Academic literature on the topic 'Body temperature'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Body temperature.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Body temperature"

1

Garami, András, and Miklós Székely. "Body temperature." Temperature 1, no. 1 (May 6, 2014): 28–29. http://dx.doi.org/10.4161/temp.29060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jones, W. D. "Taking body temperature, inside out [body temperature monitoring]." IEEE Spectrum 43, no. 1 (January 2006): 13–15. http://dx.doi.org/10.1109/mspec.2006.1572338.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Holtzclaw, Barbara J. "Monitoring Body Temperature." AACN Advanced Critical Care 4, no. 1 (February 1, 1993): 44–55. http://dx.doi.org/10.4037/15597768-1993-1005.

Full text
Abstract:
Vigilant and accurate assessment of thermal balance is imperative with the critically ill. Disease, injury, or pharmacologic activity can impair thermoregulation, leaving patients vulnerable to uncontrolled gain or loss of heat. Body temperature provides cues to onset of infection, inflammation, and antigenic responses, as well as indicating efficacy of treatment. With knowledge of heat transfer principles, physiologic processes that distribute body heat, and principles of thermometry, the nurse is better equipped to make reasoned clinical judgment about this important vital sign. Choices of instruments or measurement sites are influenced by needs to estimate either hypothalamic temperature or shifts in body heat. Need for continuous versus episodic assessment, availability or intrusiveness of equipment, and stability of the patient also influence choices. Monitoring devices, measurement sites and techniques, equipment limitations and precautions are discussed. Interpretation and application of assessment findings are presented as they relate to abnormally high or low temperatures, patterns of fever, and temperature gradients
APA, Harvard, Vancouver, ISO, and other styles
4

Frank, Steven M. "BODY TEMPERATURE MONITORING." Anesthesiology Clinics of North America 12, no. 3 (September 1994): 387–407. http://dx.doi.org/10.1016/s0889-8537(21)00684-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Archer, Emma. "Maintaining body temperature." Veterinary Nursing Journal 22, no. 3 (March 2007): 16–20. http://dx.doi.org/10.1080/17415349.2007.11013562.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

HOLTZCLAW, BARBARA J. "Monitoring Body Temperature." AACN Clinical Issues: Advanced Practice in Acute and Critical Care 4, no. 1 (February 1993): 44–55. http://dx.doi.org/10.1097/00044067-199302000-00005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Togawa, T. "Body temperature measurement." Clinical Physics and Physiological Measurement 6, no. 2 (May 1985): 83–108. http://dx.doi.org/10.1088/0143-0815/6/2/001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hirschmann, J. V. "Normal body temperature." JAMA: The Journal of the American Medical Association 267, no. 3 (January 15, 1992): 414b—414. http://dx.doi.org/10.1001/jama.267.3.414b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Frim, J., S. D. Livingstone, L. D. Reed, R. W. Nolan, and R. E. Limmer. "Body composition and skin temperature variation." Journal of Applied Physiology 68, no. 2 (February 1, 1990): 540–43. http://dx.doi.org/10.1152/jappl.1990.68.2.540.

Full text
Abstract:
Temperature variations near four common torso skin temperature sites were measured on 17 lightly clad subjects exposed to ambient temperatures of 28, 23, and 18 degrees C. Although variations in skin temperature exceeding 7 degrees C over a distance of 5 cm were observed on individuals, the mean magnitude of these variations was 2-3 degrees C under the coolest condition and less at the warmer temperatures. There was no correlation between the temperature variation and skinfold thickness at a site or with estimations of whole body fat content. These findings imply that errors in mean skin temperature measurement could arise from probe mislocation and/or subcutaneous fat distribution and that the problem becomes more acute with increasing cold stress. However, the magnitudes of these errors cannot be easily predicted from common anthropometric measurements.
APA, Harvard, Vancouver, ISO, and other styles
10

McMaster, Megan K., and Colleen T. Downs. "Thermal variability in body temperature in an ectotherm: Are cloacal temperatures good indicators of tortoise body temperature?" Journal of Thermal Biology 38, no. 4 (May 2013): 163–68. http://dx.doi.org/10.1016/j.jtherbio.2013.02.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Body temperature"

1

Hegen, Peter. "Continuous Measurements of Core Body Temperature using Body Sensor Networks." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-85465.

Full text
Abstract:
Long-term body temperature measurements for research and diagnosis are currently done in hospitals or specialized research labs. This method has several drawbacks: the use of wired ob- trusive sensors (e.g., rectal probes to measure the core body temperature) may be uncomfortable for patients. Furthermore, situations recorded in laboratory settings do not reflect reality as patients are not subject to their normal living environment. Furthermore, it is labor-intensive to regularly check upon patients and care for their well-being. Using small wireless sensor nodes in a body sensor network to measure body functions, one can mostly offset the limitations listed above. For this work, we have developed a wireless sensor node that uses an infrared thermopile as a sensor to unobtrusively measure the core temperature at the tympanic membrane. Due to their construction, these sensors are heavily dependent on the ambient temperature in the surroundings of the sensor packaging. While this does not affect their use in single-shot measurements (e.g., using an ear thermometer), it poses a challenge for continuous measurements, as common living environments do not have constant ambient air temperatures and people frequently commute between different places. These conditions may offset measurements significantly, an important problem for medical applications that require high accuracy. In this work, we employ infrared thermopiles in a body sensor network and characterize their behaviour in various situations, especially in the presence of varying environmental conditions. Based on our observations, we describe methods for post-processing measurements in order to compensate environmental changes and hence get results reflecting reality more closely. Our evaluation shows that these methods can offset the infrared thermopile’s weakness but need further work to achieve the degree of accuracy that is needed for medical applications.
APA, Harvard, Vancouver, ISO, and other styles
2

Fletcher, Adam C. L. "Increasing core body temperature disrupts sleep /." Title page and summary only, 1995. http://web4.library.adelaide.edu.au/theses/09SB/09sbf612.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

SHAHROOZ, MINA. "Re-inventing Core Body Temperature Measurement." Thesis, KTH, Energiteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-209832.

Full text
Abstract:
Humans are considered an integral part of future energy systems. In this context, constant awareness of human body status is critical for building responsive and intelligent environment that take energy efficiency and human comfort to the highest limits. Core body temperature is one of human body vital signs for body’s proper functioning and comfortability. Continuous non-invasive Core Body Temperature (CBT) measurements is important for patient monitoring and health status tracking in sports, sleep studying and other clinical and care procedures. Currently, there is a lack of precise and versatile methods to capture core body temperature under varying ambient conditions and through practical wearable solutions. Meanwhile, greenTEG AG, Zurich Switzerland, has developed a batch production method enabling the production of small, sensitive and very robust heat flux sensors. The main aim of this project was to develop a commercial product which for the first time measured core body temperature by placement inside a light, affordable wearable hold. This report presents a comprehensive review on heat transfer in human body and thermoregulation concepts in the first chapter followed by the state of the art methods. Then in chapter 2, according to the project design, full description and result discussions of the numerical model of human body developed by the author, was used as a prelude to the experimental tests. The model developed for this study was a Finite Difference model of different tissue layers combined with appropriate convection and radiation heat loss formulations. Tests were conducted through rigorous considerations of real body conditions including variable core body temperature and changing environmental conditions. Numerical tests were also validated by comparing with experimental results. Numerical results provided a precise preview of experimental models’ measurements and were used in the development of experimental setups. One of unique aspects of this study was the fact that the numerical model was used along with the sensor output to capture CBT and was considered a part of final product. In chapter 3, experimental tests on both skin phantom and human trials are discussed together with the sensor design and configuration. Results show that our CBT monitoring system is capable of measuring stable core body temperature under changing environmental conditions. It could also track circadian rhythm of core temperature during sleep, which for the first time, makes it possible for non-invasive miniaturized CBT tracking systems to measure accurate core temperature. These calculations are based on novel algorithms by greenTEG that could compensate for varying environmental conditions.
Människan betraktas som en integrerad del av framtidens energisystem. I detta sammanhang är ständig medvetenhet om människokroppen status avgörande för att bygga lyhörd och intelligent miljö som tar energieffektivitet och mänsklig komfort till de högsta gränser. Kroppstemperaturen är en av människokroppen vitala för kroppens funktion och comfort. Kontinuerliga icke-invasiv kroppstemperaturen (CBT) mätningar är viktigt för patientövervakning och spårning hälsotillstånd i idrott, sömn studera och andra kliniska och vårdförfaranden. För närvarande finns det en brist på exakta och mångsidiga metoder för att fånga kroppstemperaturen under varierande omgivningsförhållanden och genom praktiska bärbara lösningar. Samtidigt greenTEG AG, Zurich Schweiz, har utvecklat ett parti produktionsmetod möjliggör produktion av små, känsliga och mycket robusta värmeflödessensorer. Huvudsyftet med projektet var att utveckla en kommersiell produkt som för första gången mätt kroppstemperaturen genom placering i en ljus, prisvärd bärbar håll. Denna rapport presenterar en omfattande översyn på värmeöverföring i människokroppen och termoregulering begrepp i det första kapitlet, följt av toppmoderna metoder. Sedan i kapitel 2, i enlighet med projektets utformning, fullständig beskrivning och resultat diskussioner om den numeriska modellen av människokroppen som utvecklats av författaren, användes som ett förspel till de experimentella testerna. Modellen utvecklades för denna studie var en ändlig skillnad modell av olika vävnadsskikt i kombination med lämpliga konvektion och strålningsvärme förlust formuleringar. Tester genomfördes genom rigorösa överväganden verkliga förhållanden kroppen, inklusive rörliga kroppstemperaturen och växlande miljöförhållanden. Numeriska tester också valideras genom att jämföra med experimentella resultat. Numeriska resultat gav en exakt förhandsvisning av experimentella modeller "mätningar och användes i utvecklingen av experimentella uppställningar. En av unika aspekterna av denna studie var det faktum att den numeriska modellen användes tillsammans med sensorns utsignal för att fånga KBT och ansågs vara en del av slutprodukten. I kapitel 3, är experimentella tester på både hud fantom och mänskliga försök diskuteras tillsammans med sensordesign och konfiguration. Resultaten visar att vårt KBT övervakningssystem är i stånd att mäta en stabil kroppstemperaturen under föränderliga miljöförhållanden. Det kan också spåra dygnsrytm av kärntemperatur under sömnen, som för första gången gör det möjligt för icke-invasiva miniatyriserade KBT tracking system för att mäta exakt kärntemperatur. Dessa beräkningar är baserade på nya algoritmer från greenTEG som kan kompensera för varierande miljöförhållanden.
APA, Harvard, Vancouver, ISO, and other styles
4

Hosie, Andrew. "Differentiating thermal from non-thermal eccrine sweating during exercise and heat stress." Access electronically, 2002. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20041105.114628/index.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Harding, Edward. "Hypothalamic control of body temperature and sleep." Thesis, Imperial College London, 2016. http://hdl.handle.net/10044/1/58224.

Full text
Abstract:
The role of sleep is not understood but it is essential for life. The sleep cycle is highly correlated to the circadian control of core temperature which, in mammals, is lower during the sleep phase. General anaesthetics induce sedation with sleep-like features, but this often comes with hypothermia. The preoptic hypothalamus seems key to the successful regulation of sleep and thermoregulation. We hypothesise a convergence of neuronal circuits that regulate sleep and temperature regulation in the preoptic area. These may also form a neuronal target for general anaesthetics. Using a pharmacogenetics technique called TetTagging it is possible to label neuronal circuits that respond to specific stimuli and then reactivate them later using a drug called clozapine N-oxide. I have used this technique to label neurons involved in the response to skin warming and used the reactivation to investigate the role of this circuit in sleep. I have also developed techniques to manipulate neuronal circuits through cooling to aid this investigation. By measuring EEG and core temperature, I found that recapitulation of activity in these warm-sensitive circuits induces strong delta oscillations, similar to those of natural sleep, followed by profound hypothermia more closely resembling the effects of general anaesthetics. A reduction in theta power was slower than the onset of delta and so may indicate an increase in sleep pressure. Following hypothermia, this state more closely resembled consolidated NREM, with REM sleep almost entirely absent. Immunohistochemistry has ruled out a GABAergic or cholinergic identity for these neurons.
APA, Harvard, Vancouver, ISO, and other styles
6

Fieldstone, Annette. "Respiration as a mediator of body temperature /." The Ohio State University, 2000. http://rave.ohiolink.edu/etdc/view?acc_num=osu148819950140483.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Greer, Rebecca J. "Fever and pyrexia with verification of thermisters in dogs." Diss., Columbia, Mo. : University of Missouri-Columbia, 2008. http://hdl.handle.net/10355/5717.

Full text
Abstract:
Thesis (M.S.)--University of Missouri-Columbia, 2008.
"May 2008" The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
8

Darowski, Adam. "Normal and abnormal body temperature in the elderly." Thesis, Imperial College London, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.267691.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mayet, Y. "Remote sensing of body temperature in dairy cows." Thesis, University of Newcastle Upon Tyne, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.254066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dugay, Murielle Boetcher Sandra Kathleen Sparr. "Errors in skin temperature measurements." [Denton, Tex.] : University of North Texas, 2008. http://digital.library.unt.edu/permalink/meta-dc-9786.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Body temperature"

1

B, Cisneros Austin, and Goins Bryan L, eds. Body temperature regulation. Hauppauge, NY: Nova Science, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sundin, Helga. Temperature. Irvine, CA: Concept Media, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Grodzinsky, Ewa, and Märta Sund Levander, eds. Understanding Fever and Body Temperature. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-21886-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

1933-, Mizushina Shizuo, ed. Non-invasive temperature measurement. New York: Gordon and Breach Science Publishers, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rahn, Hermann, and Omar Prakash, eds. Acid-Base Regulation and Body Temperature. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5004-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

1912-, Rahn Hermann, and Prakash Omar, eds. Acid-base regulation and body temperature. Boston: Nijhoff, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Simon, Seymour. Let's try it out with cold hands and warm feet. New York: Simon & Schuster Books for Young Readers, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Imber, Gerald. Body Temperature. William Morrow & Co, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cisneros, Austin B. Body Temperature Regulation. Nova Science Publishers, Incorporated, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Body Temperature Log Book: Health Organizer, Body Temperature Tracker. Independently Published, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Body temperature"

1

Hill, Keith, Tom Baranowski, Walter Schmidt, Nicole Prommer, Michel Audran, Philippe Connes, Ramiro L. Gutiérrez, et al. "Body Temperature." In Encyclopedia of Exercise Medicine in Health and Disease, 137. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-29807-6_2166.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Morrison, Shaun F. "Body Temperature Regulation." In Encyclopedia of Evolutionary Psychological Science, 1–4. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-16999-6_715-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kalmar, Jayne M., Brigid M. Lynch, Christine M. Friedenreich, Lee W. Jones, A. N. Bosch, Alessandro Blandino, Elisabetta Toso, et al. "Core Body Temperature." In Encyclopedia of Exercise Medicine in Health and Disease, 213. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-29807-6_2257.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hill, Keith, Tom Baranowski, Walter Schmidt, Nicole Prommer, Michel Audran, Philippe Connes, Ramiro L. Gutiérrez, et al. "Body Temperature Control." In Encyclopedia of Exercise Medicine in Health and Disease, 138. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-29807-6_4086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Morrison, Shaun F. "Body Temperature Regulation." In Encyclopedia of Evolutionary Psychological Science, 692–95. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-319-19650-3_715.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wissler, Eugene H. "Temperature Distribution in the Body." In Human Temperature Control, 265–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-57397-6_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Grodzinsky, Ewa, and Märta Sund Levander. "History of Body Temperature." In Understanding Fever and Body Temperature, 7–22. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21886-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Collins, K. J. "Regulation of Body Temperature." In Care of the Critically Ill Patient, 155–73. London: Springer London, 1992. http://dx.doi.org/10.1007/978-1-4471-3400-8_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Whittow, G. C. "Regulation of Body Temperature." In Avian Physiology, 221–52. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4612-4862-0_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hang, N. T., P. T. N. Thao, Tin T. Dang, and Anh Dinh. "Noncontact-Body-Temperature-Measurement." In IFMBE Proceedings, 43–49. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5859-3_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Body temperature"

1

Horta, Admir, Eric Gernux, Matt Couceiro, Dieter Haemmerich, and Mohamed Almekkawy. "Body temperature control circuit." In 2016 IEEE 7th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON). IEEE, 2016. http://dx.doi.org/10.1109/uemcon.2016.7777815.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Krajewski, Paul E. "Elevated Temperature Forming of Sheet Magnesium Alloys." In International Body Engineering Conference & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2001. http://dx.doi.org/10.4271/2001-01-3104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Suebsaiprom, Pichet, Thitipong Satiramatekul, and Anumat Engkaninan. "Swine Body Temperature Monitoring System." In 2023 International Electrical Engineering Congress (iEECON). IEEE, 2023. http://dx.doi.org/10.1109/ieecon56657.2023.10127042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zheng, Yinhua. "Compressor Body Temperature and Lubrication." In SAE 2013 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2013. http://dx.doi.org/10.4271/2013-01-1501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gulati, S. T., J. D. Helfinstine, T. A. Roe, M. A. Khaleel, R. W. Davies, K. K. Koram, and V. Henry. "Effect of Temperature on Biaxial Strength of Automotive Windshields." In International Body Engineering Conference & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2000. http://dx.doi.org/10.4271/2000-01-2722.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Enamamu, Timibloudi S., Nathan Clarke, Paul Haskell-Dowland, and Fudong Li. "Smart watch based body-temperature authentication." In 2017 International Conference on Computing Networking and Informatics (ICCNI). IEEE, 2017. http://dx.doi.org/10.1109/iccni.2017.8123790.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Stadnyk, B., M. Stepanyak, and E. Dziuban. "Temperature measurement of the human body." In 3rd International Conference on Intelligent Materials, edited by Pierre F. Gobin and Jacques Tatibouet. SPIE, 1996. http://dx.doi.org/10.1117/12.237091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nevrela, J., V. Rezo, M. Novota, A. Vardzak, and M. Weis. "Body temperature sensor based on PEDOT:PSS." In 2022 14th International Conference on Advanced Semiconductor Devices and Microsystems (ASDAM). IEEE, 2022. http://dx.doi.org/10.1109/asdam55965.2022.9966754.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bennett, Douglas A., Robert D. Horansky, Joel N. Ullom, Betty Young, Blas Cabrera, and Aaron Miller. "Two-Body Models for Analyzing Complex Impedance." In THE THIRTEENTH INTERNATIONAL WORKSHOP ON LOW TEMPERATURE DETECTORS—LTD13. AIP, 2009. http://dx.doi.org/10.1063/1.3292447.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Woo, Tae-Hun, Hwa-Ju Jo, Yong-Hwan Lee, and Sung-Young Kim. "Infant Body Temperature Monitoring System using Temperature Change Detection Algorithm." In the 2017 International Conference. New York, New York, USA: ACM Press, 2017. http://dx.doi.org/10.1145/3168390.3168430.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Body temperature"

1

Browder, Timothy D., Deborah A. Kuhls, and John Fildes. Portable Body Temperature Conditioner. Fort Belvoir, VA: Defense Technical Information Center, December 2013. http://dx.doi.org/10.21236/ada611571.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Browder, Timothy D., and Deborah A. Kuhls :John. Portable Body Temperature Conditioner. Fort Belvoir, VA: Defense Technical Information Center, December 2014. http://dx.doi.org/10.21236/ada613803.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Browder, Timothy D., Deborah Kuhls, and John Fildes. Portable Body Temperature Conditioner. Fort Belvoir, VA: Defense Technical Information Center, October 2012. http://dx.doi.org/10.21236/ada566232.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Armstrong, Lawrence E. What Should Athletes Know About Low Body Temperature (Hypothermia). Fort Belvoir, VA: Defense Technical Information Center, October 1989. http://dx.doi.org/10.21236/ada218316.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yan, Qiuyi, Gina Lifeng, Paswan Ajay Kumar, Sayantan Mazumdar, Xiating Tang, Sisi Wei, Xiang Yang, and Jie Huang. Graphene-based sensor for high precision body temperature measurement. Peeref, June 2023. http://dx.doi.org/10.54985/peeref.2306p4764129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hagan, R. D., Gretchen K. Vurbeff, Jay H. Heaney, and James A. Hodgdon. Body Temperature and Firefighter Ensemble Temperatures During Exercise and Exposure to Moderate Warm, and Hot Air Temperatures. Fort Belvoir, VA: Defense Technical Information Center, May 2001. http://dx.doi.org/10.21236/ada435990.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

English, Jennifer, Anna K. Johnson, Kenneth J. Stalder, Locke A. Karriker, Monique Pairis-Garcia, and Caitlyn Bruns. Evaluation of How Anesthesia Affect Body Temperature in Sows Using Infrared Thermography. Ames (Iowa): Iowa State University, January 2018. http://dx.doi.org/10.31274/ans_air-180814-399.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cadarette, Bruce S., William T. Matthew, and Michael N. Sawka. WBGT Index Temperature Adjustments for Work/Rest Cycles When Wearing NBC Protective Clothing or Body Armor. Fort Belvoir, VA: Defense Technical Information Center, June 2005. http://dx.doi.org/10.21236/ada435964.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Palioca, Wayne. The effect of body temperature on arteriovenous oxygen difference during rest and activity in the toad, Bufo marinus. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.5613.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Anderson, J. C., and M. R. Feldman. Effect of gray-body interchange factor and radiating temperature on the thermal response of the DT-18 shipping container. Office of Scientific and Technical Information (OSTI), February 1992. http://dx.doi.org/10.2172/5672444.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography