Academic literature on the topic 'Bone marrow mesenchymal stromal cell'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bone marrow mesenchymal stromal cell.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bone marrow mesenchymal stromal cell"
Srinivas, Ampati. "The Constantly Highly Expression of Limbal Stromal Cells Compared to the Bone Marrow Mesenchymal Stromal Cells, Adipose-Derived Mesenchymal Stromal Cells and Foreskin Fibroblasts." Stem Cells Research and Therapeutics International 1, no. 1 (April 16, 2019): 01–06. http://dx.doi.org/10.31579/2643-1912/005.
Full textCilloni, Daniela, Carmelo Carlo-Stella, Franca Falzetti, Gabriella Sammarelli, Ester Regazzi, Simona Colla, Vittorio Rizzoli, Franco Aversa, Massimo F. Martelli, and Antonio Tabilio. "Limited engraftment capacity of bone marrow–derived mesenchymal cells following T-cell–depleted hematopoietic stem cell transplantation." Blood 96, no. 10 (November 15, 2000): 3637–43. http://dx.doi.org/10.1182/blood.v96.10.3637.h8003637_3637_3643.
Full textBorges, Fernanda T., Marcia Bastos Convento, and Nestor Schor. "Bone marrow-derived mesenchymal stromal cell: what next?" Stem Cells and Cloning: Advances and Applications Volume 11 (November 2018): 77–83. http://dx.doi.org/10.2147/sccaa.s147804.
Full textCilloni, Daniela, Carmelo Carlo-Stella, Franca Falzetti, Gabriella Sammarelli, Ester Regazzi, Simona Colla, Vittorio Rizzoli, Franco Aversa, Massimo F. Martelli, and Antonio Tabilio. "Limited engraftment capacity of bone marrow–derived mesenchymal cells following T-cell–depleted hematopoietic stem cell transplantation." Blood 96, no. 10 (November 15, 2000): 3637–43. http://dx.doi.org/10.1182/blood.v96.10.3637.
Full textReyes, Morayma, Sheng Li, Jessica Foraker, En Kimura, and Jeffrey S. Chamberlain. "Donor origin of multipotent adult progenitor cells in radiation chimeras." Blood 106, no. 10 (November 15, 2005): 3646–49. http://dx.doi.org/10.1182/blood-2004-12-4603.
Full textKrambs, Joseph R., Grazia Abou Ezzi, Juo-Chin Yao, Justin T. Li, and Daniel C. Link. "Canonical Signaling By TGF Family Members in Mesenchymal Stromal Cells Is Dispensable for Hematopoietic Niche Maintenance Under Basal and Stress Conditions." Blood 134, Supplement_1 (November 13, 2019): 1209. http://dx.doi.org/10.1182/blood-2019-128693.
Full textdel Carmen Rodríguez, María, Antonio Bernad, and Miguel Aracil. "Interleukin-6 deficiency affects bone marrow stromal precursors, resulting in defective hematopoietic support." Blood 103, no. 9 (May 1, 2004): 3349–54. http://dx.doi.org/10.1182/blood-2003-10-3438.
Full textWidera, Darius. "Recent Advances in Translational Adipose-Derived Stem Cell Biology." Biomolecules 11, no. 11 (November 9, 2021): 1660. http://dx.doi.org/10.3390/biom11111660.
Full textMiura, Yasuo, Tatsuo Ichinohe, and Taira Maekawa. "Human Mesenchymal Stromal/Stem Cell-Mediated Bone Marrow Organization." Japanese Journal of Transfusion and Cell Therapy 61, no. 5 (2015): 489–90. http://dx.doi.org/10.3925/jjtc.61.489.
Full textLim, Hong Kiat, Pravin Periasamy, and Helen C. O’Neill. "In Vitro Murine Hematopoiesis Supported by Signaling from a Splenic Stromal Cell Line." Stem Cells International 2018 (December 25, 2018): 1–9. http://dx.doi.org/10.1155/2018/9896142.
Full textDissertations / Theses on the topic "Bone marrow mesenchymal stromal cell"
François, Moïra. "Comprehensive study of the immunomodulatory properties of bone marrow-derived mesenchymal stromal cells." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=103683.
Full textAu cours de la dernière décennie, les cellules stromales mésenchymateuses (MSC) ont fait une entrée remarquée dans le domaine de l'immunothérapie cellulaire. In vitro, les MSC ont démontrées des propriétés immunomodulatrices, soit par leur action inhibitrice sur les fonctions des cellules du système immunitaire ou par leur capacité à présenter des antigènes aux lymphocytes T CD4+, à la suite d'une stimulation par IFN-. Malgré l'existence de nombreuses recherches in vivo chez les animaux et l'homme prouvant leurs propriétés immunologiques, les mécanismes par lesquels les MSC modulent le système immunitaire n'ont pas encore été élucidés. Dans le Chapitre 1, j'ai présenté une revue succincte de la littérature traitant des caractéristiques des MSC. Dans le Chapitre 2, j'ai adressé les mécanismes immunosuppressifs des MSC humaines sur les lymphocytes T. À l'aide d'un test de prolifération in vitro, j'ai démontré que les MSC humaines suppriment la prolifération des lymphocytes T par grâce à l'expression indoleamine 2,3-dioxygenase (IDO) induite par l'exposition à l'IFN-. De plus, les MSC isolées de différents donneurs inhibent la prolifération des lymphocytes T à différents degrés qui correspondent au le niveau d'expression d'IDO par chaque donneur. L'utilisation de cellules mononucléaires sanguines (PBMC) complet comparativement à l'utilisation de lymphocytes T purifiés a révélé le rôle joué par les monocytes dans la suppression de la prolifération des lymphocytes T par les MSC. L'activité enzymatique d'IDO en combinaison avec d'autres facteurs sécrétés par les MSC induisent la différentiation des monocytes en macrophages immunosuppressifs de type M2. En plus de déclencher les mécanismes immunosuppressifs des MSC, l'IFN-a aussi eu pour effet d'induire des propriétés typiques des cellules présentatrices d'antigène (CPA) chez les MSC. Dans le Chapitre 3, j'ai étudié les mécanismes moléculaires impliqués dans la modulation de l'expression des molécules MHC de type II et la présentation d'antigène par celles-ci dans les MSC. J'ai démontré que l'IFN- active la transcription du transactivateur de classe II (CIITA), ce qui a eu pour résultat d'uprégulation les molécules MHC de type II dans les MSC murines et humaines, et que l'ajout de TGF- contrecarre l'effet de l'IFN- en inhibant la transcription de CIITA. De plus, la densité cellulaire des MSC en culture module la présentation d'antigène en affectant l'expression des molécules MHC de type II différemment chez les MSC murines et humaines. Dans le Chapitre 4, j'ai examiné la capacité des MSC de souris à cross-présenter des antigènes exogènes, une autre propriété typique des CPA. J'ai démontré que l'IFN- induit la cross-présentation dans les MSC murines et que celle-ci dépend des molécules TAP et du protéasome. J'ai aussi prouvé à l'aide d'un modèle de reconstitution immunitaire in vivo, que les MSC murines peuvent induire l'activation des lymphocytes T CD8+ contre un antigène spécifique. Finalement, j'ai enquêté dans le Chapitre 5, l'impact immunologique de l'expression et de la signalisation par les TLR chez les MSC humaines et murines. J'ai illustré que l'activation des TLR induisait l'expression de chemokines et de cytokines par les MSC créant ainsi un milieu inflammatoire propice au recrutement des cellules immunitaires. J'ai conclue en démontrant que les MSC différaient des CPA classiques par l'absence de production IL-12p70, une cytokine essentielle à la réponse immunitaire innée et acquise, en réponse à la stimulation des TLR. Les résultats inclus dans cette thèse illustrent la complexité des mécanismes immunomodulatoires des MSC. Leurs réponses face aux signaux de leur environnement, tel que l'inflammation ou l'infection activent soit leurs propriétés immunosuppressives ou –stimulatrices dépendamment de la situation. Mes découvertes pourront optimiser l'utilisation des MSC dans le domaine de l'immunothérapie cellulaire.
Lenz, Daniel. "Dissecting the heterogeneity of murine mesenchymal bone marrow stromal cells." Doctoral thesis, Humboldt-Universität zu Berlin, 2020. http://dx.doi.org/10.18452/21017.
Full textBone marrow stromal cells receive increasing amounts of attention lately. They have been shown to support survival of hematopoietic stem cells as well as memory lymphocytes which is of great importance when targeting the perseverance of autoimmune diseases. CD4+ memory T lymphocytes reside in the proximity of VCAM-1 expressing stromal cells which provide them with survival signals such as Interleukin-7. Herein, a protocol was developed to quantitatively obtain VCAM-1+ and VCAM-1+ IL-7+/- stromal cells via enzymatic/mechanic digestion and cytoskeleton-inhibition. Ex vivo gene expression analysis was performed from sorted, pure cells with good recovery. Candidate genes/markers were validated in (high-throughput) flow cytometry and histological analysis including subsequent semi-automated colocalization was performed. CD1d was found to be good surrogate marker for VCAM-1+PECAM-1- non-endothelial stroma while the population of CD200int/BP-1+/CD73+/CD105- stromal cells is greatly enriched in IL-7 producers which was equally true for the stromal transcription factor Prrx1. CD55, BP-1 and Cadherin-11 were found to be differentially expressed in differing IL-7 reporter mice haplotypes. The reporter mice haplotypes revealed monoallelic expression features of IL-7. All methodologies suggest that VCAM-1+ as well as IL-7+/- stromal cells are heterogeneous by marker expression yet don’t cluster extensively in flow cytometry co-stains. The functional relevance of the marker diversity described in this thesis remains to be tested but insinuates a broad repertoire for bone marrow stroma cells for new interaction pathways with lymphocyte subsets. Ultimately, this knowledge will hopefully feedback to clinical questions of autoimmunity for targeted treatment of stromal niches.
Tsui, Yat-ping, and 徐軼冰. "Derivation of oligodendrocyte precursor cells from adult bone marrow stromal cells." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hdl.handle.net/10722/197485.
Full textpublished_or_final_version
Biochemistry
Doctoral
Doctor of Philosophy
Yoshioka, Satoshi. "CCAAT/Enhancer-Binding Proteinβ Expressed by Bone Marrow Mesenchymal Stromal Cells Regulates Early B-Cell Lymphopoiesis." Kyoto University, 2014. http://hdl.handle.net/2433/185198.
Full textChandran, Priya. "Bone Marrow Microenvironment in Acute Myleoid Leukemia." Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/24301.
Full textLloyd, Brandon R. "Comparison of Bone Marrow Mesenchymal Stem Cells from Limb and Jaw Bones." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1458678153.
Full textAnastassiadis, Konstantinos, and Maria Rostovskaya. "Differential Expression of Surface Markers in Mouse Bone Marrow Mesenchymal Stromal Cell Subpopulations with Distinct Lineage Commitment." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-191602.
Full textAnastassiadis, Konstantinos, and Maria Rostovskaya. "Differential Expression of Surface Markers in Mouse Bone Marrow Mesenchymal Stromal Cell Subpopulations with Distinct Lineage Commitment." Public Library of Science, 2012. https://tud.qucosa.de/id/qucosa%3A29135.
Full textEspig, Sandy [Verfasser]. "Isolation and characterization of rat bone-marrow derived mesenchymal stromal cells / Sandy Espig." Ulm : Universität Ulm. Medizinische Fakultät, 2016. http://d-nb.info/1082294284/34.
Full textClough, Sally. "IL7 as a marker of a subset of bone marrow mesenchymal stromal cells." Thesis, University of York, 2013. http://etheses.whiterose.ac.uk/4771/.
Full textBooks on the topic "Bone marrow mesenchymal stromal cell"
Liu, Chune. Cellular crosstalk between bone marrow-derived mesenchymal stromal cells (MSC) and pancreatic beta-cells. [S.l: s.n.], 2014.
Find full textN, Beresford Jon, and Owen Maureen E, eds. Marrow stromal cell culture. Cambridge, [Eng.]: Cambridge University Press, 1998.
Find full textHerbertson, Alexandra Lenore. The rat bone marrow stromal cell osteogenic system: Characterization of subpopulations, fractionation and effects of PDGF. [Toronto: University of Toronto, Faculty of Dentistry], 1998.
Find full textChen, Xiao, Chao Xie, Ce Dou, and Zhenhong Ni, eds. Differentiation and Regulation of Bone Marrow Mesenchymal Stromal Cells. Frontiers Media SA, 2022. http://dx.doi.org/10.3389/978-2-88976-756-4.
Full textBaksh, Dolores. Adhesion independent survival and expansion of an adult human bone marrow-derived mesenchymal progenitor cell population. 2004.
Find full textVergidis, Joanna. Culture conditions for generating human bone marrow stromal cells influence cell immunophenotype and in vivo biodistribution in immune deficient mice. 2006.
Find full textBook chapters on the topic "Bone marrow mesenchymal stromal cell"
Wuchter, Patrick, and Anthony D. Ho. "Human MSCs from Bone Marrow, Umbilical Cord Blood, and Adipose Tissue: All the Same?" In Mesenchymal Stromal Cells, 193–208. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-5711-4_11.
Full textNardi, Nance Beyer, and Melissa Camassola. "Isolation and Culture of Rodent Bone Marrow-Derived Multipotent Mesenchymal Stromal Cells." In Mesenchymal Stem Cell Assays and Applications, 151–60. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-60761-999-4_12.
Full textGhoneim, Nehal I., Alaa E. Hussein, and Nagwa El-Badri. "Isolation of Bone Marrow and Adipose-Derived Mesenchymal Stromal Cells." In Regenerative Medicine and Stem Cell Biology, 243–64. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-55359-3_8.
Full textWolfe, Margaret, Radhika Pochampally, William Swaney, and Roxanne L. Reger. "Isolation and Culture of Bone Marrow-Derived Human Multipotent Stromal Cells (hMSCs)." In Mesenchymal Stem Cells, 3–25. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-60327-169-1_1.
Full textGronthos, Stan, and Andrew C. W. Zannettino. "A Method to Isolate and Purify Human Bone Marrow Stromal Stem Cells." In Mesenchymal Stem Cells, 45–57. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-60327-169-1_3.
Full textMiller, Renuka P., and Patrick J. Hanley. "Isolation and Manufacture of Clinical-Grade Bone Marrow-Derived Human Mesenchymal Stromal Cells." In Mesenchymal Stem Cells, 301–12. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3584-0_18.
Full textPenfornis, Patrice, and Radhika Pochampally. "Isolation and Expansion of Mesenchymal Stem Cells/Multipotential Stromal Cells from Human Bone Marrow." In Mesenchymal Stem Cell Assays and Applications, 11–21. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-60761-999-4_2.
Full textStagg, J., and J. Galipeau. "Immune Plasticity of Bone Marrow-Derived Mesenchymal Stromal Cells." In Handbook of Experimental Pharmacology, 45–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-68976-8_3.
Full textChen, Jieli, Poornima Venkat, and Michael Chopp. "Bone Marrow Mesenchymal Stromal Cell Transplantation: A Neurorestorative Therapy for Stroke." In Cellular Therapy for Stroke and CNS Injuries, 47–69. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11481-1_4.
Full textSeshi, Beerelli. "Gene Expression Analysis at the Single Cell Level Using the Human Bone Marrow Stromal Cell as a Model: Sample Preparation Methods." In Mesenchymal Stem Cells, 117–32. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-60327-169-1_9.
Full textConference papers on the topic "Bone marrow mesenchymal stromal cell"
Metzger, Thomas A., Stephen A. Schwaner, and Glen L. Niebur. "Pressure Gradients in the Trabecular Pore Space of Femurs During Physiologic Loading." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14433.
Full textIslam, Mohammad N., Li Sun, Jens Lindert, Shonit R. Das, and Jahar Bhattacharya. "Restoration Of Alveolar Bioenergetics By Bone Marrow-Derived Mesenchymal Stromal Cells." In American Thoracic Society 2011 International Conference, May 13-18, 2011 • Denver Colorado. American Thoracic Society, 2011. http://dx.doi.org/10.1164/ajrccm-conference.2011.183.1_meetingabstracts.a1245.
Full textCoughlin, Thomas R., Matthew Haugh, Muriel Voisin, Evelyn Birmingham, Laoise M. McNamara, and Glen L. Niebur. "Primary Cilia Knockdown Reduces the Number of Stromal Cells in Three Dimensional Ex Vivo Culture." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14723.
Full textNakata, Rie, Lucia Borriello, Muller Fabbri, Hiroyuki Shimada, and Yves A. Declerck. "Abstract 5076: Tumor cell-derived exosomes educate bone marrow mesenchymal stromal cells toward a protumorigenic function." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-5076.
Full textIlic, J., B. Schlierf, M. Rudert, R. Ebert, M. Herrmann, and D. Trivanovic. "Bone marrow mesenchymal stromal cells can support proliferative fraction of multiple myeloma cells with exhausted stem cell potential." In III. MuSkITYR Symposium. Georg Thieme Verlag, 2021. http://dx.doi.org/10.1055/s-0041-1736717.
Full textKhedoe, P. P. S. J., L. Jia, N. Li, P. S. Hiemstra, F. Koning, and J. Stolk. "Biomarker identification to assess effects of bone-marrow derived mesenchymal stromal cell-therapy in emphysema through immune profiling." In ERS International Congress 2022 abstracts. European Respiratory Society, 2022. http://dx.doi.org/10.1183/13993003.congress-2022.lsc-0195.
Full textKhedoe, Padmini P. S. J., Li Jia, Na Li, Pieter S. Hiemstra, Frits Koning, and Jan Stolk. "Biomarker identification to assess effects of bone-marrow derived mesenchymal stromal cell-therapy in emphysema through immune profiling." In ERS Lung Science Conference 2022 abstracts. European Respiratory Society, 2022. http://dx.doi.org/10.1183/23120541.lsc-2022.195.
Full textGuiance-Varela, Carolina, Cristina Rodríguez-Pereira, Elena Fernandez-Burguera, Tamara Hermida Gómez, Noa Goyanes, Francisco J. Blanco, and joana magalhães. "FRI0516 CHONDROGENIC EFFECT OF KARTOGENIN ON AN IMMORTALIZED CELL LINE DERIVED FROM MESENCHYMAL STROMAL CELLS ISOLATED FROM HUMAN BONE MARROW." In Annual European Congress of Rheumatology, EULAR 2019, Madrid, 12–15 June 2019. BMJ Publishing Group Ltd and European League Against Rheumatism, 2019. http://dx.doi.org/10.1136/annrheumdis-2019-eular.5526.
Full textStöckl, Magdalena, Drenka Trivanovic, Maximilian Rudert, and Marietta Herrmann. "Platelet-released factors stimulate mobility and PI3K/AKT/mTOR pathway in bone marrow mesenchymal stromal cells." In Jahreskongress DVO OSTEOLOGIE 2022. Georg Thieme Verlag, 2022. http://dx.doi.org/10.1055/s-0042-1755921.
Full textBroekman, Winifred, Maria Zarcone, Annemarie Van Schadewijk, Helene Roelofs, Christian Taube, Jan Stolk, and Pieter Hiemstra. "Functional comparison of bone-marrow derived mesenchymal stromal cells obtained from COPD patients and non-COPD controls." In Annual Congress 2015. European Respiratory Society, 2015. http://dx.doi.org/10.1183/13993003.congress-2015.pa5061.
Full textReports on the topic "Bone marrow mesenchymal stromal cell"
Jefcoate, Colin. Regulation of Tumor Cell Growth by the Mesenchymal Environment of the Bone Marrow is Enhanced by a High-Fat Diet. Fort Belvoir, VA: Defense Technical Information Center, April 2007. http://dx.doi.org/10.21236/ada470870.
Full text