Journal articles on the topic 'Bodily symmetrie'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Bodily symmetrie.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
MAINZER, KLAUS. "Symmetry and complexity in dynamical systems." European Review 13, S2 (August 22, 2005): 29–48. http://dx.doi.org/10.1017/s1062798705000645.
Full textSuk, Tomáš, and Jan Flusser. "Recognition of Symmetric 3D Bodies." Symmetry 6, no. 3 (September 1, 2014): 722–57. http://dx.doi.org/10.3390/sym6030722.
Full textLassak, Marek. "Approximation of convex bodies by axially symmetric bodies." Proceedings of the American Mathematical Society 130, no. 10 (March 14, 2002): 3075–84. http://dx.doi.org/10.1090/s0002-9939-02-06404-3.
Full textWu, Liangxing, and Kevin Burgess. "A new synthesis of symmetric boraindacene (BODIPY) dyes." Chemical Communications, no. 40 (2008): 4933. http://dx.doi.org/10.1039/b810503k.
Full textLassak, Marek. "Approximation of Plane Convex Bodies by Centrally Symmetric Bodies." Journal of the London Mathematical Society s2-40, no. 2 (October 1989): 369–77. http://dx.doi.org/10.1112/jlms/s2-40.2.369.
Full textMyroshnychenko, Sergii, Dmitry Ryabogin, and Christos Saroglou. "Star Bodies with Completely Symmetric Sections." International Mathematics Research Notices 2019, no. 10 (September 11, 2017): 3015–31. http://dx.doi.org/10.1093/imrn/rnx211.
Full textMakai, E., H. Martini, and T. Ódor. "Maximal sections and centrally symmetric bodies." Mathematika 47, no. 1-2 (December 2000): 19–30. http://dx.doi.org/10.1112/s0025579300015680.
Full textEvans, D. V., and P. McIver. "Trapped waves over symmetric thin bodies." Journal of Fluid Mechanics 223, no. -1 (February 1991): 509. http://dx.doi.org/10.1017/s0022112091001520.
Full textBall, Keith. "The plank problem for symmetric bodies." Inventiones mathematicae 104, no. 1 (December 1991): 535–43. http://dx.doi.org/10.1007/bf01245089.
Full textDann, Susanna, and Marisa Zymonopoulou. "Sections of convex bodies with symmetries." Advances in Mathematics 271 (February 2015): 112–52. http://dx.doi.org/10.1016/j.aim.2014.11.023.
Full textYANG, YUNLONG, and DEYAN ZHANG. "TWO OPTIMISATION PROBLEMS FOR CONVEX BODIES." Bulletin of the Australian Mathematical Society 93, no. 1 (August 5, 2015): 137–45. http://dx.doi.org/10.1017/s0004972715000799.
Full textLassak, Marek. "Erratum to “Approximation of convex bodies by axially symmetric bodies”." Proceedings of the American Mathematical Society 131, no. 7 (February 10, 2003): 2301. http://dx.doi.org/10.1090/s0002-9939-03-07225-3.
Full textMakeev, V. V. "Lattice Packings of Mirror Symmetric or Centrally Symmetric Three-Dimensional Convex Bodies." Journal of Mathematical Sciences 212, no. 5 (January 8, 2016): 536–41. http://dx.doi.org/10.1007/s10958-016-2683-7.
Full textAngeles Alfonseca, M., and Jaegil Kim. "On the Local Convexity of Intersection Bodies of Revolution." Canadian Journal of Mathematics 67, no. 1 (February 1, 2015): 3–27. http://dx.doi.org/10.4153/cjm-2013-039-4.
Full textSrivastava, D. K. "Slowly Vibrating Axially Symmetric Bodies-Transverse Flow." International Journal of Applied Mechanics and Engineering 26, no. 1 (January 29, 2021): 226–50. http://dx.doi.org/10.2478/ijame-2021-0014.
Full textTanno, Shukichi. "Central sections of centrally symmetric convex bodies." Kodai Mathematical Journal 10, no. 3 (1987): 343–61. http://dx.doi.org/10.2996/kmj/1138037465.
Full textTikhomirov, Konstantin. "ILLUMINATION OF CONVEX BODIES WITH MANY SYMMETRIES." Mathematika 63, no. 2 (January 2017): 372–82. http://dx.doi.org/10.1112/s0025579316000292.
Full textRosales, Cesar. "Isoperimetric regions in rotationally symmetric convex bodies." Indiana University Mathematics Journal 52, no. 5 (2003): 1201–14. http://dx.doi.org/10.1512/iumj.2003.52.2320.
Full textJiang, Xin-Dong, Houjun Zhang, Yuanlin Zhang, and Weili Zhao. "Development of non-symmetric thiophene-fused BODIPYs." Tetrahedron 68, no. 47 (November 2012): 9795–801. http://dx.doi.org/10.1016/j.tet.2012.09.011.
Full textDoležel, Ivo, Jerzy Barglik, and Bohuš Ulrych. "Continual induction hardening of axi-symmetric bodies." Journal of Materials Processing Technology 161, no. 1-2 (April 2005): 269–75. http://dx.doi.org/10.1016/j.jmatprotec.2004.07.035.
Full text�dor, T., and P. M. Gruber. "Ellipsoids are the most symmetric convex bodies." Archiv der Mathematik 73, no. 5 (November 1, 1999): 394–400. http://dx.doi.org/10.1007/s000130050414.
Full textPérez-Gavilán, J. J., and M. H. Aliabadi. "Symmetric Galerkin BEM for multi-connected bodies." Communications in Numerical Methods in Engineering 17, no. 11 (October 10, 2001): 761–70. http://dx.doi.org/10.1002/cnm.444.
Full textFantoni, Carlo, Sara Rigutti, and Walter Gerbino. "Bodily action penetrates affective perception." PeerJ 4 (February 15, 2016): e1677. http://dx.doi.org/10.7717/peerj.1677.
Full textAramyan, R. H. "The Sine Representation of Centrally Symmetric Convex Bodies." Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences) 53, no. 6 (November 2018): 363–68. http://dx.doi.org/10.3103/s1068362318060079.
Full textFradelizi, Matthieu, Alfredo Hubard, Mathieu Meyer, Edgardo Roldán-Pensado, and Artem Zvavitch. "Equipartitions and Mahler volumes of symmetric convex bodies." American Journal of Mathematics 144, no. 5 (October 2022): 1201–19. http://dx.doi.org/10.1353/ajm.2022.0027.
Full textSaigal, Sunil, R. Aithal, and Carl T. Dyka. "Boundary element design sensitivity analysis of symmetric bodies." AIAA Journal 28, no. 1 (January 1990): 180–83. http://dx.doi.org/10.2514/3.10373.
Full textGodin, Oleg A. "Rayleigh scattering of sound by spherically symmetric bodies." Journal of the Acoustical Society of America 133, no. 5 (May 2013): 3253. http://dx.doi.org/10.1121/1.4805239.
Full textGritzmann, Peter. "Lattice covering of space with symmetric convex bodies." Mathematika 32, no. 2 (December 1985): 311–15. http://dx.doi.org/10.1112/s0025579300011086.
Full textNadal, François, and Eric Lauga. "Small acoustically forced symmetric bodies in viscous fluids." Journal of the Acoustical Society of America 139, no. 3 (March 2016): 1081–92. http://dx.doi.org/10.1121/1.4942592.
Full textBöröczky, Károly J., Erwin Lutwak, Deane Yang, Gaoyong Zhang, and Yiming Zhao. "The dual Minkowski problem for symmetric convex bodies." Advances in Mathematics 356 (November 2019): 106805. http://dx.doi.org/10.1016/j.aim.2019.106805.
Full textFreddi, Francesco, and Gianni Royer-Carfagni. "Symmetric Galerkin BEM for bodies with unconstrained contours." Computer Methods in Applied Mechanics and Engineering 195, no. 9-12 (February 2006): 961–81. http://dx.doi.org/10.1016/j.cma.2005.02.014.
Full textAli, Hasrat, Brigitte Guérin, and Johan E. van Lier. "gem-Dibromovinyl boron dipyrrins: synthesis, spectral properties and crystal structures." Dalton Transactions 48, no. 30 (2019): 11492–507. http://dx.doi.org/10.1039/c9dt02309g.
Full textHOU, Peiwen, and Hailin JIN. "The Minkowski Measure of Asymmetry for Spherical Bodies of Constant Width." Wuhan University Journal of Natural Sciences 27, no. 5 (October 2022): 367–71. http://dx.doi.org/10.1051/wujns/2022275367.
Full textTekasakul, P., R. V. Tompson, and S. K. Loyalka. "Rotatory oscillations of arbitrary axi-symmetric bodies in an axi-symmetric viscous flow: Numerical solutions." Physics of Fluids 10, no. 11 (November 1998): 2797–818. http://dx.doi.org/10.1063/1.869803.
Full textMakai, E., and H. Martini. "Centrally symmetric convex bodies and sections having maximal quermassintegrals." Studia Scientiarum Mathematicarum Hungarica 49, no. 2 (June 1, 2012): 189–99. http://dx.doi.org/10.1556/sscmath.49.2012.2.1197.
Full textMuñoz-Fernández, G. A., S. Gy Révész, and J. B. Seoane-Sepúlveda. "Geometry of homogeneous polynomials on non symmetric convex bodies." MATHEMATICA SCANDINAVICA 105, no. 1 (September 1, 2009): 147. http://dx.doi.org/10.7146/math.scand.a-15111.
Full textShyroki, Dzmitry M. "Efficient Cartesian-Grid-Based Modeling of Rotationally Symmetric Bodies." IEEE Transactions on Microwave Theory and Techniques 55, no. 6 (June 2007): 1132–38. http://dx.doi.org/10.1109/tmtt.2007.897841.
Full textDoyle, P. G., J. C. Lagarias, and D. Randall. "Self-packing of centrally symmetric convex bodies in ℝ2." Discrete & Computational Geometry 8, no. 2 (August 1992): 171–89. http://dx.doi.org/10.1007/bf02293042.
Full textSargand, S. M., H. H. Chen, and Y. C. Das. "Method of initial functions for axially symmetric elastic bodies." International Journal of Solids and Structures 29, no. 6 (1992): 711–19. http://dx.doi.org/10.1016/0020-7683(92)90122-a.
Full textMeckes, Mark W. "Sylvester’s Problem for Symmetric Convex Bodies and Related Problems." Monatshefte für Mathematik 145, no. 4 (May 27, 2005): 307–19. http://dx.doi.org/10.1007/s00605-005-0300-9.
Full textHenze, Matthias. "A Blichfeldt-type inequality for centrally symmetric convex bodies." Monatshefte für Mathematik 170, no. 3-4 (December 21, 2012): 371–79. http://dx.doi.org/10.1007/s00605-012-0461-2.
Full textFourment, Lionel. "A quasi-symmetric formulation for contact between deformable bodies." European Journal of Computational Mechanics 17, no. 5-7 (January 2008): 907–18. http://dx.doi.org/10.3166/remn.17.907-918.
Full textGoodey, Paul, and Wolfgang Weil. "Centrally symmetric convex bodies and the spherical Radon transform." Journal of Differential Geometry 35, no. 3 (1992): 675–88. http://dx.doi.org/10.4310/jdg/1214448262.
Full textMilman, V. D., and A. Pajor. "Entropy and Asymptotic Geometry of Non-Symmetric Convex Bodies." Advances in Mathematics 152, no. 2 (June 2000): 314–35. http://dx.doi.org/10.1006/aima.1999.1903.
Full textRévész, Szilárd. "Uniqueness of Markov-Extremal Polynomials on Symmetric Convex Bodies." Constructive Approximation 17, no. 3 (January 2001): 465–78. http://dx.doi.org/10.1007/s003650010043.
Full textDar, S. "On the isotropic constant of non-symmetric convex bodies." Israel Journal of Mathematics 97, no. 1 (December 1997): 151–56. http://dx.doi.org/10.1007/bf02774032.
Full textStancu, Alina. "The logarithmic Minkowski inequality for non-symmetric convex bodies." Advances in Applied Mathematics 73 (February 2016): 43–58. http://dx.doi.org/10.1016/j.aam.2015.09.015.
Full textDatta, Sunil, and Deepak Kumar Srivastava. "Stokes drag on axially symmetric bodies: a new approach." Proceedings - Mathematical Sciences 109, no. 4 (November 1999): 441–52. http://dx.doi.org/10.1007/bf02838005.
Full textKathnelson, A. N. "COUPLED TIMOSHENKO BEAM VIBRATION EQUATIONS FOR FREE SYMMETRIC BODIES." Journal of Sound and Vibration 195, no. 2 (August 1996): 348–52. http://dx.doi.org/10.1006/jsvi.1996.0429.
Full textQuarti, Michael, Andreas Gottlieb, Karl Bühler, and Gerhard Kachel. "Rotation-Symmetric Referencebodys For Energy Efficient Flow Around Bodies." PAMM 12, no. 1 (December 2012): 557–58. http://dx.doi.org/10.1002/pamm.201210267.
Full text