the regenerating fin. reg5 mutants fail to regenerate their caudal fins, whereas reg6 mutants develop dysmorphic bumps in their regenerates at the restrictive temperature. Temperature-shift experiments indicate that reg5 and reg6 affect different stages of regeneration. The critical period for reg5 occurs during the early stages of regeneration before or during establishment of the blastema, resulting in defects in subsequent growth of the blastema and failure to differentiate bone-forming cells. The critical period for reg6 occurs after the onset of bone differentiation and during early stages of regenerative outgrowth. Both reg5 and reg6 also show temperature-sensitive defects in embryonic development or in ontogenetic outgrowth of the juvenile fin.
APA, Harvard, Vancouver, ISO, and other styles
25

Kikuchi, Masanori, and M. Tanaka. "Bone Regeneration Materials." Key Engineering Materials 342-343 (July 2007): 277–80. http://dx.doi.org/10.4028/www.scientific.net/kem.342-343.277.

Full text
Abstract:
Biomaterials Center is composed of five groups and collaborate each other to examine interdisciplinary fields of biomaterials. In the ceramics-based biomaterials research, we have been developing three novel bone regeneration materials, i.e., high-porosity hydroxyapatite (HAp) ceramics with high-strength, guided bone regeneration (GBR) membranes and bone-like nanocomposite composed of HAp and collagen. The GBR membrane composed of β-tricalcium phosphate and biodegradable copolymer of lactide, glycolide and ε-caprolactone has thermoplastic, pH auto-adjustment and enough mechanical property to protect an invasion of surrounding tissues. With the membrane, bone defect up to 20 × 10 × 10 mm3 in length in mandibles and segmental bone defect up to 20 mm in length in tibiae of beagles are regenerated without any additional bone fillers or cell transplantations. The bone-like nanocomposite is synthesized by a co-precipitation of HAp and collagen via their self-organization. The dense composite has a half to quarter mechanical strength (40 MPa) to cortical bone and the porous one demonstrates sponge-like viscoelasticity. The composites implanted into bone are incorporated into bone remodeling metabolism like as autogenous bone graft, i.e., they are resorbed by osteolasts followed by osteogenesis by osteoblasts.
APA, Harvard, Vancouver, ISO, and other styles
26

Kim, Young-Kyun, and Jeong-Kui Ku. "Guided bone regeneration." Journal of the Korean Association of Oral and Maxillofacial Surgeons 46, no. 5 (October 31, 2020): 361–66. http://dx.doi.org/10.5125/jkaoms.2020.46.5.361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Stavropoulos, Franci, John C. Nale, and James D. Ruskin. "Guided bone regeneration." Oral and Maxillofacial Surgery Clinics of North America 14, no. 1 (February 2002): 15–27. http://dx.doi.org/10.1016/s1042-3699(02)00013-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Zachrisson, Bjorn U. "Buccal bone regeneration." American Journal of Orthodontics and Dentofacial Orthopedics 143, no. 1 (January 2013): 3–4. http://dx.doi.org/10.1016/j.ajodo.2012.11.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Mohd, Nurulhuda, Masfueh Razali, Mariyam Jameelah Ghazali, and Noor Hayaty Abu Kasim. "3D-Printed Hydroxyapatite and Tricalcium Phosphates-Based Scaffolds for Alveolar Bone Regeneration in Animal Models: A Scoping Review." Materials 15, no. 7 (April 2, 2022): 2621. http://dx.doi.org/10.3390/ma15072621.

Full text
Abstract:
Three-dimensional-printed scaffolds have received greater attention as an attractive option compared to the conventional bone grafts for regeneration of alveolar bone defects. Hydroxyapatite and tricalcium phosphates have been used as biomaterials in the fabrication of 3D-printed scaffolds. This scoping review aimed to evaluate the potential of 3D-printed HA and calcium phosphates-based scaffolds on alveolar bone regeneration in animal models. The systematic search was conducted across four electronic databases: Ovid, Web of Science, PubMed and EBSCOHOST, based on PRISMA-ScR guidelines until November 2021. The inclusion criteria were: (i) animal models undergoing alveolar bone regenerative surgery, (ii) the intervention to regenerate or augment bone using 3D-printed hydroxyapatite or other calcium phosphate scaffolds and (iii) histological and microcomputed tomographic analyses of new bone formation and biological properties of 3D-printed hydroxyapatite or calcium phosphates. A total of ten studies were included in the review. All the studies showed promising results on new bone formation without any inflammatory reactions, regardless of the animal species. In conclusion, hydroxyapatite and tricalcium phosphates are feasible materials for 3D-printed scaffolds for alveolar bone regeneration and demonstrated bone regenerative potential in the oral cavity. However, further research is warranted to determine the scaffold material which mimics the gold standard of care for bone regeneration in the load-bearing areas, including the masticatory load of the oral cavity.
APA, Harvard, Vancouver, ISO, and other styles
30

Motoike, Souta, Mikihito Kajiya, Nao Komatsu, Susumu Horikoshi, Tomoya Ogawa, Hisakatsu Sone, Shinji Matsuda, et al. "Clumps of Mesenchymal Stem Cell/Extracellular Matrix Complexes Generated with Xeno-Free Conditions Facilitate Bone Regeneration via Direct and Indirect Osteogenesis." International Journal of Molecular Sciences 20, no. 16 (August 15, 2019): 3970. http://dx.doi.org/10.3390/ijms20163970.

Full text
Abstract:
Three-dimensional clumps of mesenchymal stem cell (MSC)/extracellular matrix (ECM) complexes (C-MSCs) consist of cells and self-produced ECM. We demonstrated previously that C-MSCs can be transplanted into bone defect regions with no artificial scaffold to induce bone regeneration. To apply C-MSCs in a clinical setting as a reliable bone regenerative therapy, the present study aimed to generate C-MSCs in xeno-free/serum-free conditions that can exert successful bone regenerative properties and to monitor interactions between grafted cells and host cells during bone healing processes. Human bone marrow-derived MSCs were cultured in xeno-free/serum-free medium. To obtain C-MSCs, confluent cells that had formed on the cellular sheet were scratched using a micropipette tip and then torn off. The sheet was rolled to make a round clump of cells. Then, C-MSCs were transplanted into an immunodeficient mouse calvarial defect model. Transplantation of C-MSCs induced bone regeneration in a time-dependent manner. Immunofluorescence staining showed that both donor human cells and host mice cells contributed to bone reconstruction. Decellularized C-MSCs implantation failed to induce bone regeneration, even though the host mice cells can infiltrate into the defect area. These findings suggested that C-MSCs generated in xeno-free/serum-free conditions can induce bone regeneration via direct and indirect osteogenesis.
APA, Harvard, Vancouver, ISO, and other styles
31

Chou, Joshua, Maki Komuro, Jia Hao, Shinji Kuroda, Yusuke Hattori, Besim Ben-Nissan, Bruce Milthorpe, and Makoto Otsuka. "Bioresorbable zinc hydroxyapatite guided bone regeneration membrane for bone regeneration." Clinical Oral Implants Research 27, no. 3 (November 3, 2014): 354–60. http://dx.doi.org/10.1111/clr.12520.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Miletić, Maja, Nevena Puač, Nikola Škoro, Božidar Brković, Miroslav Andrić, Bogomir Bolka Prokić, Vesna Danilović, Sanja Milutinović-Smiljanić, Olivera Mitrović-Ajtić, and Slavko Mojsilović. "Bone Regeneration Potential of Periodontal Ligament Stem Cells in Combination with Cold Atmospheric Plasma-Pretreated Beta-Tricalcium Phosphate: An In Vivo Assessment." Applied Sciences 14, no. 1 (December 19, 2023): 16. http://dx.doi.org/10.3390/app14010016.

Full text
Abstract:
In regenerative bone tissue medicine, combining artificial bone substitutes with progenitor cells is a prospective approach. Surface modification via cold atmospheric plasma (CAP) enhances biomaterial–cell interactions, which are crucial for successful bone regeneration. Using a rabbit calvarial critical-size defect model, we assessed the use of CAP-pretreated beta-tricalcium phosphate (β-TCP), alone or with periodontal ligament stem cells (PDLSCs), for bone regeneration. Histological and histomorphometric analyses at two and four weeks revealed significantly improved bone regeneration and reduced inflammation in the CAP-treated β-TCP with PDLSCs compared to β-TCP alone. Immunohistochemical analysis also showed an increase in the bone healing markers, including bone morphogenic proteins 2 and 4, runt-related transcription factor 2, collagen-1, and osteonectin, after two and four weeks in the CAP-treated β-TCP implants with PDLSC. This in vivo study demonstrates for the first time the superior bone regenerative capacity of CAP-pretreated β-TCP seeded with PDLSCs, highlighting the therapeutic potential of this combined approach in osteoregeneration.
APA, Harvard, Vancouver, ISO, and other styles
33

Adamička, M., A. Adamičková, L. Danišovič, A. Gažová, and J. Kyselovič. "Pharmacological Approaches and Regeneration of Bone Defects with Dental Pulp Stem Cells." Stem Cells International 2021 (September 29, 2021): 1–7. http://dx.doi.org/10.1155/2021/4593322.

Full text
Abstract:
Bone defects in the craniomaxillofacial skeleton vary from small periodontal defects to extensive bone loss, which are difficult to restore and can lead to extensive damage of the surrounding structures, deformities, and limited functions. Plenty of surgical regenerative procedures have been developed to reconstruct or prevent alveolar defects, based on guided bone regeneration involving the use of autogenous bone grafts or bone substituents. However, these techniques have limitations in the restoration of morphological and functional reconstruction, thus stopping disease progression but not regenerating lost tissue. Most promising candidates for regenerative therapy of maxillofacial bone defects represent postnatal stem cells, because of their replication potential in the undifferentiated state and their ability to differentiate as well. There is an increased need for using various orofacial sources of stem cells with comparable properties to mesenchymal stem cells because they are more easily available with minimally invasive procedures. In addition to the source of MSCs, another aspect affects the regeneration outcomes. Thermal, mechanical, and chemical stimuli after surgical procedures have the ability to generate pain, usually managed with pharmacological agents, mostly nonsteroidal anti-inflammatory drugs (NSAIDs). Some studies revealed that NSAIDs have no significant cytotoxic effect on bone marrow stem cells from mice, while other studies showed regulation of osteogenic and chondrogenic marker genes in MSC cells by NSAIDs and paracetamol, but no effect was observed in connection with diclofenac use. Therefore, there is a need to focus on such pharmacotherapy, capable of affecting the characteristics and properties of implanted MSCs.
APA, Harvard, Vancouver, ISO, and other styles
34

Vieira, Warren, and Catherine McCusker. "Regenerative Models for the Integration and Regeneration of Head Skeletal Tissues." International Journal of Molecular Sciences 19, no. 12 (November 26, 2018): 3752. http://dx.doi.org/10.3390/ijms19123752.

Full text
Abstract:
Disease of, or trauma to, the human jaw account for thousands of reconstructive surgeries performed every year. One of the most popular and successful treatment options in this context involves the transplantation of bone tissue from a different anatomical region into the affected jaw. Although, this method has been largely successful, the integration of the new bone into the existing bone is often imperfect, and the integration of the host soft tissues with the transplanted bone can be inconsistent, resulting in impaired function. Unlike humans, several vertebrate species, including fish and amphibians, demonstrate remarkable regenerative capabilities in response to jaw injury. Therefore, with the objective of identifying biological targets to promote and engineer improved outcomes in the context of jaw reconstructive surgery, we explore, compare and contrast the natural mechanisms of endogenous jaw and limb repair and regeneration in regenerative model organisms. We focus on the role of different cell types as they contribute to the regenerating structure; how mature cells acquire plasticity in vivo; the role of positional information in pattern formation and tissue integration, and limitations to endogenous regenerative and repair mechanisms.
APA, Harvard, Vancouver, ISO, and other styles
35

Aoki, Kaoru, and Naoto Saito. "Biodegradable Polymers as Drug Delivery Systems for Bone Regeneration." Pharmaceutics 12, no. 2 (January 24, 2020): 95. http://dx.doi.org/10.3390/pharmaceutics12020095.

Full text
Abstract:
Regenerative medicine has been widely researched for the treatment of bone defects. In the field of bone regenerative medicine, signaling molecules and the use of scaffolds are of particular importance as drug delivery systems (DDS) or carriers for cell differentiation, and various materials have been explored for their potential use. Although calcium phosphates such as hydroxyapatite and tricalcium phosphate are clinically used as synthetic scaffold material for bone regeneration, biodegradable materials have attracted much attention in recent years for their clinical application as scaffolds due their ability to facilitate rapid localized absorption and replacement with autologous bone. In this review, we introduce the types, features, and performance characteristics of biodegradable polymer scaffolds in their role as DDS for bone regeneration therapy.
APA, Harvard, Vancouver, ISO, and other styles
36

Maynalovska, Hristina, Christina Popova, and Antoaneta Mlachkova. "RADIOGRAPHIC EVALUATION OF BONE FILLING IN INTRABONY PERIODONTAL DEFECTS WITH CERABONE® AS BONE REPLACEMENT GRAFT: CASE SERIES." Journal of IMAB - Annual Proceeding (Scientific Papers) 28, no. 1 (February 9, 2022): 4229–32. http://dx.doi.org/10.5272/jimab.2022281.4229.

Full text
Abstract:
The regeneration of lost periodontal tissues due to periodontal disease remains a difficult clinical challenge. As clinicians, we look for procedures with improved predictability, beneficial impact on the treatment of periodontal disease, and in the long term – improvement of prognosis of the involved teeth. Various types of grafting materials with substantial research evidence reporting on their efficacy have been introduced in regenerative periodontal therapy based on their ability to facilitate the reconstruction of the lost supporting apparatus. Consequently, the periodontal regeneration of intrabony defects involves not only the experience and skills of the clinicians but also the selection of suitable regenerative material. The type of tissue filling in a periodontal defect after surgical treatment can only be precisely evaluated by histological means, and it is restricted to a few cases due to ethical reasons. Histologic studies have demonstrated regeneration potential for GTR, allografts, xenografts and growth factors. And since the periodontal regeneration includes the regrowth of alveolar bone, by using radiographs, changes of the alveolar crest may be used to monitor periodontal healing. Our case series present the radiographic evaluation of the bone fill of 6 vertical bone defects treated with Cerabone®. The xenograft Cerabone® is a 100% pure bone mineral of bovine origin that has been successfully applied in regenerative dentistry and has been in use for more than 15 years in various medical applications (e.g. craniofacial surgery, oncology and hand and spine surgery).
APA, Harvard, Vancouver, ISO, and other styles
37

Mohd Daud, Nurizzati, Adrianna Batrisyia Nu’man Izzat Rosli, Clanessa Terra Peter, Mohammad Firdaus Mohd Salleh, Nur Farisha Hanna Hamizun, Puteri Eyriena Maysara Yazit, and Tan Xian Huai. "Alginate and Collagen Composite for Hard Tissue Generation: A Mini Review." Journal of Medical Device Technology 2, no. 2 (December 31, 2023): 96–101. http://dx.doi.org/10.11113/jmeditec.v2n2.41.

Full text
Abstract:
The bone regeneration process involves the formation of the regenerative cells, the cell proliferation to produce new tissue and subsequently will repair the fractured area. During regeneration process, the osteoblast cells will secrete several proteins, organic and inorganic components as the base components to form the bone tissues or known as matrix. However, some conditions such as bone tumor removal, massive bone loss injury, extensive infections at the bone, minerals deficiency resulting the failure of bone regeneration and lead to prolonged bone fracture. To overcome this, bone scaffold is implanted or encapsulated bioactive cells are applied at the damaged area to support the bone regeneration. The materials should be osteogenic, osteoconductive and have osteoinductive properties. Natural polymer such as alginate and collagen are often used as biomaterials due to their high biocompatibility, degradability, low toxicity and easy to form a crosslinker with other materials through various method process. Therefore, this review will highlight the properties of alginate and collagen, the fabrication method to form composite and its application in biomedical area.
APA, Harvard, Vancouver, ISO, and other styles
38

Liu, Jin, Jianping Ruan, Michael D. Weir, Ke Ren, Abraham Schneider, Ping Wang, Thomas W. Oates, Xiaofeng Chang, and Hockin H. K. Xu. "Periodontal Bone-Ligament-Cementum Regeneration via Scaffolds and Stem Cells." Cells 8, no. 6 (June 4, 2019): 537. http://dx.doi.org/10.3390/cells8060537.

Full text
Abstract:
Periodontitis is a prevalent infectious disease worldwide, causing the damage of periodontal support tissues, which can eventually lead to tooth loss. The goal of periodontal treatment is to control the infections and reconstruct the structure and function of periodontal tissues including cementum, periodontal ligament (PDL) fibers, and bone. The regeneration of these three types of tissues, including the re-formation of the oriented PDL fibers to be attached firmly to the new cementum and alveolar bone, remains a major challenge. This article represents the first systematic review on the cutting-edge researches on the regeneration of all three types of periodontal tissues and the simultaneous regeneration of the entire bone-PDL-cementum complex, via stem cells, bio-printing, gene therapy, and layered bio-mimetic technologies. This article primarily includes bone regeneration; PDL regeneration; cementum regeneration; endogenous cell-homing and host-mobilized stem cells; 3D bio-printing and generation of the oriented PDL fibers; gene therapy-based approaches for periodontal regeneration; regenerating the bone-PDL-cementum complex via layered materials and cells. These novel developments in stem cell technology and bioactive and bio-mimetic scaffolds are highly promising to substantially enhance the periodontal regeneration including both hard and soft tissues, with applicability to other therapies in the oral and maxillofacial region.
APA, Harvard, Vancouver, ISO, and other styles
39

Herath, H., Tomonori Kawakami, and Masamoto Tafu. "Repeated Heat Regeneration of Bone Char for Sustainable Use in Fluoride Removal from Drinking Water." Healthcare 6, no. 4 (December 8, 2018): 143. http://dx.doi.org/10.3390/healthcare6040143.

Full text
Abstract:
The effectiveness of regenerated chicken bone char (CBC) in fluoride removal was investigated in the present study. Heat treatment was studied as the regeneration method. Results revealed that the CBC regenerated at 673 K yielded the highest fluoride adsorption capacity, hence, 673 K was the best regenerating temperature. The study continued up to five regeneration cycles at the best regenerating temperature; 673 K. The CBC accounted to 16.1 mg F/g CBC as the total adsorption capacity after five regeneration cycles. The recovery percentage of CBC reduced from 79% at the first regeneration to 4% after five regeneration cycles. The hydroxyapatite structure of CBC was not changed during the fluoride adsorption by five regeneration cycles. The ion exchange incorporated with the chemical precipitation occurred during the fluoride adsorption. The repeated regeneration of CBC is possible and it could be used as a low cost defluoridation technique to minimize the wastage of bone char.
APA, Harvard, Vancouver, ISO, and other styles
40

Ivanov, Alexey A., Alla V. Kuznetsova, Olga P. Popova, Tamara I. Danilova, and Oleg O. Yanushevich. "Modern Approaches to Acellular Therapy in Bone and Dental Regeneration." International Journal of Molecular Sciences 22, no. 24 (December 15, 2021): 13454. http://dx.doi.org/10.3390/ijms222413454.

Full text
Abstract:
An approach called cell-free therapy has rapidly developed in regenerative medicine over the past decade. Understanding the molecular mechanisms and signaling pathways involved in the internal potential of tissue repair inspires the development of new strategies aimed at controlling and enhancing these processes during regeneration. The use of stem cell mobilization, or homing for regeneration based on endogenous healing mechanisms, prompted a new concept in regenerative medicine: endogenous regenerative medicine. The application of cell-free therapeutic agents leading to the recruitment/homing of endogenous stem cells has advantages in overcoming the limitations and risks associated with cell therapy. In this review, we discuss the potential of cell-free products such as the decellularized extracellular matrix, growth factors, extracellular vesicles and miRNAs in endogenous bone and dental regeneration.
APA, Harvard, Vancouver, ISO, and other styles
41

Abbas, Mohamed, Mohammed S. Alqahtani, and Roaa Alhifzi. "Recent Developments in Polymer Nanocomposites for Bone Regeneration." International Journal of Molecular Sciences 24, no. 4 (February 7, 2023): 3312. http://dx.doi.org/10.3390/ijms24043312.

Full text
Abstract:
Most people who suffer acute injuries in accidents have fractured bones. Many of the basic processes that take place during embryonic skeletal development are replicated throughout the regeneration process that occurs during this time. Bruises and bone fractures, for example, serve as excellent examples. It almost always results in a successful recovery and restoration of the structural integrity and strength of the broken bone. After a fracture, the body begins to regenerate bone. Bone formation is a complex physiological process that requires meticulous planning and execution. A normal healing procedure for a fracture might reveal how the bone is constantly rebuilding as an adult. Bone regeneration is becoming more dependent on polymer nanocomposites, which are composites made up of a polymer matrix and a nanomaterial. This study will review polymer nanocomposites that are employed in bone regeneration to stimulate bone regeneration. As a result, we will introduce the role of bone regeneration nanocomposite scaffolds, and the nanocomposite ceramics and biomaterials that play a role in bone regeneration. Aside from that, recent advances in polymer nanocomposites might be used in a variety of industrial processes to help people with bone defects overcome their challenges will be discussed.
APA, Harvard, Vancouver, ISO, and other styles
42

Jantaboon, Sirikanda, Nithidol Sakunrangsit, Parichart Toejing, Asada Leelahavanichkul, Prapaporn Pisitkun, Matthew B. Greenblatt, and Sutada Lotinun. "Lipopolysaccharide Impedes Bone Repair in FcγRIIB-Deficient Mice." International Journal of Molecular Sciences 24, no. 23 (November 29, 2023): 16944. http://dx.doi.org/10.3390/ijms242316944.

Full text
Abstract:
Chronic inflammation contributes to the development of skeletal disorders in patients with systemic lupus erythematosus (SLE). Activation of the host immune response stimulates osteoclast activity, which in turn leads to bone loss. Regenerating bone in the inflammatory microenvironments of SLE patients with critical bone defects remains a great challenge. In this study, we utilized lipopolysaccharide (LPS) to imitate locally and systemically pathogenic bacterial infection and examined the bone regeneration performance of LPS-associated mandibular and tibial bone regeneration impairment in FcγRIIB−/− mice. Our results indicated that a loss of FcγRIIB alleviates bone regeneration in both mandibles and tibiae. After LPS induction, FcγRIIB−/− mice were susceptible to impaired fracture healing in tibial and mandibular bones. LPS decreased the mineralization to collagen ratio in FcγRIIB−/− mice, indicating a mineralization defect during bone repair. An osteoblast-associated gene (Col1a1) was attenuated in FcγRIIB-deficient mice, whereas Bglap, Hhip, and Creb5 were further downregulated with LPS treatment in FcγRIIB−/− mice compared to FcγRIIB−/− mice. Alpl and Bglap expression was dcreased in osteoblasts derived from bone chips. An osteoclast-associated gene, Tnfsf11/Tnfrsf11 ratio, ewas increased in LPS-induced FcγRIIB−/− mice and in vitro. Furthermore, systemic LPS was relatively potent in stimulating production of pro-inflammatory cytokines including TNF-α, IL-6, and MCP-1 in FcγRIIB−/− mice compared to FcγRIIB−/− mice. The levels of TNF-α, IFN-β, IL-1α, and IL-17A were increased, whereas IL-10 and IL-23 were decreased in FcγRIIB−/− mice treated locally with LPS. These findings suggest that both local and systemic LPS burden can exacerbate bone regeneration impairment, delay mineralization and skeletal repair, and induce inflammation in SLE patients.
APA, Harvard, Vancouver, ISO, and other styles
43

Reçica, Bylbyl, Mirjana Popovska, Amella Cana, Lindita Zendeli Bedxeti, Urim Tefiku, Spiro Spasovski, Ana Spasovska-Gjorgovska, Teuta Kutllovci, and Jehona F. Ahmedi. "Use of Biomaterials for Periodontal Regeneration: A Review." Open Access Macedonian Journal of Medical Sciences 8, F (April 20, 2020): 90–97. http://dx.doi.org/10.3889/oamjms.2020.4354.

Full text
Abstract:
BACKGROUND: Management of bone periodontal defects, destruction, and loss of the alveolar bone is considered a challenge for modern periodontal regeneration and implant dentistry. Numerous of biomaterials are being used in periodontal regenerative treatment. AIM: This study aims to know the characteristics of biomaterials and their efficiency in periodontal surgical treatment as regenerative therapy. METHODS: A systematic review of the literature considering reviews, clinical studies, original papers, and articles from electronic data has been used. RESULTS: Different biomaterials such as Straumann® Emdogain®, Geistlich Bio-Oss®, MIS 4MATRIX – Bone Graft, Platelet-rich fibrin (PRF), Mis Bone-4MATRIX, and PRF are being used for periodontal regeneration treatment, hence revealing more effective outcomes when combined. PRP together with conventional grafting procedures may be a beneficial treatment approach, guided tissue regeneration with bioabsorbable membranes in combination with Bio-Oss are stable on a long-term basis. CONCLUSION: Biomaterials being used in periodontal surgical treatment have the different regenerative ability. The combined use of biomaterials might result in a better clinical outcome. There are also a number of other biomaterials used to treat periodontal regeneration, but generally all have the same ability and the same molecular structure as highlighted in this literature review.
APA, Harvard, Vancouver, ISO, and other styles
44

Inchingolo, Francesco, Denisa Hazballa, Alessio Danilo Inchingolo, Giuseppina Malcangi, Grazia Marinelli, Antonio Mancini, Maria Elena Maggiore, et al. "Innovative Concepts and Recent Breakthrough for Engineered Graft and Constructs for Bone Regeneration: A Literature Systematic Review." Materials 15, no. 3 (January 31, 2022): 1120. http://dx.doi.org/10.3390/ma15031120.

Full text
Abstract:
Background: For decades, regenerative medicine and dentistry have been improved with new therapies and innovative clinical protocols. The aim of the present investigation was to evaluate through a critical review the recent innovations in the field of bone regeneration with a focus on the healing potentials and clinical protocols of bone substitutes combined with engineered constructs, growth factors and photobiomodulation applications. Methods: A Boolean systematic search was conducted by PubMed/Medline, PubMed/Central, Web of Science and Google scholar databases according to the PRISMA guidelines. Results: After the initial screening, a total of 304 papers were considered eligible for the qualitative synthesis. The articles included were categorized according to the main topics: alloplastic bone substitutes, autologous teeth derived substitutes, xenografts, platelet-derived concentrates, laser therapy, microbiota and bone metabolism and mesenchymal cells construct. Conclusions: The effectiveness of the present investigation showed that the use of biocompatible and bio-resorbable bone substitutes are related to the high-predictability of the bone regeneration protocols, while the oral microbiota and systemic health of the patient produce a clinical advantage for the long-term success of the regeneration procedures and implant-supported restorations. The use of growth factors is able to reduce the co-morbidity of the regenerative procedure ameliorating the post-operative healing phase. The LLLT is an adjuvant protocol to improve the soft and hard tissues response for bone regeneration treatment protocols.
APA, Harvard, Vancouver, ISO, and other styles
45

Srinivasan, K. "Recent advances in periodontal regeneration – A review." Journal of the Indian Dental Association Tamil Nadu 14, no. 2 (2024): 1. http://dx.doi.org/10.26634/jidat.14.2.20135.

Full text
Abstract:
Periodontal Disease (PD) is one of the most common inflammatory oral diseases, affecting approximately 47% of adults aged 30 years or older in the United States. If not treated properly, PD leads to degradation of periodontal tissues, causing tooth movement, and eventually tooth loss. Conventional clinical therapy for PD aims at eliminating infectious sources and reducing inflammation to arrest disease progression, which cannot achieve the regeneration of lost periodontal tissues. Over the past two decades, various regenerative periodontal therapies, such as Guided Tissue Regeneration (GTR), enamel matrix derivative, bone grafts, growth factor delivery, and the combination of cells and growth factors with matrix-based scaffolds, have been developed to target the restoration of lost tooth-supporting tissues, including the periodontal ligament, alveolar bone, and cementum. This review discusses recent progress in periodontal regeneration using tissue-engineering and regenerative medicine approaches. Specifically, the focus is on the advances in biomaterials and controlled drug delivery for periodontal regeneration in recent years. Special attention is given to the development of advanced bio-inspired scaffolding biomaterials and temporospatial control of multi-drug delivery for the regeneration of the cementum-periodontal ligament-alveolar bone complex. Challenges and future perspectives are presented to provide inspiration for the design and development of innovative biomaterials and delivery systems for new regenerative periodontal therapy.
APA, Harvard, Vancouver, ISO, and other styles
46

Terauchi, Masahiko, Atsushi Tamura, Yoshinori Arisaka, Hiroki Masuda, Tetsuya Yoda, and Nobuhiko Yui. "Cyclodextrin-Based Supramolecular Complexes of Osteoinductive Agents for Dental Tissue Regeneration." Pharmaceutics 13, no. 2 (January 21, 2021): 136. http://dx.doi.org/10.3390/pharmaceutics13020136.

Full text
Abstract:
Oral tissue regeneration has received growing attention for improving the quality of life of patients. Regeneration of oral tissues such as alveolar bone and widely defected bone has been extensively investigated, including regenerative treatment of oral tissues using therapeutic cells and growth factors. Additionally, small-molecule drugs that promote bone formation have been identified and tested as new regenerative treatment. However, treatments need to progress to realize successful regeneration of oral functions. In this review, we describe recent progress in development of regenerative treatment of oral tissues. In particular, we focus on cyclodextrin (CD)-based pharmaceutics and polyelectrolyte complexation of growth factors to enhance their solubility, stability, and bioactivity. CDs can encapsulate hydrophobic small-molecule drugs into their cavities, resulting in inclusion complexes. The inclusion complexation of osteoinductive small-molecule drugs improves solubility of the drugs in aqueous solutions and increases in vitro osteogenic differentiation efficiency. Additionally, various anionic polymers such as heparin and its mimetic polymers have been developed to improve stability and bioactivity of growth factors. These polymers protect growth factors from deactivation and degradation by complex formation through electrostatic interaction, leading to potentiation of bone formation ability. These approaches using an inclusion complex and polyelectrolyte complexes have great potential in the regeneration of oral tissues.
APA, Harvard, Vancouver, ISO, and other styles
47

Lee, Dong Joon, Yonsil Park, Wei-Shou Hu, and Ching-Chang Ko. "Osteogenic Potential of Multipotent Adult Progenitor Cells for Calvaria Bone Regeneration." Advances in Medicine 2016 (2016): 1–11. http://dx.doi.org/10.1155/2016/2803081.

Full text
Abstract:
Osteogenic cells derived from rat multipotent adult progenitor cells (rMAPCs) were investigated for their potential use in bone regeneration. rMAPCs are adult stem cells derived from bone marrow that have a high proliferation capacity and the differentiation potential to multiple lineages. They may also offer immunomodulatory properties favorable for applications for regenerative medicine. rMAPCs were cultivated as single cells or as 3D aggregates in osteogenic media for up to 38 days, and their differentiation to bone lineage was then assessed by immunostaining of osteocalcin and collagen type I and by mineralization assays. The capability of rMAPCs in facilitating bone regeneration was evaluatedin vivoby the direct implantation of multipotent adult progenitor cell (MAPC) aggregates in rat calvarial defects. Bone regeneration was examined radiographically, histologically, and histomorphometrically. Results showed that rMAPCs successfully differentiated into osteogenic lineage by demonstrating mineralized extracellular matrix formationin vitroand induced new bone formation by the effect of rMAPC aggregatesin vivo. These outcomes confirm that rMAPCs have a good osteogenic potential and provide insights into rMAPCs as a novel adult stem cell source for bone regeneration.
APA, Harvard, Vancouver, ISO, and other styles
48

Zhang, Qing, Lan Xiao, and Yin Xiao. "Porous Nanomaterials Targeting Autophagy in Bone Regeneration." Pharmaceutics 13, no. 10 (September 28, 2021): 1572. http://dx.doi.org/10.3390/pharmaceutics13101572.

Full text
Abstract:
Porous nanomaterials (PNMs) are nanosized materials with specially designed porous structures that have been widely used in the bone tissue engineering field due to the fact of their excellent physical and chemical properties such as high porosity, high specific surface area, and ideal biodegradability. Currently, PNMs are mainly used in the following four aspects: (1) as an excellent cargo to deliver bone regenerative growth factors/drugs; (2) as a fluorescent material to trace cell differentiation and bone formation; (3) as a raw material to synthesize or modify tissue engineering scaffolds; (4) as a bio-active substance to regulate cell behavior. Recent advances in the interaction between nanomaterials and cells have revealed that autophagy, a cellular survival mechanism that regulates intracellular activity by degrading/recycling intracellular metabolites, providing energy/nutrients, clearing protein aggregates, destroying organelles, and destroying intracellular pathogens, is associated with the phagocytosis and clearance of nanomaterials as well as material-induced cell differentiation and stress. Autophagy regulates bone remodeling balance via directly participating in the differentiation of osteoclasts and osteoblasts. Moreover, autophagy can regulate bone regeneration by modulating immune cell response, thereby modulating the osteogenic microenvironment. Therefore, autophagy may serve as an effective target for nanomaterials to facilitate the bone regeneration process. Increasingly, studies have shown that PNMs can modulate autophagy to regulate bone regeneration in recent years. This paper summarizes the current advances on the main application of PNMs in bone regeneration, the critical role of autophagy in bone regeneration, and the mechanism of PNMs regulating bone regeneration by targeting autophagy.
APA, Harvard, Vancouver, ISO, and other styles
49

Muraev, A. A., S. Yu Ivanov, S. G. Ivashkevich, V. N. Gorshenev, A. T. Teleshev, A. V. Kibardin, K. K. Kobets, and V. K. Dubrovin. "Orthotopic bone implants for bone regeneration." Stomatologiya 96, no. 3 (2017): 36. http://dx.doi.org/10.17116/stomat201796336-39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Ewers, Rolf, and Boyd J. Tomasetti. "Bone enhancement and bioengineered bone regeneration." Journal of Oral and Maxillofacial Surgery 62 (August 2004): 88. http://dx.doi.org/10.1016/j.joms.2004.05.059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography