Academic literature on the topic 'Boltzmann Distributions'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Boltzmann Distributions.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Boltzmann Distributions"

1

Khamnei, Hossein Jabbari, Sajad Nikannia, Masood Fathi, and Shahryar Ghorbani. "Modeling income distribution: An econophysics approach." Mathematical Biosciences and Engineering 20, no. 7 (2023): 13171–81. http://dx.doi.org/10.3934/mbe.2023587.

Full text
Abstract:
<abstract><p>This study aims to develop appropriate models for income distribution in Iran using the econophysics approach for the 2006–2018 period. For this purpose, the three improved distributions of the Pareto, Lognormal, and Gibbs-Boltzmann distributions are analyzed with the data extracted from the target household income expansion plan of the statistical centers in Iran. The research results indicate that the income distribution in Iran does not follow the Pareto and Lognormal distributions in most of the study years but follows the generalized Gibbs-Boltzmann distribution function in all study years. According to the results, the generalized Gibbs-Boltzmann distribution also properly fits the actual data distribution and could clearly explain the income distribution in Iran. The generalized Gibbs-Boltzmann distribution also fits the actual income data better than both Pareto and Lognormal distributions.</p></abstract>
APA, Harvard, Vancouver, ISO, and other styles
2

Hornack, Fred M. "Visualizing Boltzmann-like distributions." Journal of Chemical Education 65, no. 1 (January 1988): 24. http://dx.doi.org/10.1021/ed065p24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Orland, Henri. "Accelerated Sampling of Boltzmann Distributions." Journal of the Physical Society of Japan 78, no. 10 (October 15, 2009): 103002. http://dx.doi.org/10.1143/jpsj.78.103002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Liu, Fu-Hu, Ya-Qin Gao, and Hua-Rong Wei. "On Descriptions of Particle Transverse Momentum Spectra in High Energy Collisions." Advances in High Energy Physics 2014 (2014): 1–12. http://dx.doi.org/10.1155/2014/293873.

Full text
Abstract:
The transverse momentum spectra obtained in the frame of an isotropic emission source are compared in terms of Tsallis, Boltzmann, Fermi-Dirac, and Bose-Einstein distributions and the Tsallis forms of the latter three standard distributions. It is obtained that, at a given set of parameters, the standard distributions show a narrower shape than their Tsallis forms which result in wide and/or multicomponent spectra with the Tsallis distribution in between. A comparison among the temperatures obtained from the distributions is made with a possible relation to the Boltzmann temperature. An example of the angular distributions of projectile fragments in nuclear collisions is given.
APA, Harvard, Vancouver, ISO, and other styles
5

Treumann, Rudolf A., and Wolfgang Baumjohann. "Generalised partition functions: inferences on phase space distributions." Annales Geophysicae 34, no. 6 (June 2, 2016): 557–64. http://dx.doi.org/10.5194/angeo-34-557-2016.

Full text
Abstract:
Abstract. It is demonstrated that the statistical mechanical partition function can be used to construct various different forms of phase space distributions. This indicates that its structure is not restricted to the Gibbs–Boltzmann factor prescription which is based on counting statistics. With the widely used replacement of the Boltzmann factor by a generalised Lorentzian (also known as the q-deformed exponential function, where κ = 1∕|q − 1|, with κ, q ∈ R) both the kappa-Bose and kappa-Fermi partition functions are obtained in quite a straightforward way, from which the conventional Bose and Fermi distributions follow for κ → ∞. For κ ≠ ∞ these are subject to the restrictions that they can be used only at temperatures far from zero. They thus, as shown earlier, have little value for quantum physics. This is reasonable, because physical κ systems imply strong correlations which are absent at zero temperature where apart from stochastics all dynamical interactions are frozen. In the classical large temperature limit one obtains physically reasonable κ distributions which depend on energy respectively momentum as well as on chemical potential. Looking for other functional dependencies, we examine Bessel functions whether they can be used for obtaining valid distributions. Again and for the same reason, no Fermi and Bose distributions exist in the low temperature limit. However, a classical Bessel–Boltzmann distribution can be constructed which is a Bessel-modified Lorentzian distribution. Whether it makes any physical sense remains an open question. This is not investigated here. The choice of Bessel functions is motivated solely by their convergence properties and not by reference to any physical demands. This result suggests that the Gibbs–Boltzmann partition function is fundamental not only to Gibbs–Boltzmann but also to a large class of generalised Lorentzian distributions as well as to the corresponding nonextensive statistical mechanics.
APA, Harvard, Vancouver, ISO, and other styles
6

Lin, Hejie, and Tsung-Wu Lin. "Mechanical Proof of the Maxwell-Boltzmann Speed Distribution With Analytical Integration." International Journal of Statistics and Probability 10, no. 3 (April 27, 2021): 135. http://dx.doi.org/10.5539/ijsp.v10n3p135.

Full text
Abstract:
The Maxwell-Boltzmann speed distribution is the probability distribution that describes the speeds of the particles of ideal gases. The Maxwell-Boltzmann speed distribution is valid for both un-mixed particles (one type of particle) and mixed particles (two types of particles). For mixed particles, both types of particles follow the Maxwell-Boltzmann speed distribution. Also, the most probable speed is inversely proportional to the square root of the mass. The Maxwell-Boltzmann speed distribution of mixed particles is based on kinetic theory; however, it has never been derived from a mechanical point of view. This paper proves the Maxwell-Boltzmann speed distribution and the speed ratio of mixed particles based on probability analysis and Newton&rsquo;s law of motion. This paper requires the probability&nbsp;density function (PDF) &psi;^ab(u_a; v_a, v_b)&nbsp;of the speed u_a&nbsp; of the particle with mass M_a&nbsp; after the collision of two particles with mass M_a&nbsp; in speed v_a&nbsp; and mass M_b&nbsp; in speed v_b . The PDF &psi;^ab(u_a; v_a, v_b)&nbsp; in integral form has been obtained before. This paper further performs the exact integration from the integral form to obtain the PDF &psi;^ab(u_a; v_a, v_b)&nbsp; in an evaluated form, which is used in the following equation to get new distribution P_new^a(u_a)&nbsp; from old distributions P_old^a(v_a) and P_old^b(v_b). When P_old^a(v_a) and P_old^b(v_b)&nbsp; are the Maxwell-Boltzmann speed distributions, the integration P_new^a(u_a)&nbsp; obtained analytically is exactly the Maxwell-Boltzmann speed distribution. P_new^a(u_a)=&int;_0^&infin; &int;_0^&infin; &psi;^ab(u_a;v_a,v_b) P_old^a(v_a) P_old^b(v_b) dv_a dv_b,&nbsp;&nbsp; &nbsp;a,b = 1 or 2 The mechanical proof of the Maxwell-Boltzmann speed distribution presented in this paper reveals the unsolved mechanical mystery of the Maxwell-Boltzmann speed distribution since it was proposed by Maxwell in 1860. Also, since the validation is carried out in an analytical approach, it proves that there is no theoretical limitation of mass ratio to the Maxwell-Boltzmann speed distribution. This provides a foundation and methodology for analyzing the interaction between particles with an extreme mass ratio, such as gases and neutrinos.
APA, Harvard, Vancouver, ISO, and other styles
7

Liu, Jeremy, Ke-Thia Yao, and Federico Spedalieri. "Dynamic Topology Reconfiguration of Boltzmann Machines on Quantum Annealers." Entropy 22, no. 11 (October 24, 2020): 1202. http://dx.doi.org/10.3390/e22111202.

Full text
Abstract:
Boltzmann machines have useful roles in deep learning applications, such as generative data modeling, initializing weights for other types of networks, or extracting efficient representations from high-dimensional data. Most Boltzmann machines use restricted topologies that exclude looping connectivity, as such connectivity creates complex distributions that are difficult to sample. We have used an open-system quantum annealer to sample from complex distributions and implement Boltzmann machines with looping connectivity. Further, we have created policies mapping Boltzmann machine variables to the quantum bits of an annealer. These policies, based on correlation and entropy metrics, dynamically reconfigure the topology of Boltzmann machines during training and improve performance.
APA, Harvard, Vancouver, ISO, and other styles
8

KANIADAKIS, G. "PHYSICAL ORIGIN OF THE POWER-LAW TAILED STATISTICAL DISTRIBUTIONS." Modern Physics Letters B 26, no. 10 (April 8, 2012): 1250061. http://dx.doi.org/10.1142/s0217984912500613.

Full text
Abstract:
Starting from the BBGKY hierarchy, describing the kinetics of nonlinear particle system, we obtain the relevant entropy and stationary distribution function. Subsequently, by employing the Lorentz transformations we propose the relativistic generalization of the exponential and logarithmic functions. The related particle distribution and entropy represents the relativistic extension of the classical Maxwell–Boltzmann distribution and of the Boltzmann entropy, respectively, and define the statistical mechanics presented in [Phys. Rev. E66 (2002) 056125] and [Phys. Rev. E72 (2005) 036108]. The achievements of the present effort, support the idea that the experimentally observed power-law tailed statistical distributions in plasma physics, are enforced by the relativistic microscopic particle dynamics.
APA, Harvard, Vancouver, ISO, and other styles
9

White, J. R., W. Johns, C. J. Fontes, N. M. Gill, N. R. Shaffer, and C. E. Starrett. "Charge state distributions in dense plasmas." Physics of Plasmas 29, no. 4 (April 2022): 043301. http://dx.doi.org/10.1063/5.0084109.

Full text
Abstract:
Charge state distributions in hot, dense plasmas are a key ingredient in the calculation of spectral quantities like the opacity. However, they are challenging to calculate, as models like Saha–Boltzmann become unreliable for dense, quantum plasmas. Here, we present a new variational model for the charge state distribution, along with a simple model for the energy of the configurations that includes the orbital relaxation effect. Comparison with other methods reveals generally good agreement with average atom-based calculations, the breakdown of the Saha–Boltzmann method, and mixed agreement with a chemical model. We conclude that the new model gives a relatively inexpensive, but reasonably high fidelity method of calculating the charge state distribution in hot dense plasmas, in local thermodynamic equilibrium.
APA, Harvard, Vancouver, ISO, and other styles
10

Castillo, Jaime S., Katherine P. Gaete, Héctor A. Muñoz, Diego I. Gallardo, Marcelo Bourguignon, Osvaldo Venegas, and Héctor W. Gómez. "Scale Mixture of Maxwell-Boltzmann Distribution." Mathematics 11, no. 3 (January 18, 2023): 529. http://dx.doi.org/10.3390/math11030529.

Full text
Abstract:
This paper presents a new distribution, the product of the mixture between Maxwell-Boltzmann and a particular case of the generalized gamma distributions. The resulting distribution, called the Scale Mixture Maxwell-Boltzmann, presents greater kurtosis than the recently introduced slash Maxwell-Boltzmann distribution. We obtained closed-form expressions for its probability density and cumulative distribution functions. We studied some of its properties and moments, as well as its skewness and kurtosis coefficients. Parameters were estimated by the moments and maximum likelihood methods, via the Expectation-Maximization algorithm for the latter case. A simulation study was performed to illustrate the parameter recovery. The results of an application to a real data set indicate that the new model performs very well in the presence of outliers compared with other alternatives in the literature.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Boltzmann Distributions"

1

Vilquin, Alexandre. "Structure des ondes de choc dans les gaz granulaires." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0349/document.

Full text
Abstract:
Dans des milieux tels que les gaz, les plasmas et les milieux granulaires, un objet se déplaçant à des vitessessupersoniques, compresse et chauffe le fluide devant lui, formant ainsi une onde de choc. La zone hors-équilibreappelée front d’onde, où ont lieu de brusques variations de température, pression et densité, présente unestructure particulière, avec notamment des distributions des vitesses des particules fortement non-gaussienneset difficiles à visualiser. Dans une avancée importante en 1951, Mott-Smith décrit le front d’onde comme lasuperposition des deux états que sont le gaz supersonique initial et le gaz subsonique compressé et chauffé,impliquant ainsi l’existence de distributions des vitesses bimodales. Des expériences à grands nombres de Machont confirmé cette structure globalement bimodale. Ce modèle n’explique cependant pas la présence d’un surplusde particules à des vitesses intermédiaires, entre le gaz supersonique et le gaz subsonique.Ce travail de thèse porte sur l’étude des ondes de choc dans les gaz granulaires, où les particules interagissentuniquement par des collisions binaires inélastiques. Dans ces gaz dissipatifs, la température granulaire, traduisantl’agitation des particules, permet de définir l’équivalent d’une vitesse du son par analogie aux gaz moléculaires.Les basses valeurs de ces vitesses du son dans les gaz granulaires, permettent de générer facilement des ondes dechoc dans lesquelles chaque particule peut être suivie, contrairement aux gaz moléculaires. La première partie decette étude porte sur l’effet de la dissipation d’énergie, due aux collisions inélastiques, sur la structure des ondesde choc dans les gaz granulaires. Les modifications induites sur la température, la densité et la vitesse moyennemesurées, sont interprétées à l’aide d’un modèle basé sur l’hypothèse bimodale de Mott-Smith et intégrant ladissipation d’énergie. La deuxième partie est consacrée à l’interprétation des distributions des vitesses dans lefront d’onde. À partir des expériences réalisées dans les gaz granulaires, une description trimodale, incluant unétat intermédiaire supplémentaire, est proposée et étendue avec succès aux distributions des vitesses dans lesgaz moléculaires
In different materials such as gases, plasmas and granular material, an object, moving at supersonic speed,compresses and heats the fluid ahead. The shock front is the out-of-equilibrium area, where violent changesin temperature, pressure and density occur. It has a particular structure with notably strongly non-Gaussianparticle velocity distributions, which are difficult to observe. In an important breakthrough in 1951, Mott-Smithdescribes the shock front as a superposition of two states: the initial supersonic gas and the compressed andheated subsonic gas, implying existence of bimodal velocity distributions. Several experiences at high Machnumbers show this overall bimodal structure. However this model does not explain the existence of a surplusof particles with intermediate velocities, between the supersonic and the subsonic gas.This thesis focuses on shock waves in granular gases, where particles undergo only inelastic binary collisions.In these dissipative gases, the granular temperature, reflecting the particle random motion, allows to definethe equivalent to the speed of sound by analogy with molecular gases. The low values of this speed of soundpermit to generate easily shock waves in which each particle can be tracked, unlike molecular gases. The firstpart of this work focuses on the effect of the energy dissipation, due to inelastic collisions, on the shock frontstructure in granular gases. Modifications induced on temperature, density and mean velocity, are captured bya model based on the bimodal hypothesis of Mott-Smith and including energy dissipation. The second part isdevoted to the study of velocity distributions in the shock front. From experiences in granular gases, a trimodaldescription, including an additional intermediate state, is proposed and successfully extended to the velocitydistributions in molecular gases
APA, Harvard, Vancouver, ISO, and other styles
2

Shi, Yong. "Lattice Boltzmann models for microscale fluid flows and heat transfer /." View abstract or full-text, 2006. http://library.ust.hk/cgi/db/thesis.pl?MECH%202006%20SHI.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jin, Kang Meir Amnon J. "The lattice gas model and Lattice Boltzmann model on hexagonal grids." Auburn, Ala., 2005. http://repo.lib.auburn.edu/2005%20Summer/master's/JIN_KANG_53.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Luo, Li-Shi. "Lattice-gas automata and lattice Boltzmann equations for two-dimensional hydrodynamics." Diss., Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/30259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mori, Hideo, Tomohide Niimi, Isao Akiyama, and Takumi Tsuzuki. "Experimental detection of rotational non-Boltzmann distribution in supersonic free molecular nitrogen flows." American Institite of Physics, 2005. http://hdl.handle.net/2237/6963.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hernandez, Freddy. "Fluctuations à l'équilibre d'un modèle stochastique non gradient qui conserve l'énergie." Paris 9, 2010. https://bu.dauphine.psl.eu/fileviewer/index.php?doc=2010PA090029.

Full text
Abstract:
En cette thèse nous étudions le champ de fluctuations à l'équilibre de l'énergie d'un modèle non gradient réversible. Nous établissons la convergence en loi vers un processus d'Ornstein-Uhlenbeck généralisé. En adaptant la méthode non gradient introduite par S. R. S Varadhan, nous identifions le terme de diffusion, ce qui nous permet de déduire le principe de Boltzmann-Gibbs. Ceci est le point essentiel pour montrer que les lois fini dimensionnelles du champ de fluctuations, convergent vers les lois fini dimensionnelles d'un processus généralisé d'Ornstein-Uhlenbeck. De plus, en utilisant à nouveau le principe de Boltzmann-Gibbs nous obtenons aussi la tension du champ de fluctuations de l'énergie dans un certain espace de Sobolev, ce qui avec la convergence des lois fini dimensionnelles implique la convergence en loi vers le processus généralisé d'Ornstein-Uhlenbeck (mentionné ci-dessus). Le fait que la quantité conservée n'est soit pas une forme linéaire des coordonnées du système, introduit des difficultés supplémentaires de nature géométrique lors de l'application de la méthode non gradient de Varadhan
In this thesis we study the equilibrium energy fluctuation field of a one-dimensional reversible non gradient model. We prove that the limit fluctuation process is governed by a generalized Ornstein-Uhlenbeck process. By adapting the non gradient method introduced by S. R. S Varadhan, we identify the correct diffusion term, which allows us to derive the Boltzmann-Gibbs principle. This is the key point to show that the energy fluctuation field converges in the sense of finite dimensional distributions to a generalized Ornstein-Uhlenbeck process. Moreover, using again the Boltzmann-Gibbs principle we also prove tightness for the energy fluctuation field in a specified Sobolev space, which together with the finite dimensional convergence implies the convergence in distribution to the generalized Ornstein-Uhlenbeck process mentioned above. The fact that the conserved quantity is not a linear functional of the coordinates of the system, introduces new difficulties of geometric nature in applying Varadhan's non gradient method
APA, Harvard, Vancouver, ISO, and other styles
7

Redwane, Hicham. "Solutions normalisées de problèmes paraboliques et elliptiques non linéaires." Rouen, 1997. http://www.theses.fr/1997ROUES059.

Full text
Abstract:
Cette thèse est consacrée à l'étude de problèmes elliptiques ou paraboliques non linéaires qui sont, d'une façon générale, mal posés dans le cadre des solutions faibles (c'est-à-dire des solutions au sens des distributions). Pour surmonter cette difficulté, on va s'intéresser à une autre classe de solutions : les solutions renormalisées. Cette notion a été introduite par R. -J. Di Perna et P. -L. Lions pour l'étude des équations de Boltzmann, et les équations du premier ordre.
APA, Harvard, Vancouver, ISO, and other styles
8

Sosov, Yuriy. "Legendre Polynomial Expansion of the Electron Boltzmann Equation Applied to the Discharge in Argon." University of Toledo / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1145290801.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chidiac, Chidiac. "Modélisation de la relaxation rotationnelle de CO en jet supersonique libre : effet de la condensation et des phénomènes de glissement." Châtenay-Malabry, Ecole centrale de Paris, 1987. http://www.theses.fr/1987ECAP0069.

Full text
Abstract:
Le travail est consacré à l'étude de la relaxation rotationnelle couplée à la détente dans un jet supersonique libre de CO-He. Les sections efficaces de collisions sont calculées pour des énergies allant jusqu'à 60 meV. Deux méthodes sont utilisées : - La méthode CS pour les basses énergies E 10 meV. - La méthode IOS pour les énergies plus élevées (10 meV E 60 meV) afin de préserver le temps de calcul. Deux modèles de potentiel d'interaction sont testés. Les équations de la relaxation rotationnelle couplées aux équations de la détente sont déduites des équations de Boltzmann et résolues numériquement sur une ligne de courant dans deux cas différents : - sans glissement de vitesses ni différence de températures entre les deux espèces. - avec glissement de vitesses et différence de températures. Un modèle de condensation selon la théorie classique de nucléation homogène est aussi considéré. Les résultats théoriques sont comparés aux résultats expérimentaux existants.
APA, Harvard, Vancouver, ISO, and other styles
10

Marcou, Olivier. "Modélisation et contrôle d’écoulements à surface libre par la méthode de Boltzmann sur réseau." Perpignan, 2010. http://www.theses.fr/2010PERP1001.

Full text
Abstract:
Ce travail de thèse traite de la modélisation et la simulation des systèmes complexes et s’inscrit dans la thématique du contrôle et la gestion des ressources en eau. Nous proposons une approche originale basée sur les modèles de Boltzmann sur réseau pour représenter les écoulements au sein des canaux d’irrigation, habituellement décrits par les équations non linéaires de Saint-Venant. Nous avons adapté un modèle bi-fluide et étudié les conditions aux bords qui permettent de reproduire la géométrie d’un canal à surface libre. Des méthodes de détermination des grandeurs hydrauliques d’intérêt ont été développées. Nous nous sommes intéressés au comportement des vannes de fond en régime noyé, et nous démontrons que le modèle permet de décrire celui-ci spontanément dans différentes situations de fonctionnement. Des validations ont été effectuées par le biais d’une comparaison avec des expérimentations menées sur un micro-canal expérimental. Nous avons également introduit dans le modèle des phénomènes de sédimentation et étudié l’influence de la présence d’un dépôt de sédiments sur l’écoulement. Là aussi, les résultats de simulation et d’expérimentation convergent
This PhD work considers the general problem of modelling and simulation of complex systems and deals with the domain of control and management of water resources. We propose here an original approach based on Lattice Boltzmann models (LB) for modelling free surface flows in irrigation canals, usually described with the non-linear shallow water equations. We adapted a bi-fluid model and studied the boundary conditions which allow to reproduce the geometry of a free-surface irrigation canal. Methods for estimating the desired hydraulic quantities were developed. We studied the behavior of submerged underflow gates, and we show that the model is able to spontaneously and correctly describe how the gates function in quite different situations. Validations were realized by comparing results from simulations and experimentations performed on a laboratory micro-canal facility. We also introduced sedimentation phenomena in the model and studied the influence of a sedimentation deposit on the flow. Comparisons between experimental and simulation results were also performed and converged
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Boltzmann Distributions"

1

Alexeev, Boris V. Generalized Boltzmann physical kinetics. Amsterdam: Elsevier, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Stochastic dynamics and Boltzmann hierarchy. Berlin: Walter de Gruyter, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hydrodynamic limits of the Boltzmann equation. Berlin: Springer, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yeh, Chou, and Langley Research Center, eds. On higher order dynamics in lattice-based models using Chapman-Enskog method. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

1973-, Villani Cédric, and Centre Émile Borel, eds. Entropy methods for the Boltzmann equation: Lectures from a special semester at the Centre Émile Borel, Institut H. Poincaré, Paris, 2001. Berlin: Springer, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lallemand, Pierre. Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bach, Alexander. Indistinguishable classical particles. Berlin: Springer, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

United States. National Aeronautics and Space Administration., ed. Spectroscopic diagnostics of an arc jet heated air plasma: Thesis ... [Washington, DC: National Aeronautics and Space Administration, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

United States. National Aeronautics and Space Administration., ed. Numerical investigations in the backflow region of a vacuum plume: Semi-annual scientific and technical reports, October 1991 - May 1992. [Washington, DC: National Aeronautics and Space Administration, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Darrigol, Olivier. The Boltzmann Equation and the H Theorem (1872–1875). Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198816171.003.0004.

Full text
Abstract:
This chapter covers Boltzmann’s writings about the Boltzmann equation and the H theorem in the period 1872–1875, through which he succeeded in deriving the irreversible evolution of the distribution of molecular velocities in a dilute gas toward Maxwell’s distribution. Boltzmann also used his equation to improve on Maxwell’s theory of transport phenomena (viscosity, diffusion, and heat conduction). The bulky memoir of 1872 and the eponymous equation probably are Boltzmann’s most famous achievements. Despite the now often obsolete ways of demonstration, despite the lengthiness of the arguments, and despite hidden difficulties in the foundations, Boltzmann there displayed his constructive skills at their best.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Boltzmann Distributions"

1

Starzak, Michael E. "Maxwell–Boltzmann Distributions." In Energy and Entropy, 197–216. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-77823-5_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Biró, Tamás Sándor, and Antal Jakovác. "Fluctuation, Dissipation, and Non-Boltzmann Energy Distributions." In SpringerBriefs in Physics, 61–84. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11689-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kosmatopoulos, Elias B., and Manolis A. Christodoulou. "The Boltzmann ECE Neural Network: A Learning Machine for Estimating Unknown Probability Distributions." In Artificial Neural Nets and Genetic Algorithms, 11–17. Vienna: Springer Vienna, 1993. http://dx.doi.org/10.1007/978-3-7091-7533-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Elstner, Marcus, Qiang Cui, and Maja Gruden. "The Boltzmann Distribution." In Introduction to Statistical Thermodynamics, 191–222. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-54994-6_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Balian, Roger. "The Boltzmann-Gibbs Distribution." In From Microphysics to Macrophysics, 141–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-540-45475-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lyngsø, Rune B. "RNA Secondary Structure Boltzmann Distribution." In Encyclopedia of Algorithms, 1842–46. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-2864-4_345.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lyngsø, Rune B. "RNA Secondary Structure Boltzmann Distribution." In Encyclopedia of Algorithms, 777–79. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-30162-4_345.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Koks, Don. "The Non-Isolated System: the Boltzmann Distribution." In Microstates, Entropy and Quanta, 275–331. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-02429-1_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lian, Hao, Ang Li, Yang Tian, and Ying Chen. "An Evacuation Simulation Based on Boltzmann Distribution." In Advanced Research on Computer Education, Simulation and Modeling, 327–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21783-8_54.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pal, Dipti Prakas, and Hridis Kr Pal. "Income Distribution in the Boltzmann-Pareto Framework." In New Economic Windows, 218–22. Milano: Springer Milan, 2005. http://dx.doi.org/10.1007/88-470-0389-x_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Boltzmann Distributions"

1

Elwasif, Wael R., Laurene V. Fausett, and Sam Harbaugh. "Boltzmann machine generation of initial asset distributions." In SPIE's 1995 Symposium on OE/Aerospace Sensing and Dual Use Photonics, edited by Steven K. Rogers and Dennis W. Ruck. SPIE, 1995. http://dx.doi.org/10.1117/12.205123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nasarayya Chari, S. Siva, and K. P. N. Murthy. "Non-equilibrium work distributions from fluctuating lattice-Boltzmann model." In SOLID STATE PHYSICS: Proceedings of the 56th DAE Solid State Physics Symposium 2011. AIP, 2012. http://dx.doi.org/10.1063/1.4709947.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chi, Ed H. "From Missing Data to Boltzmann Distributions and Time Dynamics." In WSDM '20: The Thirteenth ACM International Conference on Web Search and Data Mining. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3336191.3372193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Su, Yan. "A Lattice Boltzmann Simulation for Thermal Energy Diffusion Through a Micro/Nanoscale Thin Film." In ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/mnhmt2019-3901.

Full text
Abstract:
Abstract Thermal energy diffusion through two directions of a micro/nanoscale thin film is modeled by a dimensionless form of Boltzmann transport equations of phonon density distribution functions. With the model named a lattice Boltzmann method (LBM), the discrete Boltzmann transport equations are able to be solved directly. The present model applied is based on physic expression of the dimensionless phonon density distribution functions together with both physic based dimensionless relaxation time models and the physic based dimensionless form of boundary conditions. Effects due to the variations of film thickness, distribution of temperature, and phonon transport frequency are all included in the physic based model. Phonon energy and effective thermal conductivity distributions are shown in the two-dimensional (2D) space. The spatial distributions of temperatures and thermal conductivities are validated by comparing with previous studies. Effects of the longitude and transvers direction heat transfer patterns and their effective thermal conductivities under different size and geometry ratios are compared.
APA, Harvard, Vancouver, ISO, and other styles
5

Argun, Aykut, Ali-Reza Moradi, Erçağ Pinçe, Gokhan Baris Bagci, Alberto Imparato, and Giovanni Volpe. "Non-Boltzmann stationary distributions and non-equilibrium relations in active baths." In Optical Trapping Applications. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/ota.2017.otw3e.5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cai, Peixu, Wangze Shen, Ruohan Yang, and Qixian Zhou. "Reinforcing feature distributions of hidden units of Boltzmann machine using correlations." In 2022 International Conference on Mechatronics Engineering and Artificial Intelligence (MEAI 2022), edited by Chuanjun Zhao. SPIE, 2023. http://dx.doi.org/10.1117/12.2672661.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Krause, Oswin, Asja Fischer, and Christian Igel. "Algorithms for Estimating the Partition Function of Restricted Boltzmann Machines (Extended Abstract)." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/704.

Full text
Abstract:
Estimating the normalization constants (partition functions) of energy-based probabilistic models (Markov random fields) with a high accuracy is required for measuring performance, monitoring the training progress of adaptive models, and conducting likelihood ratio tests. We devised a unifying theoretical framework for algorithms for estimating the partition function, including Annealed Importance Sampling (AIS) and Bennett's Acceptance Ratio method (BAR). The unification reveals conceptual similarities of and differences between different approaches and suggests new algorithms. The framework is based on a generalized form of Crooks' equality, which links the expectation over a distribution of samples generated by a transition operator to the expectation over the distribution induced by the reversed operator. Different ways of sampling, such as parallel tempering and path sampling, are covered by the framework. We performed experiments in which we estimated the partition function of restricted Boltzmann machines (RBMs) and Ising models. We found that BAR using parallel tempering worked well with a small number of bridging distributions, while path sampling based AIS performed best with many bridging distributions. The normalization constant is measured w.r.t.~a reference distribution, and the choice of this distribution turned out to be very important in our experiments. Overall, BAR gave the best empirical results, outperforming AIS.
APA, Harvard, Vancouver, ISO, and other styles
8

Schepke, Claudio, and Nicolas Maillard. "Performance Improvement of the Parallel Lattice Boltzmann Method Through Blocked Data Distributions." In 19th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD'07). IEEE, 2007. http://dx.doi.org/10.1109/sbac-pad.2007.12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Masulli, Francesco, Massimo Riani, Enrico Simonotto, and Fabrizio Vannucci. "Boltzmann distributions and neural networks: models of unbalanced interpretations of reversible patterns." In Aerospace Sensing, edited by Dennis W. Ruck. SPIE, 1992. http://dx.doi.org/10.1117/12.140093.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sun, Jinjuan, Jianying Gong, Guojun Li, and Tieyu Gao. "Lattice Boltzmann Simulation of Frost Formation Process." In ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/ht2013-17700.

Full text
Abstract:
Compared with the conventional mathematical and physical models, the lattice Boltzmann (LB) method is an effective method to simulate the heat and mass transfer in porous media. Frost crystallization aggregation is a very complex process involving inconsistency of frost structures, crystal size distributions, the complex transient shapes, and other numerous influential factors. Assuming the frost is a special porous medium consists of ice crystals and humid air, a mesoscopic model is established to predict the behavior of frost formation based on the lattice Boltzmann equation. The moving boundary condition is adopted in the two-dimensional nine-speed (D2Q9) lattices. The influences of the cold flat surfaces temperature on frost formation process are investigated. The variation laws of frost density and frost layer height are obtained and discussed. Simulation results by the LB model are in agreement with the experiment data from the references.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Boltzmann Distributions"

1

Langenbrunner, James, and Jane Booker. CALCULATION OF THE FIRST MOMENT OF ENERGY USING D-T REACTIVITY FORMALISMS UNDER THE MAXWELL-BOLTZMANN DISTRIBUTION—PART I. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1663180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Langenbrunner, James, and Jane Booker. Calculation Of The First Moment Of Energy Using D-T Reactivity Formalisms Under The Maxwell-Boltzmann Distribution--Part II. Office of Scientific and Technical Information (OSTI), October 2020. http://dx.doi.org/10.2172/1679985.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography