Contents
Academic literature on the topic 'Blockchain publique'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Blockchain publique.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Blockchain publique"
Carton, Malo, and Pierre Jérémie. "La blockchain au service de l’action publique." Annales des Mines - Réalités industrielles Août 2017, no. 3 (2017): 58. http://dx.doi.org/10.3917/rindu1.173.0058.
Full textDissertations / Theses on the topic "Blockchain publique"
Khacef, Kahina. "Trade-off betweew security and scalability in blockchain systems." Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS516.
Full textThe development of Blockchain has enabled the emergence of high technology in the sensitive and active sectors by allowing the reliability of information via consensus, the immutability of records, and transaction transparency. This thesis presents the design, implementation, and evaluation of techniques to scale the blockchain. The first part of this thesis consists of building a decentralized, secure peer-to-peer messaging protocol using a PKI-based blockchain, which can be an email, a website, or some other form of message. Managing users’ identities by the Blockchain eliminates the single point of failure of traditional PKIs. By using smart contracts to validate, store and revoke the certificate on a public blockchain. Security and scalability are considered two significant challenges in blockchains’ rapid and smooth deployment in businesses, enterprises, and organizations. The ability to scale up a blockchain lies mainly in improving the underlying technology rather than deploying new hardware. The second contribution of the thesis proposes SecuSca, an approach that makes a trade-off between security and scalability when designing blockchain-based systems. It designs an efficient replication model, which creates dynamic sharding wherein blocks are stored in various nodes. To maintain the required level of security, the proposed approach shows that blockchain replication over the Peer_to_Peer network is minimized as the blockchain’s length evolves. Furthermore, a sharding protocol over the network is proposed to get access to the blockchain data based on historical transactions. The protocol reduces old blocks’ replication; these blocks can be discarded from specific nodes and stored by others. The nodes willing to store the coming blocks and their data are chosen randomly. The block header of each block is kept to achieve consensus. Next, we optimize the latest approach by choosing the entering nodes following the nodes’ capacities instead of randomly
Hoang, Van-Hoan. "Securing data access and exchanges in a heterogeneous ecosystem : An adaptive and context-sensitive approach." Thesis, La Rochelle, 2022. http://www.theses.fr/2022LAROS009.
Full textCloud-based data storage and sharing services have been proven successful since the last decades. The underlying model helps users not to expensively spend on hardware to store data while still being able to access and share data anywhere and whenever they desire. In this context, security is vital to protecting users and their resources. Regarding users, they need to be securely authenticated to prove their eligibility to access resources. As for user privacy, showing credentials enables the service provider to detect sharing-related people or build a profile for each. Regarding outsourced data, due to complexity in deploying an effective key management in such services, data is often not encrypted by users but service providers. This enables them to read users’ data. In this thesis, we make a set of contributions which address these issues. First, we design a password-based authenticated key exchange protocol to establish a secure channel between users and service providers over insecure environment. Second, we construct a privacy-enhancing decentralized public key infrastructure which allows building secure authentication protocols while preserving user privacy. Third, we design two revocable ciphertext-policy attribute-based encryption schemes. These provide effective key management systems to help a data owner to encrypt data before outsourcing it while still retaining the capacity to securely share it with others. Fourth, we build a decentralized data sharing platform by leveraging the blockchain technology and the IPFS network. The platform aims at providing high data availability, data confidentiality, secure access control, and user privacy
Kandi, Mohamed Ali. "Lightweight key management solutions for heterogeneous IoT." Thesis, Compiègne, 2020. http://www.theses.fr/2020COMP2575.
Full textThe Internet of Things (IoT) is an emerging technology that has the potential to improveour daily lives in a number of ways. It consists of extending connectivity beyond standard devices (such as computers, tablets and smartphones) to all everyday objects. The IoT devices, also called smart objects, can collect data from their surroundings, collaborate to process them and then act on their environment. This increases their functionalities and allow them to offer various services for the benefit of society. However, many challenges are slowing down the development of the IoT. Securing communication between its devices is one of the hardest issue that prevents this technology from revealing its full potential. Cryptography provides a set of mechanisms to secure data. For their proper functioning, these mechanisms require secret parameters called keys. The Key Management is a branch of cryptography that encompasses all operations involving the handling of these of extending the conventional mechanisms (including the Key Management) to the resource-limited devices. To be efficient in the IoT, the new mechanisms must offer a good compromise between security, performance and resource requirements. Lightweight Key Management is the essence of secure communication in the IoT and the core of our work. In this thesis, we propose a novel lightweight Key Management protocol to secure communication between the heterogeneous and dynamic IoT devices. To design our solution, we consider three modes of communication: device-to-device, group and multi-group communication. While most of the related works focus only on one of these modes of communication, our solution efficiently secures all three of them. It also automatically balances the loads between the heterogeneous devices according to their capabilities. We then prove that this makes our protocol more suitable for the IoT as it is e_cient and highly scalable. Furthermore, we propose a decentralization of our protocol based on the blockchain technology and smart contracts. We show that, by empowering multiple participants to manage the cryptographic keys, decentralization solves trust issues, lowers risk of system failure and improves security. We finally implement our solution on resource-constrained IoT motes that are based on the Contiki operating system. The objective is to experimentally evaluate the performance of our solution and to complete our theoretical analyses
Books on the topic "Blockchain publique"
Wright, Aaron (Writer on law), author, ed. Blockchain and the law: The rule of code. Harvard University Press, 2018.
Find full textWright, Aaron, and Primavera De Filippi. Blockchain and the Law: The Rule of Code. Harvard University Press, 2018.
Find full text