Academic literature on the topic 'Boltzmann Distributions'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Boltzmann Distributions.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Boltzmann Distributions"

1

Khamnei, Hossein Jabbari, Sajad Nikannia, Masood Fathi, and Shahryar Ghorbani. "Modeling income distribution: An econophysics approach." Mathematical Biosciences and Engineering 20, no. 7 (2023): 13171–81. http://dx.doi.org/10.3934/mbe.2023587.

Full text
Abstract:
<abstract><p>This study aims to develop appropriate models for income distribution in Iran using the econophysics approach for the 2006–2018 period. For this purpose, the three improved distributions of the Pareto, Lognormal, and Gibbs-Boltzmann distributions are analyzed with the data extracted from the target household income expansion plan of the statistical centers in Iran. The research results indicate that the income distribution in Iran does not follow the Pareto and Lognormal distributions in most of the study years but follows the generalized Gibbs-Boltzmann distribution f
APA, Harvard, Vancouver, ISO, and other styles
2

Hornack, Fred M. "Visualizing Boltzmann-like distributions." Journal of Chemical Education 65, no. 1 (1988): 24. http://dx.doi.org/10.1021/ed065p24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Orland, Henri. "Accelerated Sampling of Boltzmann Distributions." Journal of the Physical Society of Japan 78, no. 10 (2009): 103002. http://dx.doi.org/10.1143/jpsj.78.103002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Liu, Fu-Hu, Ya-Qin Gao, and Hua-Rong Wei. "On Descriptions of Particle Transverse Momentum Spectra in High Energy Collisions." Advances in High Energy Physics 2014 (2014): 1–12. http://dx.doi.org/10.1155/2014/293873.

Full text
Abstract:
The transverse momentum spectra obtained in the frame of an isotropic emission source are compared in terms of Tsallis, Boltzmann, Fermi-Dirac, and Bose-Einstein distributions and the Tsallis forms of the latter three standard distributions. It is obtained that, at a given set of parameters, the standard distributions show a narrower shape than their Tsallis forms which result in wide and/or multicomponent spectra with the Tsallis distribution in between. A comparison among the temperatures obtained from the distributions is made with a possible relation to the Boltzmann temperature. An exampl
APA, Harvard, Vancouver, ISO, and other styles
5

Treumann, Rudolf A., and Wolfgang Baumjohann. "Generalised partition functions: inferences on phase space distributions." Annales Geophysicae 34, no. 6 (2016): 557–64. http://dx.doi.org/10.5194/angeo-34-557-2016.

Full text
Abstract:
Abstract. It is demonstrated that the statistical mechanical partition function can be used to construct various different forms of phase space distributions. This indicates that its structure is not restricted to the Gibbs–Boltzmann factor prescription which is based on counting statistics. With the widely used replacement of the Boltzmann factor by a generalised Lorentzian (also known as the q-deformed exponential function, where κ = 1∕|q − 1|, with κ, q ∈ R) both the kappa-Bose and kappa-Fermi partition functions are obtained in quite a straightforward way, from which the conventional Bose
APA, Harvard, Vancouver, ISO, and other styles
6

Lin, Hejie, and Tsung-Wu Lin. "Mechanical Proof of the Maxwell-Boltzmann Speed Distribution With Analytical Integration." International Journal of Statistics and Probability 10, no. 3 (2021): 135. http://dx.doi.org/10.5539/ijsp.v10n3p135.

Full text
Abstract:
The Maxwell-Boltzmann speed distribution is the probability distribution that describes the speeds of the particles of ideal gases. The Maxwell-Boltzmann speed distribution is valid for both un-mixed particles (one type of particle) and mixed particles (two types of particles). For mixed particles, both types of particles follow the Maxwell-Boltzmann speed distribution. Also, the most probable speed is inversely proportional to the square root of the mass. The Maxwell-Boltzmann speed distribution of mixed particles is based on kinetic theory; however, it has never been derived from a mechanica
APA, Harvard, Vancouver, ISO, and other styles
7

Liu, Jeremy, Ke-Thia Yao, and Federico Spedalieri. "Dynamic Topology Reconfiguration of Boltzmann Machines on Quantum Annealers." Entropy 22, no. 11 (2020): 1202. http://dx.doi.org/10.3390/e22111202.

Full text
Abstract:
Boltzmann machines have useful roles in deep learning applications, such as generative data modeling, initializing weights for other types of networks, or extracting efficient representations from high-dimensional data. Most Boltzmann machines use restricted topologies that exclude looping connectivity, as such connectivity creates complex distributions that are difficult to sample. We have used an open-system quantum annealer to sample from complex distributions and implement Boltzmann machines with looping connectivity. Further, we have created policies mapping Boltzmann machine variables to
APA, Harvard, Vancouver, ISO, and other styles
8

KANIADAKIS, G. "PHYSICAL ORIGIN OF THE POWER-LAW TAILED STATISTICAL DISTRIBUTIONS." Modern Physics Letters B 26, no. 10 (2012): 1250061. http://dx.doi.org/10.1142/s0217984912500613.

Full text
Abstract:
Starting from the BBGKY hierarchy, describing the kinetics of nonlinear particle system, we obtain the relevant entropy and stationary distribution function. Subsequently, by employing the Lorentz transformations we propose the relativistic generalization of the exponential and logarithmic functions. The related particle distribution and entropy represents the relativistic extension of the classical Maxwell–Boltzmann distribution and of the Boltzmann entropy, respectively, and define the statistical mechanics presented in [Phys. Rev. E66 (2002) 056125] and [Phys. Rev. E72 (2005) 036108]. The a
APA, Harvard, Vancouver, ISO, and other styles
9

White, J. R., W. Johns, C. J. Fontes, N. M. Gill, N. R. Shaffer, and C. E. Starrett. "Charge state distributions in dense plasmas." Physics of Plasmas 29, no. 4 (2022): 043301. http://dx.doi.org/10.1063/5.0084109.

Full text
Abstract:
Charge state distributions in hot, dense plasmas are a key ingredient in the calculation of spectral quantities like the opacity. However, they are challenging to calculate, as models like Saha–Boltzmann become unreliable for dense, quantum plasmas. Here, we present a new variational model for the charge state distribution, along with a simple model for the energy of the configurations that includes the orbital relaxation effect. Comparison with other methods reveals generally good agreement with average atom-based calculations, the breakdown of the Saha–Boltzmann method, and mixed agreement w
APA, Harvard, Vancouver, ISO, and other styles
10

Castillo, Jaime S., Katherine P. Gaete, Héctor A. Muñoz, et al. "Scale Mixture of Maxwell-Boltzmann Distribution." Mathematics 11, no. 3 (2023): 529. http://dx.doi.org/10.3390/math11030529.

Full text
Abstract:
This paper presents a new distribution, the product of the mixture between Maxwell-Boltzmann and a particular case of the generalized gamma distributions. The resulting distribution, called the Scale Mixture Maxwell-Boltzmann, presents greater kurtosis than the recently introduced slash Maxwell-Boltzmann distribution. We obtained closed-form expressions for its probability density and cumulative distribution functions. We studied some of its properties and moments, as well as its skewness and kurtosis coefficients. Parameters were estimated by the moments and maximum likelihood methods, via th
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Boltzmann Distributions"

1

Vilquin, Alexandre. "Structure des ondes de choc dans les gaz granulaires." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0349/document.

Full text
Abstract:
Dans des milieux tels que les gaz, les plasmas et les milieux granulaires, un objet se déplaçant à des vitessessupersoniques, compresse et chauffe le fluide devant lui, formant ainsi une onde de choc. La zone hors-équilibreappelée front d’onde, où ont lieu de brusques variations de température, pression et densité, présente unestructure particulière, avec notamment des distributions des vitesses des particules fortement non-gaussienneset difficiles à visualiser. Dans une avancée importante en 1951, Mott-Smith décrit le front d’onde comme lasuperposition des deux états que sont le gaz supersoni
APA, Harvard, Vancouver, ISO, and other styles
2

Shi, Yong. "Lattice Boltzmann models for microscale fluid flows and heat transfer /." View abstract or full-text, 2006. http://library.ust.hk/cgi/db/thesis.pl?MECH%202006%20SHI.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jin, Kang Meir Amnon J. "The lattice gas model and Lattice Boltzmann model on hexagonal grids." Auburn, Ala., 2005. http://repo.lib.auburn.edu/2005%20Summer/master's/JIN_KANG_53.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Luo, Li-Shi. "Lattice-gas automata and lattice Boltzmann equations for two-dimensional hydrodynamics." Diss., Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/30259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mori, Hideo, Tomohide Niimi, Isao Akiyama, and Takumi Tsuzuki. "Experimental detection of rotational non-Boltzmann distribution in supersonic free molecular nitrogen flows." American Institite of Physics, 2005. http://hdl.handle.net/2237/6963.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hernandez, Freddy. "Fluctuations à l'équilibre d'un modèle stochastique non gradient qui conserve l'énergie." Paris 9, 2010. https://bu.dauphine.psl.eu/fileviewer/index.php?doc=2010PA090029.

Full text
Abstract:
En cette thèse nous étudions le champ de fluctuations à l'équilibre de l'énergie d'un modèle non gradient réversible. Nous établissons la convergence en loi vers un processus d'Ornstein-Uhlenbeck généralisé. En adaptant la méthode non gradient introduite par S. R. S Varadhan, nous identifions le terme de diffusion, ce qui nous permet de déduire le principe de Boltzmann-Gibbs. Ceci est le point essentiel pour montrer que les lois fini dimensionnelles du champ de fluctuations, convergent vers les lois fini dimensionnelles d'un processus généralisé d'Ornstein-Uhlenbeck. De plus, en utilisant à no
APA, Harvard, Vancouver, ISO, and other styles
7

Redwane, Hicham. "Solutions normalisées de problèmes paraboliques et elliptiques non linéaires." Rouen, 1997. http://www.theses.fr/1997ROUES059.

Full text
Abstract:
Cette thèse est consacrée à l'étude de problèmes elliptiques ou paraboliques non linéaires qui sont, d'une façon générale, mal posés dans le cadre des solutions faibles (c'est-à-dire des solutions au sens des distributions). Pour surmonter cette difficulté, on va s'intéresser à une autre classe de solutions : les solutions renormalisées. Cette notion a été introduite par R. -J. Di Perna et P. -L. Lions pour l'étude des équations de Boltzmann, et les équations du premier ordre.
APA, Harvard, Vancouver, ISO, and other styles
8

Sosov, Yuriy. "Legendre Polynomial Expansion of the Electron Boltzmann Equation Applied to the Discharge in Argon." University of Toledo / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1145290801.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chidiac, Chidiac. "Modélisation de la relaxation rotationnelle de CO en jet supersonique libre : effet de la condensation et des phénomènes de glissement." Châtenay-Malabry, Ecole centrale de Paris, 1987. http://www.theses.fr/1987ECAP0069.

Full text
Abstract:
Le travail est consacré à l'étude de la relaxation rotationnelle couplée à la détente dans un jet supersonique libre de CO-He. Les sections efficaces de collisions sont calculées pour des énergies allant jusqu'à 60 meV. Deux méthodes sont utilisées : - La méthode CS pour les basses énergies E 10 meV. - La méthode IOS pour les énergies plus élevées (10 meV E 60 meV) afin de préserver le temps de calcul. Deux modèles de potentiel d'interaction sont testés. Les équations de la relaxation rotationnelle couplées aux équations de la détente sont déduites des équations de Boltzmann et résolues numéri
APA, Harvard, Vancouver, ISO, and other styles
10

Marcou, Olivier. "Modélisation et contrôle d’écoulements à surface libre par la méthode de Boltzmann sur réseau." Perpignan, 2010. http://www.theses.fr/2010PERP1001.

Full text
Abstract:
Ce travail de thèse traite de la modélisation et la simulation des systèmes complexes et s’inscrit dans la thématique du contrôle et la gestion des ressources en eau. Nous proposons une approche originale basée sur les modèles de Boltzmann sur réseau pour représenter les écoulements au sein des canaux d’irrigation, habituellement décrits par les équations non linéaires de Saint-Venant. Nous avons adapté un modèle bi-fluide et étudié les conditions aux bords qui permettent de reproduire la géométrie d’un canal à surface libre. Des méthodes de détermination des grandeurs hydrauliques d’intérêt o
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Boltzmann Distributions"

1

Alexeev, Boris V. Generalized Boltzmann physical kinetics. Elsevier, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Stochastic dynamics and Boltzmann hierarchy. Walter de Gruyter, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hydrodynamic limits of the Boltzmann equation. Springer, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yeh, Chou, and Langley Research Center, eds. On higher order dynamics in lattice-based models using Chapman-Enskog method. National Aeronautics and Space Administration, Langley Research Center, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

1973-, Villani Cédric, and Centre Émile Borel, eds. Entropy methods for the Boltzmann equation: Lectures from a special semester at the Centre Émile Borel, Institut H. Poincaré, Paris, 2001. Springer, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lallemand, Pierre. Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability. National Aeronautics and Space Administration, Langley Research Center, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bach, Alexander. Indistinguishable classical particles. Springer, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

United States. National Aeronautics and Space Administration., ed. Spectroscopic diagnostics of an arc jet heated air plasma: Thesis ... National Aeronautics and Space Administration, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

United States. National Aeronautics and Space Administration., ed. Numerical investigations in the backflow region of a vacuum plume: Semi-annual scientific and technical reports, October 1991 - May 1992. National Aeronautics and Space Administration, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Darrigol, Olivier. The Boltzmann Equation and the H Theorem (1872–1875). Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198816171.003.0004.

Full text
Abstract:
This chapter covers Boltzmann’s writings about the Boltzmann equation and the H theorem in the period 1872–1875, through which he succeeded in deriving the irreversible evolution of the distribution of molecular velocities in a dilute gas toward Maxwell’s distribution. Boltzmann also used his equation to improve on Maxwell’s theory of transport phenomena (viscosity, diffusion, and heat conduction). The bulky memoir of 1872 and the eponymous equation probably are Boltzmann’s most famous achievements. Despite the now often obsolete ways of demonstration, despite the lengthiness of the arguments,
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Boltzmann Distributions"

1

Starzak, Michael E. "Maxwell–Boltzmann Distributions." In Energy and Entropy. Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-77823-5_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Biró, Tamás Sándor, and Antal Jakovác. "Fluctuation, Dissipation, and Non-Boltzmann Energy Distributions." In SpringerBriefs in Physics. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11689-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kosmatopoulos, Elias B., and Manolis A. Christodoulou. "The Boltzmann ECE Neural Network: A Learning Machine for Estimating Unknown Probability Distributions." In Artificial Neural Nets and Genetic Algorithms. Springer Vienna, 1993. http://dx.doi.org/10.1007/978-3-7091-7533-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Elstner, Marcus, Qiang Cui, and Maja Gruden. "The Boltzmann Distribution." In Introduction to Statistical Thermodynamics. Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-54994-6_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Balian, Roger. "The Boltzmann-Gibbs Distribution." In From Microphysics to Macrophysics. Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-540-45475-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lyngsø, Rune B. "RNA Secondary Structure Boltzmann Distribution." In Encyclopedia of Algorithms. Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-2864-4_345.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lyngsø, Rune B. "RNA Secondary Structure Boltzmann Distribution." In Encyclopedia of Algorithms. Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-30162-4_345.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Koks, Don. "The Non-Isolated System: the Boltzmann Distribution." In Microstates, Entropy and Quanta. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-02429-1_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lian, Hao, Ang Li, Yang Tian, and Ying Chen. "An Evacuation Simulation Based on Boltzmann Distribution." In Advanced Research on Computer Education, Simulation and Modeling. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21783-8_54.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pal, Dipti Prakas, and Hridis Kr Pal. "Income Distribution in the Boltzmann-Pareto Framework." In New Economic Windows. Springer Milan, 2005. http://dx.doi.org/10.1007/88-470-0389-x_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Boltzmann Distributions"

1

Elwasif, Wael R., Laurene V. Fausett, and Sam Harbaugh. "Boltzmann machine generation of initial asset distributions." In SPIE's 1995 Symposium on OE/Aerospace Sensing and Dual Use Photonics, edited by Steven K. Rogers and Dennis W. Ruck. SPIE, 1995. http://dx.doi.org/10.1117/12.205123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nasarayya Chari, S. Siva, and K. P. N. Murthy. "Non-equilibrium work distributions from fluctuating lattice-Boltzmann model." In SOLID STATE PHYSICS: Proceedings of the 56th DAE Solid State Physics Symposium 2011. AIP, 2012. http://dx.doi.org/10.1063/1.4709947.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chi, Ed H. "From Missing Data to Boltzmann Distributions and Time Dynamics." In WSDM '20: The Thirteenth ACM International Conference on Web Search and Data Mining. ACM, 2020. http://dx.doi.org/10.1145/3336191.3372193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Su, Yan. "A Lattice Boltzmann Simulation for Thermal Energy Diffusion Through a Micro/Nanoscale Thin Film." In ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/mnhmt2019-3901.

Full text
Abstract:
Abstract Thermal energy diffusion through two directions of a micro/nanoscale thin film is modeled by a dimensionless form of Boltzmann transport equations of phonon density distribution functions. With the model named a lattice Boltzmann method (LBM), the discrete Boltzmann transport equations are able to be solved directly. The present model applied is based on physic expression of the dimensionless phonon density distribution functions together with both physic based dimensionless relaxation time models and the physic based dimensionless form of boundary conditions. Effects due to the varia
APA, Harvard, Vancouver, ISO, and other styles
5

Argun, Aykut, Ali-Reza Moradi, Erçağ Pinçe, Gokhan Baris Bagci, Alberto Imparato, and Giovanni Volpe. "Non-Boltzmann stationary distributions and non-equilibrium relations in active baths." In Optical Trapping Applications. OSA, 2017. http://dx.doi.org/10.1364/ota.2017.otw3e.5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cai, Peixu, Wangze Shen, Ruohan Yang, and Qixian Zhou. "Reinforcing feature distributions of hidden units of Boltzmann machine using correlations." In 2022 International Conference on Mechatronics Engineering and Artificial Intelligence (MEAI 2022), edited by Chuanjun Zhao. SPIE, 2023. http://dx.doi.org/10.1117/12.2672661.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Krause, Oswin, Asja Fischer, and Christian Igel. "Algorithms for Estimating the Partition Function of Restricted Boltzmann Machines (Extended Abstract)." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/704.

Full text
Abstract:
Estimating the normalization constants (partition functions) of energy-based probabilistic models (Markov random fields) with a high accuracy is required for measuring performance, monitoring the training progress of adaptive models, and conducting likelihood ratio tests. We devised a unifying theoretical framework for algorithms for estimating the partition function, including Annealed Importance Sampling (AIS) and Bennett's Acceptance Ratio method (BAR). The unification reveals conceptual similarities of and differences between different approaches and suggests new algorithms. The framework
APA, Harvard, Vancouver, ISO, and other styles
8

Schepke, Claudio, and Nicolas Maillard. "Performance Improvement of the Parallel Lattice Boltzmann Method Through Blocked Data Distributions." In 19th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD'07). IEEE, 2007. http://dx.doi.org/10.1109/sbac-pad.2007.12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Masulli, Francesco, Massimo Riani, Enrico Simonotto, and Fabrizio Vannucci. "Boltzmann distributions and neural networks: models of unbalanced interpretations of reversible patterns." In Aerospace Sensing, edited by Dennis W. Ruck. SPIE, 1992. http://dx.doi.org/10.1117/12.140093.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sun, Jinjuan, Jianying Gong, Guojun Li, and Tieyu Gao. "Lattice Boltzmann Simulation of Frost Formation Process." In ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/ht2013-17700.

Full text
Abstract:
Compared with the conventional mathematical and physical models, the lattice Boltzmann (LB) method is an effective method to simulate the heat and mass transfer in porous media. Frost crystallization aggregation is a very complex process involving inconsistency of frost structures, crystal size distributions, the complex transient shapes, and other numerous influential factors. Assuming the frost is a special porous medium consists of ice crystals and humid air, a mesoscopic model is established to predict the behavior of frost formation based on the lattice Boltzmann equation. The moving boun
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Boltzmann Distributions"

1

Langenbrunner, James, and Jane Booker. CALCULATION OF THE FIRST MOMENT OF ENERGY USING D-T REACTIVITY FORMALISMS UNDER THE MAXWELL-BOLTZMANN DISTRIBUTION—PART I. Office of Scientific and Technical Information (OSTI), 2020. http://dx.doi.org/10.2172/1663180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Langenbrunner, James, and Jane Booker. Calculation Of The First Moment Of Energy Using D-T Reactivity Formalisms Under The Maxwell-Boltzmann Distribution--Part II. Office of Scientific and Technical Information (OSTI), 2020. http://dx.doi.org/10.2172/1679985.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!