Academic literature on the topic 'Bloch-Kato conjecture'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bloch-Kato conjecture.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bloch-Kato conjecture"
Huber, Annette, and Guido Kings. "A cohomological Tamagawa number formula." Nagoya Mathematical Journal 202 (June 2011): 45–75. http://dx.doi.org/10.1215/00277630-1260441.
Full textHuber, Annette, and Guido Kings. "A cohomological Tamagawa number formula." Nagoya Mathematical Journal 202 (June 2011): 45–75. http://dx.doi.org/10.1017/s0027763000010242.
Full textSwinnerton-Dyer, Sir Peter. "Diagonal hypersurfaces and the Bloch-Kato conjecture, I." Journal of the London Mathematical Society 90, no. 3 (October 20, 2014): 845–60. http://dx.doi.org/10.1112/jlms/jdu055.
Full textGuo, Li. "On the Bloch–Kato Conjecture for HeckeL-Functions." Journal of Number Theory 57, no. 2 (April 1996): 340–65. http://dx.doi.org/10.1006/jnth.1996.0053.
Full textAsok, Aravind. "Rationality problems and conjectures of Milnor and Bloch–Kato." Compositio Mathematica 149, no. 8 (June 3, 2013): 1312–26. http://dx.doi.org/10.1112/s0010437x13007021.
Full textTamiozzo, Matteo. "On the Bloch–Kato conjecture for Hilbert modular forms." Mathematische Zeitschrift 299, no. 1-2 (January 30, 2021): 427–58. http://dx.doi.org/10.1007/s00209-020-02689-0.
Full textVoevodsky, Vladimir. "Motives over simplicial schemes." Journal of K-Theory 5, no. 1 (February 2010): 1–38. http://dx.doi.org/10.1017/is010001030jkt107.
Full textKings, Guido, and Annette Huber. "Bloch-Kato conjecture and main conjecture of Iwasawa theory for Dirichlet characters." Duke Mathematical Journal 119, no. 3 (September 2003): 393–464. http://dx.doi.org/10.1215/s0012-7094-03-11931-6.
Full textDUMMIGAN, NEIL. "RATIONAL TORSION ON OPTIMAL CURVES." International Journal of Number Theory 01, no. 04 (December 2005): 513–31. http://dx.doi.org/10.1142/s1793042105000340.
Full textDUMMIGAN, NEIL. "SYMMETRIC SQUARE L-FUNCTIONS AND SHAFAREVICH–TATE GROUPS, II." International Journal of Number Theory 05, no. 07 (November 2009): 1321–45. http://dx.doi.org/10.1142/s1793042109002699.
Full textDissertations / Theses on the topic "Bloch-Kato conjecture"
Harrison, Michael Corin. "On the conjecture of Bloch-Kato for Grossencharacters over Q(i)." Thesis, University of Cambridge, 1992. https://www.repository.cam.ac.uk/handle/1810/251690.
Full textTamiozzo, Matteo [Verfasser], and Massimo [Akademischer Betreuer] Bertolini. "On the Bloch-Kato conjecture for Hilbert modular forms / Matteo Tamiozzo ; Betreuer: Massimo Bertolini." Duisburg, 2019. http://d-nb.info/1191690938/34.
Full textLin, Qiang Flach Matthias. "Bloch-Kato conjecture for the adjoint of H1(X0(N)) with integral Hecke algebra /." Diss., Pasadena, Calif. : California Institute of Technology, 2004. http://resolver.caltech.edu/CaltechETD:etd-11182003-084742.
Full textQUADRELLI, CLAUDIO. "Cohomology of Absolute Galois Groups." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2014. http://hdl.handle.net/10281/56993.
Full textChenevier, Gaëtan. "Familles p-adiques de formes automorphes et applications aux conjectures de Bloch-Kato." Paris 7, 2003. http://www.theses.fr/2003PA077027.
Full textMundy, Samuel Raymond. "Eisenstein series for G₂ and the symmetric cube Bloch--Kato conjecture." Thesis, 2021. https://doi.org/10.7916/d8-k3ys-vh32.
Full textLin, Qiang. "Bloch-Kato Conjecture for the Adjoint of H¹(X₀(N)) with Integral Hecke Algebra." Thesis, 2004. https://thesis.library.caltech.edu/4595/1/BurnsFlachConjectureForIntegralHeckeAlgebra.pdf.
Full textLet M be a motive that is defined over a number field and admits an action of a finite dimensional semisimple Q-algebra T. David Burns and Matthias Flach formulated a conjecture, which depends on a choice of Z-order T in T, for the leading coefficient of the Taylor expansion at 0 of the T-equivariant L-function of M. For primes l outside a finite set we prove the l-primary part of this conjecture for the specific case where M is the trace zero part of the adjoint of H¹(X₀(N)) for prime N and where T is the (commutative) integral Hecke algebra for cusp forms of weight 2 and the congruence group Γ₀(N), thus providing one of the first nontrivial supporting examples for the conjecture in a geometric situation where T is not the maximal order of T.
We also compare two Selmer groups, one of which appears in Bloch-Kato conjecture and the other a slight variant of what is defined by A. Wiles. A result on the Fontaine-Laffaille modules with coefficients in a local ring finite free over Zℓ is obtained.
Books on the topic "Bloch-Kato conjecture"
Coates, John, A. Raghuram, Anupam Saikia, and R. Sujatha, eds. The Bloch–Kato Conjecture for the Riemann Zeta Function. Cambridge: Cambridge University Press, 2015. http://dx.doi.org/10.1017/cbo9781316163757.
Full textJohn, Coates, R. Sujatha, A. Raghuram, and Anupam Saikia. Bloch-Kato Conjecture for the Riemann Zeta Function. Cambridge University Press, 2015.
Find full textJohn, Coates, A. Raghuram, and Anupam Saikia. Bloch Kato Conjecture for the Riemann Zeta Function. Cambridge University Press, 2015.
Find full textJohn, Coates, R. Sujatha, A. Raghuram, and Anupam Saikia. Bloch-Kato Conjecture for the Riemann Zeta Function. Cambridge University Press, 2015.
Find full textBloch-Kato Conjecture for the Riemann Zeta Function. Cambridge University Press, 2015.
Find full textHaesemeyer, Christian, and Charles A. Weibel. The Norm Residue Theorem in Motivic Cohomology. Princeton University Press, 2019. http://dx.doi.org/10.23943/princeton/9780691191041.001.0001.
Full textBook chapters on the topic "Bloch-Kato conjecture"
Hulsbergen, Wilfred W. J. "The Bloch-Kato conjecture." In Conjectures in Arithmetic Algebraic Geometry, 207–27. Wiesbaden: Vieweg+Teubner Verlag, 1994. http://dx.doi.org/10.1007/978-3-663-09505-7_12.
Full textSuslin, Andrei, and Vladimir Voevodsky. "Bloch-Kato Conjecture and Motivic Cohomology with Finite Coefficients." In The Arithmetic and Geometry of Algebraic Cycles, 117–89. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4098-0_5.
Full textConference papers on the topic "Bloch-Kato conjecture"
Chebolu, Sunil, and Ján Mináč. "Absolute Galois groups viewed from small quotients and the Bloch–Kato conjecture." In New topological contexts for Galois theory and algebraic geometry. Mathematical Sciences Publishers, 2009. http://dx.doi.org/10.2140/gtm.2009.16.31.
Full text